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Abstract: Optical remote sensing images often feature high resolution, dense target distribution, and
uneven target sizes, while transformer-based detectors like DETR reduce manually designed compo-
nents, DETR does not support arbitrary-oriented object detection and suffers from high computational
costs and slow convergence when handling large sequences of images. Additionally, bipartite graph
matching and the limit on the number of queries result in transformer-based detectors performing
poorly in scenarios with multiple objects and small object sizes. We propose an improved DETR
detector for Oriented remote sensing object detection with Feature Reconstruction and Dynamic
Query, termed DETR-ORD. It introduces rotation into the transformer architecture for oriented object
detection, reduces computational cost with a hybrid encoder, and includes an IFR (image feature
reconstruction) module to address the loss of positional information due to the flattening opera-
tion. It also uses ATSS to select auxiliary dynamic training queries for the decoder. This improved
DETR-based detector enhances detection performance in challenging oriented optical remote sensing
scenarios with similar backbone network parameters. Our approach achieves superior results on
most optical remote sensing datasets, such as DOTA-v1.5 (72.07% mAP) and DIOR-R (66.60% mAP),
surpassing the baseline detector.

Keywords: optical remote sensing images; oriented object detection; transformer; deep learning

1. Introduction

Object detection in remote sensing is a challenging task due to the arbitrary orientations
of objects and the unbalanced distribution of objects within a single image. For instance, one
image may contain hundreds of vehicles, while another may only have a single tennis court.

Detectors based on CNNs [1-14] have achieved significant results in object detection tasks
for optical remote sensing images. These methods can be divided into two categories based on
the presence of anchors: anchor-based and anchor-free. Anchor-based methods [2,7,8] work
by pre-setting anchor boxes and then adjusting them during prediction to obtain the final
results. In contrast, anchor-free methods [11-14] do not predict the offsets of anchor boxes
directly; instead, they often use the center point as a reference, obtaining predictions through
horizontal, vertical, or rotational adjustments. Based on the stage of detection, they can be
further divided into single-stage and two-stage detectors. Single-stage detectors [7-10] directly
yield prediction results, offering fast speeds but generally lower accuracy. Two-stage detection
methods [1,2,4,5] initially generate proposals through a region proposal network (RPN)
that are then classified and further refined by subsequent networks to produce predictions,
resulting in slower speeds but higher accuracy.
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However, methods [1-14] starting from either rotating boxes or center points generate
a large number of background samples that interfere with the detector’s judgment and
require manually designed preprocessing and postprocessing components to meet the
needs of optical remote sensing object detection. These components not only increase the
complexity of model design but also limit the universality and flexibility of the model.

Recently, transformer-based detectors, like DETR [15], have brought revolutionary
changes to object detection tasks, especially by discarding the manually designed com-
ponents and directly predicting the categories and bounding boxes of objects through an
end-to-end training approach.

To address the issue of slow convergence, researchers have been using deformable
attention to reduce the amount of computation [16], understanding the semantic and
positional information of queries [17], employing denoising with added noise [18,19], and
utilizing auxiliary training heads [20] to accelerate convergence, thus making improvements
to various aspects of DETR [15].

However, existing DETR-based detectors still have some limitations in rotated object
detection tasks, and the number of queries can seriously affect the amount of computation.
When facing arbitrary-oriented object detection tasks, introducing the angle of bounding
boxes into the transformer-based detector (with DINO [19] as the baseline in this paper) still
experiences the following three challenges: (1) choice of an appropriate format to define
rotating boxes; (2) adjustment of the method for calculating reference points in deformable
attention to accommodate rotating boxes; (3) iteratively correction of the rotating box angles
in the decoder when the values of xywh are all between 0 and 1.

In this paper, we aim to adapt transformer-based detectors for oriented object detection
and specifically enhance the accuracy and speed in arbitrary-oriented object detection tasks.
For adapting the transformer-based detector for oriented object detection, we propose
a method to define rotating boxes in the xywhé format, which is a natural extension
of the xywh format. We designed an algorithm for rotating reference points to ensure
that the interaction reference points generated by the encoder’s output for rotating box
proposals remain within the box. We developed activation and inverse activation functions
specific to rotation, similar to mapping xywh to the 0-1 range to match image predictions,
to accommodate different standards of rotating angle descriptions. Consequently, to
address the limitations of computational cost and slow convergence in transformer-
based detectors, inspired by RT-DETR [21], we employed a hybrid encoder [21] to reduce
the computational cost and number of parameters while maintaining the same level of
accuracy. Then, for the loss of memory positional information, we propose an Image
Feature Reconstruction (IFR) module to supervise the memory obtained through feature
interactions via self-attention in the encoder. By restoring the memory to multi-layer
features and upsampling them to the original image size for feature reconstruction, we
can effectively compensate for the loss of spatial positioning information caused by the
flattening operation necessary for self-attention. Finally, for the issue of the bipartite graph
matching and the limit on the number of queries, we propose a method to select auxiliary
dynamic training queries for the decoder, which can improve the quality of the top-k
proposals selected by the encoder and mitigate the issue encountered during prediction,
where using only the top-k scores to obtain proposals can result in high classification scores
but low-quality bounding boxes.

In conclusion, the main contributions of this paper can be summarized as follows:

1.  We adapted a transformer-based detector to accommodate arbitrary-oriented object
detection tasks, using enhancements in deformable attention, iterative corrections in
the decoder, and methods of adding noise to rotating bounding boxes;

2. By employing a hybrid encoder, we effectively reduced the computational cost and
number of parameters while maintaining accuracy to effectively improve the limita-
tions of computational cost and slow convergence in transformer-based detectors;

3. Weintroduced an image feature reconstruction (IFR) module to supervise the memory
obtained through feature interactions via self-attention within the hybrid encoder. By
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restoring the memory to multi-layer features and upsampling them to the original
image size for feature reconstruction, we can effectively compensate for the loss of
spatial positioning information;

4. We developed a method to select auxiliary dynamic training queries for the decoder,
enhancing the quality of the top-k proposals generated by the encoder. It can mitigate
issues encountered during prediction when there are high classification scores but
low-quality bounding boxes.

2. Related Works

CNN Architecture-Based Detectors. Detection algorithms based on CNN architec-
tures primarily focus on improvements in three key areas: feature alignment, positive and
negative sample matching, and the regression of rotated bounding boxes.

Han et al. [7] proposed a single-shot alignment network (S?A-Net) consisting of
two modules, a feature alignment module (FAM) and an oriented detection module
(ODM), to alleviate the inconsistency between classification score and localization ac-
curacy. Yang et al. [8] proposed an end-to-end refined single-stage rotation detector for
fast and accurate object detection using a progressive regression approach from coarse to
fine granularity. Hou et al. [12] proposed novel flexible shape-adaptive selection (SA-S)
and shape-adaptive measurement (SA-M) strategies for oriented object detection, which
comprise an SA-S strategy for sample selection and SA-M strategy for the quality estimation
of positive samples. Li et al. [14] proposed an effective adaptive point learning approach to
aerial object detection by taking advantage of the adaptive point representation, which can
capture the geometric information of the arbitrary-oriented instances.

Although detectors based on CNN architectures have achieved significant results, they
still require complex preprocessing and postprocessing.

Transformer Architecture-Based Detectors. Transformer-based detectors can be di-
vided into two categories. The first category combines self-attention, cross-attention, and
CNNs to enhance the network’s capability for image feature extraction and interaction.
The second category includes DETR-like detectors, which are applied to tasks involving
arbitrary-oriented object detection.

For the first category, Li et al. [22] proposed a method that combines a transformer
with a transfer CNN for object detection in remote sensing images. The transformer is
used to process a feature pyramid of the image, while the CNN is used to extract features.
Zhang et al. [23] introduced GANsformer, a detection network that combines a convolu-
tional network with a transformer for aerial image analysis. The transformer is employed
as a branch network to improve CNN’s ability to encode global features. Tang et al. [24]
proposed a method that utilizes feature sampling and grouping for scene text detection in
remote sensing images. Their approach combines a transformer with a CNN to effectively
detect text in complex scenes. Liu et al. [25] proposed a hybrid network architecture called
TransConvNet, which combined the advantages of CNNs and transformers by aggregating
global and local information. They also designed an adaptive feature fusion network to
capture information from multiple resolutions. Pu et al. [26] introduced an Adaptive Rotated
Convolution (ARC) module to identify and locate objects in images with arbitrary orientation.

For the second category, Zheng et al. [27] developed ADT-Det, an adaptive dynamic
refined single-stage transformer detector for arbitrary-oriented object detection in satel-
lite optical imagery. Their approach utilizes a transformer-based architecture to achieve
accurate detection results. Dai et al. [28] introduced RODFormer, a high-precision design
for rotating object detection with transformers. Their method utilizes a transformer-based
architecture to accurately detect and localize rotating objects in remote sensing images.
Ma et al. [29] introduces a novel approach to oriented object detection by leveraging
transformers to bypass complex rotated anchors and incorporates a memory-efficient
encoder with depthwise separable convolution. Lee et al. [30] proposed a transformer-
based oriented object detector named Rotated DETR with oriented bounding boxes (OBBs)
labeling. They employed a scoring network for background token reduction and an in-
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novative proposal generator with iterative refinement for precise angle-aware proposals.
Dai et al. [31] proposed an Arbitrary-Oriented Object DEtection TRansformer framework,
termed AO2-DETR, which incorporates an oriented proposal generation, adaptive proposal
refinement for rotation-invariant features and a rotation-aware set matching loss within a
transformer framework. Zhou et al. [32] introduced dynamic queries for efficiency without
loss in performance and deployed a novel label re-assignment strategy. Their framework
is based on DETR, with the box regression head replaced with a point prediction head.
Hu et al. [33] introduced a Reassigned Bipartite Graph Matching (RBGM) to filter high-
quality negative samples, an Ignored Sample Predicted Head (ISPH) for precise negative
sample prediction, and a Reassigned Hungarian Loss to enhance model training with
high-quality negative samples. Pu et al. [34] introduced Rank-DETR, an enhanced DETR-
based object detection framework that prioritizes high localization accuracy in bounding
box predictions to improve ranking accuracy and overall object detection performance,
especially under high Intersection over Union (IoU) thresholds.

Our method belongs to the second category, employing a relatively simple strategy to
apply DETR to arbitrary-oriented object detection, and achieving competitive results.

Label Assignment Strategy in Transformers. Since the introduction of the transformer
architecture into object detection tasks by DETR [15], the Hungarian one-to-one matching
and set prediction approach in the DETR architecture has remained the mainstream in
DETR-like algorithms. This matching method allows object detection to forego the NMS
operation inherent in CNN architectures. As a result, the preprocessing and postprocessing
stages of detection algorithms have been greatly simplified. However, Hungarian matching
introduces new challenges in object prediction. It increases the instability of the queries, as
the same query often corresponds to different objects during the iterative process across
multiple layers of the decoder, thereby reducing the network’s convergence speed. Addi-
tionally, when the number of objects in an image approaches the number of queries, this
can lead to a significant drop in prediction accuracy. DAB-DETR [17] improved detection
accuracy through iterative correction using multi-layer decoder iterations. DN-DETR [18]
DN-DETR (De-Noising DETR) introduced denoising of the noise-added ground truth to
enhance the decoder’s predictive capability for queries. However, neither of these methods
adopt the approach of Co-DETR [20], which utilizes an additional matching method to im-
prove the iterative pattern of queries. The positive and negative sample allocation method
proposed in this paper is similar to that of Co-DETR [20], but it does not employ additional
bounding box and class prediction branches. Instead, it merely involves the reallocation
of the encoder’s output. By utilizing the effective positive and negative sample allocation
methods found in CNN architectures, our approach provides more positive samples to aid
in the convergence of queries.

3. Methods
3.1. Model Quverview

Given an optical remote sensing image, we first process it through a backbone to
extract multi-layer features. We employ ResNet50 [35] as the backbone and utilize S2,
53, 54, and S5, along with S6 (the latter obtained through additional convolution) as
the multi-layer features extracted from the backbone. These features are then fed into a
hybrid encoder for self-attention feature interaction, resulting in the formation of a memory.
Finally, the memory proceeds in two directions. The first direction involves restoring the
flattened memory to the shape of multi-scale features, which are then processed through the
image feature restoration (IFR) module proposed in this paper for image feature recovery,
supervised using the input image. The second direction involves feeding the memory into
a decoder, which engages in cross-attention with queries for object prediction. Next, we
will elaborate in detail on each module. The structure is illustrated as Figure 1.
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Figure 1. Illustration of our proposed framework. DETR-ORD adapts the standard deformable
DETR for the AOOD task by (1) introducing rotation into the transformer architecture, (2) reducing
the computational cost by employing a hybrid encoder, (3) proposing an IFR module to supervise
the feature memory obtained from encoder interactions, and (4) using ATSS [36] to select auxiliary

dynamic training queries for the decoder.

3.2. Rotation in Transformer
3.2.1. Rotated Bounding Boxes

In the architecture of DETR-like detection algorithms, the regression of bounding
boxes is typically executed in the xywh format (x-coordinate, y-coordinate, width, height)
relative to the entire image, and during the iterative prediction process, this is converted
into the xyxy format (two sets of x- and y-coordinates representing opposite corners of
the box). Unlike traditional bounding boxes, which are aligned with the image axes and
defined by two coordinates, rotated bounding boxes can be oriented at any angle relative
to the image axes. This allows them to more closely fit objects that are not aligned with
the image axes. To conveniently incorporate rotational aspects, we add a rotation angle 6
directly to the xywh representation, thus adopting an xywh6 format to represent rotated
bounding boxes.

3.2.2. Deformable Attention

The introduction of deformable attention has substantially resolved the issue of exces-
sive computational demand in self-attention and cross-attention mechanisms within the
transformer architecture. In traditional MultiHead Attention, each query interacts with all
keys. However, in deformable attention, each query interacts only with ‘K’ specific keys.
Concurrently, it is necessary to provide ‘K’ reference points to indicate the locations of these
‘K’ keys. This approach significantly reduces the computational complexity by focusing
on a select set of relevant key points rather than the entire set. If the reference points are
defined in the B = {xp,yp, wp, hp} format, then the sample locations can be calculated
according to Figure 1, Aw, Ah represents the offsets of the reference points predicted by the
network, xs and ys are sampling points, and x, and y, are the predicted points.

(x5, ys) = (xp, yp) + 0.5 x (Aw, Ah) x (wp, hp), 1)

This approach is adopted to ensure that the positions of the keys used for interaction
are confined within the provided bounding box, specified in the xywh format. By doing so,
the scope of interaction is effectively restricted, enhancing the efficiency and relevance of
the deformable attention mechanism.
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To integrate the rotation angle into this framework, it is necessary to modify the
existing formulae accordingly. We define the provided proposals by the encoder in the
{xp, Yp, Wp, hp, QP} format. This adaptation will allow the incorporation of rotational aspects
into the deformable attention mechanism, effectively addressing the orientation of objects
within the image. First, we calculate the sampling points:

(Xsr, Ysr) = (X5, U5 ) — (xp/ ]/p)/ )

Then, we calculate the offsets (xX, yX) of the sampling points (&3, s ) relative to the center
of the bounding box considering the center of the box as the origin.

(%5, Js ) = (xp, yp) + 0.5 x (Aw, Ah) x (wp, hp), (3)

Then, we apply a rotation matrix Ry generated by 6, as Equation (6) to these offsets to
obtain the rotated offsets.

(x§, v&) = R % (xsr, Ysr), (4)
Finally, by adding these rotated offsets to the center of the bounding box, we obtain the
positions of the sampling points with rotation information applied.

(xs, ys) = (x&, y2) + (xp, Yp), @)

cosB, —sinf
— P p
Ru sinfp,  costly |’ ©)

3.2.3. Iterative Decoder

The decoder in our proposed detector largely follows the decoder in Deformable
DETR, with modifications made to the iterative refinement part to accommodate rotations.
Our decoder’s structure is illustrated as shown in Figure 2.

We obtain the proposals filtered by the encoder as the reference points for deformable
attention and the starting points for iterative refinement in the first layer of the decoder. The
memory filtered by the encoder serves as Q, K, and V for the first layer of the decoder, and
learnable positional embedding is used to encode the positions of the memory. Starting from
the second layer of the decoder, Q, K, and V utilize the output of the deformable attention
from the previous layer decoder. The reference points for the deformable attention are the
summation of the reference points from the previous layer and the corrections outputted
by the last layer decoder.

We denote the reference points of the L decoder as Ref’ and the predictions out-
putted by each layer of the decoder as §O". ¢ represents the sigmoid function and R
represents the rotation sigmoid function under /e90 version.

R = xo(0) - g, (7)

oR represents the inverse rotation sigmoid function under /90 version.

D>

~ 1
R _ ,R(Z 4 = 8
R =0 (n + 2), 8)
Act denotes the activation operation. Cat function denotes concatenating data from dif-
ferent sources. The (x,y,w, h) format represents the x-coordinate, y-coordinate, width
and height.
Act = Cat(o(x,y,w,h),oR(8)), )
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Act denotes the inverse activation operation.

Act = Cat(cR(8,9,®,k),0R()), (10

xywh6 and £9®hé represent the value of bounding boxes and the value predicted by the
network. So, we can calculate the reference points of the L Ref as follows:

Reft = Act(Act(Ref"™1) + Act(50F71)), (11)

The reference points and the iterative correction of predictions by each layer of the
decoder are illustrated as follows.

x! yl w! h! 91

dx Oy dw Sh 80 >

l

Deformable Attention

T

e

Ref

dx dy ow &h 86 - D

l

Deformable Attention —>

R
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Self-Attention Self-Attention
[, 1.1, 1.1,
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Selected -------------- x0 y* wo ho @O0 - Learnable

Predict

Figure 2. Illustration of the iterative decoder of the proposed method DETR-ORD. Given the memory
selected by the encoder and the predicted proposals, treat the memory as Q, K, V for self-attention.
Then, treat the proposals as reference points for cross-attention, and pass the output of this layer to
the next layer. The output of this layer, after passing through a feed-forward network (FEN), obtains
correction values to adjust the reference points. Iteratively, this process continues layer by layer to
achieve the final result.

3.2.4. IoU Loss

Due to the complexity of rotated bounding boxes, calculating their intersection over
union (IoU) is far more intricate compared to traditional axis-aligned bounding boxes,
which can utilize variants like IoU, CloU, DIoU, GloU, etc. Therefore, we adopt the most
fundamental and commonly used method for calculating IoU for rotated boxes. This
involves computing the area of the polygon formed by the intersecting line segments of
two rotated bounding boxes as their intersection. Based on this, we calculate the IoU and
employ a linear approach for computing the IoU Loss like Equation (12).



Remote Sens. 2024, 16, 3516

8 of 25

Lossjoy = 1 — IoU(Pred, GT), (12)

3.3. Hybrid Encoder

Inspired by Rt-DETR [21], we adapt a hybrid encoder in this paper. However, due
to the issue of scale variation in optical remote sensing images, we adopt five scales from
the backbone. We use MultiHead Attention only on the layer of features with the highest
downsample rate and have conducted corresponding experimental comparisons to validate
this approach. In the described process, the feature with the highest sampling multiplier,
S6, is first flattened to serve as Q, K, V. F represents flatten operation.

Q=K=1V=F(Se6), (13)

Following this, the resulting Q, K, V undergoes a multi-head attention mechanism and is
reshaped into a two-dimensional form to obtain T6, R represents restoring the shape of
the feature to the same as 56, MA represents MultiHead Attention and CCFM represents
cross-scale feature-fusion module to replace the inter-layer attention used in multi-scale
deformable attention in Deformable-DETR [16].

T6 = R(MA(Q,K,V)), (14)

Finally, the features S2, S3, 5S4, S5, and T6 are fed into the CCFM (cross-channel feature
modulation) module to produce the interacted feature, referred to as “memory”.

Memory = CCFM(S2,S3, 54, S5, T6), (15)

This approach enhances feature interaction and integration, leveraging the strengths of
multi-head attention and cross-channel modulation for improved representation learning.

3.4. IFR Module

Due to the flattening operations of the encoder and decoder, the interacted features
often lose two-dimensional positional information. Additionally, optical remote sensing
images often have the characteristics of being unclear or blurry. Thus, supplementing
and supervising the positional information of the memory is necessary. Therefore, we
restore the memory, which engages in cross-attention with the query, back into multi-scale
features. These are then inputted into the IFR module to progressively restore them into
three-channel RGB images. It should be noted that after feature fusion, we have replaced
nearest neighbor interpolation upsampling with transposed convolution. The reason for
this substitution is that nearest-neighbor interpolation does not cater to the restoration of
features for each pixel. Therefore, we employ transposed convolution, a method that learns
the features of each pixel, to address this limitation. The structure of the IFR (image feature
restoration) module is as shown in Figure 3. We can formulate this process as follows
Equations (16)—(20):

Fus = R(Memory), (16)

{M1, M2, M3, M4, M5} = Fys, (17)
U, = un+1 +U<Mn)(1 <n< 5)/ (18)
Us = C(M5), 19)

Rimage = UR (L), (20)

where R represents restoring the shape of the feature to the same as the hybrid encoder, U
represents nearest neighbor interpolation for 2x upsampling, UR represents transposed
convolution, C represents a standard convolution used for channel alignment, and Rupsam-
ple represents N blocks, each composed of transposed convolutions, batch normalization
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(BN), and ReLU activation. These are utilized for progressively upsampling the fused
features to restore them to the original image size.

In the aspect of supervision for original image restoration, besides using MSE loss,
we have also adopted SSIM loss. The SSIM loss is an image quality assessment metric
highly aligned with human visual perception characteristics. Its main advantage lies in
its closer approximation to the human eye’s sensitivity to the structural information of
images, thereby providing an image quality evaluation more consistent with human visual
perception. Compared to traditional loss functions based on pixel differences, SSIM loss
significantly optimizes the performance of image reconstruction, denoising, and other tasks
by emphasizing the preservation of image structural information, especially in maintaining
details and overall layout. Moreover, its flexibility allows it to be combined with other
loss functions to balance pixel accuracy and structural similarity, further enhancing the
model’s performance in image processing tasks. SSIM considers changes in three dimen-
sions: luminance, contrast, and structure, offering a comprehensive range of image quality
assessments according to Equation (21). This makes it widely applicable in various image
content and quality evaluation scenarios.

(ZVX.”y + Cl)(Zny +C2)

SSIM ’ == 7
S 7 T R I S S &

(21)

where jix and j, are the mean luminance of images x and y, respectively. 0% and (75 are the
variance of images x and y, respectively. - 0y is the covariance between images x and y.
C1 = (k1L)? and C, = (k,L)? are small constants added to maintain stability. From this,
we derive Lgsyy and Lirgr according to Equations (22) and (23).

Lssim =1 = SSIM(x,y), (22)
Lirr = Lyse + Lssim, (23)
| |
? "
t -
i %
' ¢
) v
Backbone&Encoder RUpsample

Figure 3. Illustration of the IFR module of the proposed DETR-ORD method. Given the feature
maps that have been processed by the backbone and hybrid encoder and restored to multiple scales,
we adopt an architecture similar to the FPN to fully integrate multi-scale features, obtaining the
feature map with the smallest downsampling factor. Then, through N RUsample modules, we obtain
features of the original image size. The RUsample modules consist of transposed convolution, batch
normalization (BN), and ReLU activation.
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3.5. Dynamic Query

Deformable DETR [16] posits that providing queries with position information closer
to the annotations to the decoder helps accelerate the convergence of the transformer
architecture detector and improve its accuracy. Deformable DETR introduces a two-stage
DETR, which predicts object bounding boxes and confidence scores for each pixel following
the encoder and supervises this process through one-to-one matching with the ground truth
using Hungarian matching. Subsequently, it selects the top-k queries based on confidence
scores to be fed into the decoder.

This approach often selects detection boxes that have high scores but low detection
quality, leading to a decrease in detection performance. Therefore, in the context of optical
remote sensing images, this paper introduces an additional auxiliary training branch. For
the proposals given by the encoder’s prediction branch, it uses the ATSS [36] matching
method to allocate more predictive samples to each true annotation. This accelerates the
convergence of the detector and improves detection accuracy.

Because a traditional encoder is not used, and instead, a hybrid encoder is adopted,
the semantic information of the query does not utilize randomly initialized values but is
selected from the memory generated by the encoder.

For the training of the auxiliary branch, if the number of positive samples matched
exceeds the number of queries, random sampling is employed according to Equation (25).
If it is insufficient, negative samples are used to fill the gap as in Equation (25):

P pos, Preg = ATSS(Prcoder, GT), (24)
Cat(Pyps, R(P Np, <N ,

@Position = § ( pes ( neg)) Ppgs - (25)
R(PPOS) NPPOS > Nquery.

where Pr;,co4., represents the proposals generated by the encoder, P05 and Py represent
the positive and negative samples allocated through ATSS, Qsition Tepresents the position
information of the query, R represents the operation of random selection, N query TEpPTEsents
the set number of queries for auxiliary training, and Cat represents concatenation.

For the positively selected samples, both category and bounding box losses are calcu-
lated, and for the negatively selected samples, only the category loss is calculated in the
auxiliary training branch.

4. Experiment

This section presents the details of experiment settings, including the dataset, the
experimental environment and the evaluation indicators. Each subsection elaborates on
specific aspects of the experiments’ settings.

4.1. Dataset

To demonstrate the effectiveness of our algorithm, this section first introduces the
hyperparameters settings and training environment configurations for the DETR-ORD
detector. Subsequently, we evaluate the optimized detector on multiple public optical
remote sensing datasets, including DOTA [37] (DOTA-v1.0 and DOTA-v1.5 [37]), DIOR-
R [38], and HRSC2016 [39]. The results are then compared against the leading detection
algorithms on the respective datasets.

DOTA [37] is one of the largest datasets for oriented object detection, with three
main versions currently available: DOTA-v1.0, DOTA-v1.5, and DOTA-v2.0. In this paper,
we conduct comparative experiments using versions 1.0 and 1.5. Due to the large size
of the DOTA-v2.0 dataset, our hardware resources are insufficient to meet its training
requirements, and thus experiments on version 2.0 were not conducted. DOTA-v1.0 consists
of 2806 large aerial images with pixel sizes ranging from 800 x 800 to 20,000 x 20,000,
containing objects of various sizes, orientations, and shapes. The release time, number of
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categories, number of images, and number of instances for the three versions of the dataset
are shown in Table 1.

Table 1. DOTA dataset version details.

Version Release Data Categories Images Instances Image Size
DOTA-v1.0 2018 15 2806 188,282 800~-20,000
DOTA-v1.5 2019 16 2806 402,089 800~20,000
DOTA-v2.0 2021 18 11,268 1793,658 800~-20,000

DOTA-v1.0 and DOTA-v1.5 have the same number of images, with 1411 images in the
training set, 458 images in the validation set, and 937 images in the test set. DOTA-v1.0
contains 188,282 annotated instances covering 15 common categories: Plane (PL), Baseball
Diamond (BD), Bridge (BR), Ground Track Field (GTF), Small Vehicle (SV), Large Vehicle
(LV), Ship (SH), Tennis Court (TC), Basketball Court (BC), Storage Tank (ST), Soccer-Ball
Field (SBF), Roundabout (RA), Harbor (HA), Swimming Pool (SP), and Helicopter (HC) [37].
DOTA-v1.5 adds one more category, Container Crane (CC), and includes 402,089 annotated
instances. Due to the varying sizes of images in the DOTA dataset, we followed the official
data preprocessing method, splitting the images with a stride of 200 pixels and a resolution
of 1024 x 1024. The split images were then used for detection, and the results were merged.
After splitting, the DOTA-v1.0 and DOTA-v1.5 training sets contain 15,749 images, and
the validation sets contain 5297 images. In our experiments on the DOTA dataset, we
merged the training and validation sets for training and performed inference on the test set,
submitting the results to the official DOTA evaluation server. The distribution of the number
of annotations per image for DOTA-v1.5 is shown in Figure 4. The DOTA-v1.5 dataset
exhibits a long-tail distribution, with most images having 0-50 annotations. To evaluate the
detector’s performance on the DOTA dataset, we conducted experiments on DOTA-v1.0
and DOTA-v1.5, setting the number of queries to 400 and the number of denoising queries
to 100, using ResNet50 as the backbone network and training for 36 epochs.

Ground Truth Distribution of a Single Image
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Figure 4. Distribution of ground-truth per image in DOTA-v1.5.

The DIOR-R [38] dataset is a re-annotated version of the DIOR dataset’s images. The
DIOR-R dataset contains a total of 23,463 images and 192,518 ground-truth annotations.
Each image in the dataset has a size of 800 x 800 pixels, with spatial resolutions ranging from
0.5 m~30 m. The training and validation sets combined consist of 11,725 images, while the
test set includes 11,738 images. The dataset covers 20 categories: Airplane (APL), Airport
(APO), Baseball Field (BF), Basketball Court (BC), Bridge (BR), Chimney (CH), Expressway
Service Area (ESA), Expressway Toll Station (ETS), Dam (DAM), Golf Course (GF), Ground
Track Field (GTF), Harbor (HA), Overpass (OP), Ship (SH), Stadium (STA), Storage Tank
(STO), Tennis Court (TC), Train Station (TS), Vehicle (VE), and Windmill (WM) [38]. The
distribution of ground-truth annotations per image in the dataset is shown in Figure 5.
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Ground Truth Distribution of a Single Image
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Figure 5. DIOR-R ground-truth distribution per image.

To validate the detector’s performance on the DIOR-R dataset, we used 200 queries
and 50 denoising queries, scaled the images to a resolution of 512 x 512, and employed the
ResNet50 backbone network, training for 36 epochs.

HRSC2016 [39] comprises images of ships collected from six well-known ports. The
dataset contains only one category: ship. Image sizes range from 300 x 300 to 1500 x 900.
The HRSC2016 dataset includes a total of 1061 images (436 for training, 181 for validation,
and 444 for testing) which are used for training and testing. The target distribution per
image is shown in Figure 6. We used 20 queries and 5 denoising queries, scaled the images
to a resolution of 512 x 512, and employed the ResNet50 backbone network, training for
36 epochs.

Ground Truth Distribution of a Single Image

Number of Images

ENEYSU2SHERE

oG

SorLumhOLR MBS

Number of Ground Truth Labels
Figure 6. HRSC2016 distribution of ground-truth per image.

4.2. Experimental Environment

Due to the inconsistency in target number distribution across different datasets, the
number of queries used for detection and denoising is set differently. These specific settings
will be detailed separately for each dataset, while other hyperparameter settings remain
consistent. Some parameters are some of the most commonly chosen for DETR detectors
such as learning rate, optimizer, the number of query items. They are crucial for ensuring
the model effectively learns and performs optimally across object detection tasks. For
example, an appropriate learning rate helps the model converge quickly and accurately,
avoiding issues like instability from too high a rate or slow convergence from too low a
rate. The optimizer determines the specific algorithm for parameter updates. The number
of query items directly affects the model’s output capabilities and computational demands.
The hyperparameter settings for the detector in this paper are shown in Table 2, and the
training hardware platform utilized is presented in Table 3.
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Table 2. Detector hyperparameter settings.
Hyperparameter Setting
Optimizer AdamW
Learning Rate 2x1074
Learning rate change strategy Single-step 0.1 multiplier
Weight decay 1x 1074
Gradient trimming 0.1
Backbone network learning rate multiplier 0.1
Learning rate decay 0.1
Number of multiscale feature layers used 5
Angle definition method 1 x 1013
Hybrid encoder using multi-head self-attention layer indexing 5
Hybrid encoder multi-head self-attention number of layers 1
Hybrid encoder hidden layer dimension 256
Feedforward neural network hidden layer dimension 2048
Classification loss weight 5
Bounding box regression loss weight 2
Loss weight for bounding box intersection ratio 1
Image feature reconstruction regression loss weight 1
Image feature reconstruction structural similarity loss weight 1
Number of decoder layers 4
Brightness variation offset 32
Contrast variation range 0.5-1.5
Saturation variation range 0.5-1.5
Brightness variation offset 18
Random horizontal vertical flip probability 0.75
Image scaling resolution 512 x 512
Table 3. Detector operating environment.
Configuration Items Parameters
CPU Intel(R) Xeon(R) Gold 6133 CPU @ 2.50 GHz x 2
GPU NVIDIA GeForce RTX 3090 x 3
RAM 128 GB
VRAM 24GB x 3
Operating System Ubuntu 20.04.3 LTS
CUDA Version 11.1
Deep Learning Framework MMDetection-v3.2.0 (Based pytorch 1.10.0)

4.3. Evaluation Indicators

In terms of evaluation indicators for the detector, the commonly used VOC metrics
for rotated bounding boxes are adopted. To assess the effectiveness of detection, it is
desirable for the detected results to closely match the ground-truth. Therefore, the concepts
of precision and recall are introduced. Precision refers to the proportion of detected targets
that are considered true positives, while recall refers to the proportion of true targets that
are correctly detected by the detector. The formulas for calculating precision and recall are
shown in Equation (26).

Precision = L
~ TP+ FP’
(26)
Recall = L
~ TP+ FN’

Here TP represents the number of detection boxes for the current predicted category
with an intersection over union (IoU) greater than the specified IoU threshold. FP denotes
the number of detection boxes for the current predicted category with an IoU less than
the specified threshold, and FN indicates the number of true annotations in the current
category that were not detected. The mAP mentioned in this paper uses an IoU threshold
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of 0.5, and the mAP calculated using this threshold is referred to as mAP@0.5. The formula
for calculating mAP is shown in Equation (27).

1
AP = 11 Z pinterp(r)/
re{0,0.1,-- 1} @)

1 N
mAP = N Z;API-,

Here, AP represents the average precision for a single category, Pinterp (r) denotes the
interpolated precision at recall r, and N represents the number of categories. According to
the VOCO07 evaluation standard, interpolation is performed at 11 points, whereas in the
VOC12 evaluation standard, it is based on the area under the precision-recall curve.

In addition to mAP, our paper also introduces the F1 score. The F1 score is the harmonic
mean of precision and recall, and its calculation formula is shown in Equation (28).

2 x Precison x Recall
" Precison + Recall

In the subsequent experiments, DOTA-v1.0, DOTA-v1.5, and DIOR-R use the VOC07
mAP@0.5 evaluation standard. HRSC2016 uses both VOC07 and VOC12 mAP@0.5 evalua-
tion standards.

F1 , (28)

4.4. Ablation Study

In the ablation study, to verify the effectiveness of the dynamic query method, an
analysis was first conducted on the distribution of the number of targets per image in the
DOTA-v1.0 dataset. Subsequently, the number of queries that are less than or close to the
average distribution was selected to address the problem of query number limitations
in the detector’s performance. Additionally, the number of queries exceeding the target
distribution was chosen for an ablation study of the dynamic query algorithm.

The impact of different query numbers on the detection results is shown in Table 4. The
experimental results presented do not incorporate denoising and image feature restoration
modules. The model was trained on the DOTA-v1.0 dataset for 12 epochs, and the results
were validated with a validation set at the 3rd, 6th, 9th, and 12th epochs. As can be seen
from the table, the introduction of dynamic queries significantly enhanced the performance
of the detector when the number of queries was close to or less than the average number of
targets. Specifically, with 50 queries, the mAP value of the dynamic query improved by
6.5% compared to the baseline model. With 100 queries, there was a 3.2% improvement,
demonstrating the effectiveness of the dynamic query algorithm in addressing query
number limitations. When the number of queries met the model’s prediction, at 400,
the dynamic query still achieved a 2.1% improvement, proving that the dynamic query
algorithm can not only eliminate the restrictions on query numbers but also simultaneously
enhance model performance.

Table 4. Effect of different number of query on detection results.

Query Dynamic Query  epoch3(%) epoché6(%) epoch9(%) epoch12(%)

50 0.195 0.328 0.379 0.439
50 v 0.310 0.415 0.466 0.504
100 0.300 0.423 0.475 0.530
100 v 0.380 0.459 0.518 0.562
400 - - - 0.601
400 v - - - 0.622

The results of the DETR-ORD ablation study are shown in Table 5. Note that in the
ablation study, the number of queries used is 400, the number of denoising queries is 100,
and ATSS selects up to a maximum of 400 queries. The images of 1024 x 1024 are resized
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to 512 x 512 for training. From the results of the ablation study, it can be observed that
there is no significant change in accuracy when comparing the hybrid encoder with the
traditional encoder. After introducing the IFR module, the mAP increased by 0.8%. With the
introduction of ATSS-assisted dynamic queries, the mAP increased by 2.8%. The dynamic
queries comparison results are showned in Figure A1l and the IFR modules comparison
results are showned in Figure A2.

Table 5. Ablation Study:.

Hybrid Encoder IFR Module Dynamic Query mAP

R-DINO 58.2
DETR-ORD v 58.3 (+0.1)
DETR-ORD v v 59.1 (+0.9)
DETR-ORD v v v 61.9 (+3.7)

4.5. Implementation Details

In terms of code implementation, we utilize the open-source deep learning detection
toolboxes, MMDetection [40] and MMRotate [41], and introduced rotation into DINO [19],
we refer to it as R-DINO, as our baseline. These toolboxes offer a comprehensive, flexi-
ble, and extensible framework for object detection tasks, including support for various
state-of-the-art models and algorithms. MMDetection provides a rich collection of object
detection and instance segmentation methods, while MMRotate extends these capabilities
to efficiently handle rotated objects, which is crucial for aerial image analysis. By leveraging
these toolboxes, we were able to significantly streamline our development process, enabling
rapid experimentation with different models and configurations to optimize our detection
performance on optical remote sensing datasets.

Taking the DOTA-v1.0 [37] as an example, it is split according to a size of 1024 and
a gap of 200. In the ablation study section, we trained for 12 epochs on the training set
using eight NVIDIA TITAN RTX GPUs and compared metrics on the validation set. In
the comparison with the SOTA (state-of-the-art) methods, we utilized the same hardware
setup and trained for 36 epochs using both the training and validation sets combined. The
performance of the test set is evaluated on the official DOTA evaluation server.

5. Results

This section presents the comparison results of our study on multiple remote sensing
datasets, including the DOTA dataset, DIOR-R dataset, and HRSC2016 dataset. Each
subsection contains a comprehensive assessment of the performance of the proposed DETR-
ORD model and comparison results with other advanced algorithms on each dataset.

5.1. Validation on DOTA Dataset

The experimental results on DOTA-v1.0 are shown in Table 6. As can be seen from
the table, our detector achieves competitive results. It achieves the highest detection
performance in the categories of Small Vehicle (SV), Ship (SH), and Tennis Court (TC),
with an improvement of 2.02% compared to the baseline detector incorporating image
feature reconstruction and dynamic query algorithms. However, overall, there is still a gap
compared to the state-of-the-art methods.

The results on DOTA-v1.5 are shown in Table 7. As can be seen from the table, under
the parameter settings of the ResNet50 backbone for various algorithms, our detector
achieves the best results in terms of training and validation across multiple scales, specifi-
cally in the categories of Baseball Diamond (BD), Bridge (BR), Ground Track Field (GTF),
Large Vehicle (LV), Basketball Court (BC), Harbor (HA), Swimming Pool (SP), and mean
average precision (mAP).



Remote Sens. 2024, 16, 3516 16 of 25

Table 6. DOTA-v1.0 results comparison.

Detector PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
FR-O [37] 79.42 77.13 17.17 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 474 46.30 54.13
RolTransformer * [1] 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 7727 81.46 58.39 53.54 62.83 58.93 47.67 69.56
SCRDet * [2] 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.20 66.68 66.25 68.24 65.21 72.61
CSL* [3] 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
Gliding Vertex * [4] 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
O R-CNN [5] 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87
ReDet [6] 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25
S2ANet [7] 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
R3Det [8] 89.29 75.21 45.41 69.24 75.54 72.89 79.29 90.89 81.02 83.25 58.81 63.15 63.43 62.21 37.41 69.80
KLD *[9] 88.91 85.23 53.64 81.23 78.20 76.99 84.58 89.50 84.84 86.38 71.69 68.06 75.95 72.23 75.42 78.32
DAL [10] 88.68 76.55 45.08 66.80 67.00 76.76 79.74 90.84 79.54 78.45 57.71 62.27 69.05 73.14 60.11 71.44
DRN *[11] 89.45 83.16 48.98 62.24 70.63 74.25 83.99 90.73 84.60 85.35 55.76 60.79 71.56 68.82 63.92 72.95

O RepPoints [14] 87.02 83.17 54.13 71.16 80.18 78.40 87.28 90.90 85.97 86.25 59.90 70.49 73.53 7227 58.97 75.97
SASM [12] 86.42 78.97 52.47 69.84 77.30 75.99 86.72 90.89 82.63 85.66 60.13 68.25 73.98 72.22 62.37 74.92
CFA [13] 88.04 82.14 53.90 73.69 79.94 78.87 87.16 90.87 81.90 85.63 56.14 64.40 70.31 70.63 38.05 73.45
ARS-DETR [42] 86.61 77.26 48.84 66.76 78.38 78.96 87.40 90.61 82.76 82.19 54.02 62.61 72.64 72.80 64.96 73.79

AO2-DETR * [31] 89.27 84.97 56.67 74.89 78.87 82.73 87.35 90.50 84.68 85.41 61.97 69.96 74.68 72.39 71.62 77.73
EMO2-DETR [33] 88.08 7791 43.17 62.91 74.01 75.09 97.21 90.88 81.50 84.04 51.92 59.44 64.74 71.81 58.96 70.91
Pre-Improvement 88.50 74.03 53.99 75.90 79.98 82.73 89.37 90.79 82.12 82.03 63.93 61.74 65.36 68.57 66.54 75.04
Post-Improvement 89.85 83.73 56.25 76.37 81.44 81.94 90.60 91.75 87.40 84.49 62.43 68.97 69.75 71.67 66.82 77.56

* Multi-Scale Training and Testing. Red and Blue indicate the best and second-best results, respectively. We selected the results of various methods whose backbones are around the scale

of ResNet50, respectively.

Table 7. DOTA-v1.5 results comparison.

Detector PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP

FR-O [37] 71.89 77.64 44.45 59.87 51.28 68.98 79.37 90.78 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00
RetinaNet-O [43] 7143 77.64 42.12 64.65 44.53 56.79 73.31 90.84 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16
Mask R-CNN-O [44] 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67
HTC-O [45] 77.80 73.67 51.40 63.99 51.54 73.31 80.31 90.48 75.12 67.34 48.51 70.63 64.84 64.48 55.87 5.15 63.40
AO2-DETR [31] 79.55 78.14 42.41 61.23 55.34 74.50 79.57 90.64 74.76 77.58 53.56 66.91 58.56 73.11 69.64 24.71 66.26
EMO2-DETR * [33] 80.58 77.20 50.84 71.29 65.23 75.34 89.21 90.71 73.77 84.50 61.92 70.50 76.07 74.37 69.04 38.00 71.79
Pre-improvement 74.61 78.65 50.78 66.98 59.96 77.85 83.39 90.78 82.21 75.78 55.96 66.10 71.55 73.65 47.22 14.45 66.87
Post-improvement * 79.65 83.50 56.68 78.03 64.83 82.61 88.53 89.86 85.91 81.45 58.66 68.83 78.20 75.32 46.23 34.88 72.07

* Multi-Scale Training and Testing. Red indicates the best result. We selected the results of various methods whose backbones are around the scale of ResNet50, respectively.
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We also selected visualization results of the detectors pre- and post-improvement
to demonstrate the effectiveness of the improvements, as shown in Figures 7 and 8. The
inference results are divided into three parts: the leftmost image shows the ground-truth
annotations, the middle image shows the inference results of the detector before improve-
ment, and the rightmost image shows the results after improvement. Figure 7 displays the
inference results on DOTA-v1.0. From Figure 7a, it can be seen that in scenes with densely
distributed image targets, the improved detector maintains the detection performance for
small targets (small vehicles) while showing better performance for other targets. From
Figure 7b, it is evident that in scenes with sparsely and repetitively distributed targets, the
improved detector achieves higher detection rates and better detection quality.

Figure 8 shows the inference results on DOTA-v1.5. From Figure 8a, it can be seen that
in scenes where large, medium, and small targets are all present, the improved detector
achieves better accuracy in rotated bounding boxes. From Figure 8b, it is evident that the
improved detector achieves higher detection accuracy and recall in scenes with repetitive
and overlapping distributions of a single category.

Inference results (a)

Inference results (b)

Figure 7. DOTA-v1.0 Inference results pre- and post-improvement.

Inference result (a).

Figure 8. Cont.
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Inference result (b).

Figure 8. DOTA-v1.5 inference results pre- and post-improvement.

5.2. Validation on DIOR-R Dataset

The comparison results with current mainstream algorithms are shown in Table 8. It
can be seen that the detector designed in this paper achieves the optimal overall results with
the ResNet50 backbone network. Furthermore, it achieves the best results in the categories
of Airport, Bridge, Chimney, Dam, Expressway Toll Station, Golf Course, Harbor, Overpass,
Tennis Court, and Vehicle.

Table 8. Comparison between state-of-the-art detectors using the DIOR-R dataset.

Detector APL APO BF BC BR CH DAM ETS ESA GF GTF HA or SH STA STO TC TS VE WM mAP
FRCNN-O [46] 62.79 26.80 71.72 80.91 34.20 72.57 18.95 66.45 65.75 66.63 79.24 34.95 48.79 81.14 64.34 71.21 81.44 47.31 50.46 65.21 59.54
Retina-O [43] 61.49 28.52 73.57 81.17 23.98 72.54 19.94 72.39 58.20 69.25 79.54 32.14 44.87 77.71 67.57 61.09 81.46 47.33 38.01 60.24 57.55

GV [4] 65.35 28.87 74.96 81.33 33.88 74.31 19.58 70.72 64.70 72.30 78.68 37.22 49.64 80.22 69.26 61.13 81.49 44.76 47.71 65.04 60.06
RolTrans [1] 63.34 37.88 71.78 87.53 40.68 72.60 26.86 78.71 68.09 68.96 82.74 47.71 55.61 81.21 78.23 70.26 81.61 54.86 43.27 65.52 63.87
AOPG [38] 62.39 37.79 71.62 87.63 40.90 72.47 31.08 65.42 77.99 73.20 81.94 42.32 5445 81.17 72.69 71.31 81.49 60.04 52.38 69.99 64.41

Pre-Improvement 44.50 52.70 71.00 80.60 44.40 73.00 29.20 83.10 72.50 72.40 76.50 43.50 55.30 80.70 61.80 69.60 81.20 58.00 51.70 61.20 63.10
Post-Improvement 55.60 56.90 71.00 81.90 48.90 77.30 4220 85.10 75.10 77.10 79.90 48.30 58.10 81.00 59.70 70.50 81.50 62.60 53.50 66.10 66.60

The results highlighted in Red indicate the best results. We selected the results of various methods whose
backbones are around the scale of ResNet50.

The visualization results pre- and post-improvement are shown in Figure 9. From
Figure 9a, it can be seen that in overlapping target scenarios, the improved detector shows
no missed detections and provides more accurate predictions. From Figure 9b, it is evident
that in regularly repetitive distribution scenarios, the improved detector has no false
detections and achieves higher accuracy.

Inference results (a).

Figure 9. Cont.
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Inference results (b).
Figure 9. Inference results pre- and post-improvement on DIOR-R.

5.3. Validation on HRSC2016 dataset

The performance comparison of the detectors pre- and post-improvement on the
HRSC2016 dataset is shown in Table 9. From the table, it can be seen that the detector
designed in our paper achieved the optimal overall results on the HRSC2016 dataset and
competitive results in both mAP(VOC07) and mAP(VOC12).

Table 9. Comparison between state-of-the-art detectors using the HRSC2016 dataset.

Detector mAP(VOC07) mAP(VOC12)
R3Det [8] 86.20 89.01
S?A-Net [7] 90.17 95.01
CFA [13] 87.10 91.60
ReDet [6] 90.46 97.63
O R-CNN [5] 90.40 96.50
SASM [12] 87.90 91.80
AO2-DETR [31] 88.12 97.47
Pre-Improvement 88.80 95.24
Post-Improvement 90.21 96.80

Red indicates the best results, Blue indicates second-best results. We selected the results of various methods whose
backbones are around the scale of ResNet50.

The detection results with pre- and post-improvement are shown in Figure 10. From
the figure, it can be seen that the improved detector has a higher recall rate in scenarios
with overlapping and closely spaced objects.

Figure 10. HRSC2016 inference results with pre- and post-improvement.
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6. Discussion

In optical remote sensing image analysis tasks, there are still some challenges when
dealing with rotating or arbitrarily oriented targets in complex scenes and problems such
as inconsistent size of target distribution and uneven image quality, which are effectively
addressed by our proposed model.

6.1. Comparison with Other Models

In the paper, we compare the performance of the DETR-ORD model before and after
the improvement and the performance of each state-of-the-art model on each dataset. The
improved detector achieves competitive overall results on each dataset. Experimental
results on several remote sensing datasets show that the DETR-ORD model proposed
in this paper improves mAP by 2.02% compared to the pre-improvement model on the
DOTA-v1.0 dataset in the task of optical remote sensing image analysis. On the DOTA-v1.5
dataset, DETR-ORD improves the mAP by 0.28% compared to the superior algorithm
and 5.2% compared to the pre-improvement model. On the DIOR-R dataset, DETR-ORD
improves the mAP by 2.19% compared to the superior algorithm and by 2.9% compared to
the pre-improvement model. On the HRSC2016 dataset, DETR-ORD improves the mAP by
1.41% compared to the pre-improvement model. The figures indicate that the improved
detector maintains high precision, accuracy, and recall in scenarios with large variations in
target size, densely packed small targets, and overlapping targets. The improved detector
in our paper achieved the optimal overall results on the DOTA-v1.5 and DIOR-R datasets
and competitive results in both DOTA-v1.0 and HRSC2016 datasets.

6.2. Future Directions: Multi-Scene Optical Oriented Target Detection Task

This paper focuses on the study of a transformer-based DETR-like detector applied to
the task of oriented target detection on optical remote sensing images. For future research
work, the application of the transformer-based DETR-like detector on low-computing-
power devices can be further explored, and the model can be extended to more application
scenarios, such as video target detection, multi-target tracking, in order to improve the
practicability and adaptability and to increase the speed of the detectors while guaranteeing
the detection accuracy. Our model has been extended and validated on retail merchandise
image dataset SKU110K-R, scene text detection image dataset MSRA-TD500, and private
rubber forest dataset with competitive results.

6.3. Limitations

Like most research, while the DETR-ORD model demonstrates improvements in
oriented object detection, there are still some conditions and limitations in which our
models sometimes can not obtain more effective results. In certain scenarios with a dense
distribution of image targets, the DETR-ORD model sometimes fails to obtain the best
detection results on all kinds of targets, and there are still computational efficiency issues
in processing the large-scale dataset. In our future work, we will optimize the structure
of the DETR-ORD model to improve efficiency and accuracy in oriented remote sensing
object detection tasks and apply it to more detection scenarios.

7. Conclusions

In our paper, in light of the limitations of existing DETR-based detectors, which
are unsuitable for arbitrary-oriented object detection, the issue of positional information
loss due to the transformer architecture, and the constraints on detection performance in
dense target scenarios, we propose an oriented object detector based on image structure
reconstruction and dynamic queries. This detector optimizes the transformer-based DETR
detector by integrating rotational detection, image feature reconstruction, and dynamic
query algorithms. The resulting design is an efficient and precisely oriented object detector
suitable for multi-task scenarios, demonstrating strong adaptability and practical value.
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We presented significant advancements in oriented object detection by integrating
the prediction of rotation into the transformer architecture, specifically enhancing the
DETR detector. Our adoption of a hybrid encoder, as opposed to the conventional encoder,
has notably decreased the computational complexity and the model’s parameter count
without sacrificing accuracy. This efficiency is achieved through a novel representation and
prediction method for rotating boxes, utilizing the xywh6 format, and the introduction of
algorithms for rotating reference points to ensure encoder-generated interaction reference
points for rotating box proposals remain accurate. Moreover, the development of activation
and inverse activation functions tailored for rotation accommodates varying standards of
rotating angle descriptions, streamlining the prediction process.

Further, we introduced the IFR module, an addition that supervises the memory from
feature interactions via self-attention in the encoder. By restoring this memory to multi-
layer features and upsampling them back to the original image size, our method effectively
counters the loss of spatial positioning information, a common issue in the flattening
operation required for self-attention. This module boosts the detector’s performance by
enhancing feature reconstruction.

Additionally, we introduced dynamic query by integrating the ATSS method to sup-
plement the Hungarian matching assignment. This innovation includes an extra training
branch that allocates more positive samples to each ground truth, significantly improving
the quality of the top-k proposals selected by the encoder. This approach addresses the chal-
lenge of obtaining high-quality bounding boxes, which has been a problem when relying
solely on top-k scores for proposal selection, leading to proposals with high classification
scores but low bounding box quality.

In the validation experiments, our improved DETR-based detector demonstrates
improvements in optical remote sensing image analysis applications. On the DOTA-v1.0
dataset, it achieves a 2.02% increase in mAP compared to its previous version. On the
DOTA-v1.5 dataset, it surpasses leading algorithms by 0.28% mAP and improves 5.2% over
its previous version. On the DIOR-R dataset, it exceeds top-performing algorithms by 2.19%
mAP and shows a 2.9% improvement over its previous version. For the HRSC2016 dataset,
there is a mAP improvement of 1.41% compared to its previous version. These results
demonstrate that the improved detector has strong practical value and broad applicability
across various scenarios and applications.
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Appendix A. Images for Comparison

@) G)

Figure A1. In each sub-figure, the figures (a,c,e,g,i) show the results without using dynamic queries,
while the figure (b,d,fh,j) shows the results with the use of dynamic queries on the DOTA-v1.0
dataset. The red dots in the images represent the centers of the rotated bounding boxes selected
by ATSS used for the query position encoding and reference points in decoder iteration. The blue
numbers in the top left corner indicate the number of center points located within the ground truth.
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Figure A2. The inference results of the IFR module. In each sub-figure, the figures (a,c,e,g) are the
original images, and the figures (b,d,f,h) are the images reconstructed and restored.
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