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Abstract: Real-time and accurate assessment of the photosynthetic rate is of great importance for
monitoring the contribution of leaves to the global carbon cycle. The electron transport rate is a
critical parameter for accurate simulation of the net photosynthetic rate, which is highly sensitive to
both light conditions and the biochemical state of the leaf. Although various approaches, including
hyperspectral remote sensing techniques, have been proposed so far, the actual electron transport rate
is rarely quantified in real time other than being derived from the maximum electron transport (Jmax)
at a reference temperature in most gas exchange models, leading to the decoupling of gas exchange
characteristics from environmental drivers. This study explores the potential of using incident light
intensity, hyperspectral reflectance data, and their combination for real-time quantification of the
actual electron transport rate (Ja) in mango leaves. The results show that the variations in Ja could be
accurately estimated using a combination of incident light intensity and leaf reflectance at 715 nm,
with a ratio of performance to deviation (RPD) value of 2.12 (very good predictive performance).
Furthermore, the Ja of sunlit leaves can be predicted with an RPD value of about 2.60 using light
intensity and a single-band reflectance value within 760–1320 nm, while the actual electron transport
rate of shaded leaves can only be predicted with a lower RPD value of 1.73 (fair performance)
using light intensity and reflectance at 685 nm. These results offer valuable insights into developing
non-destructive, rapid methods for real-time estimation of actual electron transport rates using
hyperspectral remote sensing data and incident light conditions.

Keywords: electron transport rate; hyperspectral; light intensity; reflectance

1. Introduction

Photosynthesis in plants is a crucial process within terrestrial ecosystems, regulating
carbon fluxes between ecosystems and the atmosphere [1]. Accurate measurement or
estimation of photosynthesis is critical for monitoring the carbon cycle from individual
leaves to the global scale [2]. Despite the critical importance of photosynthesis for terrestrial
ecosystems, the global mapping of photosynthesis remains a challenge due to limited mea-
surements at different scales and its complex interactions with environmental factors [3,4].
Among the various tools, the Farquhar–von Caemmerer–Berry (FvCB) model is a widely
used biochemical model that describes the net CO2 assimilation rate (An) in C3 plants [5,6]
and provides a global view of photosynthetic properties. The model integrates several key
physiological processes, with the electron transport rate (J) being a critical parameter for
accurately simulating photosynthetic responses to environmental conditions [7]. Accurate
modeling of the real-time electron transport rate allows for accurate simulation of photo-
synthetic responses to these environmental variables, which is critical for predicting plant
behavior under different climatic conditions.
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The electron transport rate is sensitive to both light conditions and the biochemical
state of the leaf. In most leaf and canopy gas exchange models, the electron transport rate (J)
is determined by the incident light intensity, the leaf’s absorbance or light capture efficiency,
the maximum electron transport rate (Jmax), and the curvature factor that determines the
transition of photosynthesis phases between different light conditions [8]. Among these
input parameters, leaf absorbance and the curvature factor are usually assumed to have
constant values [9]. However, leaf biochemical parameters, such as chlorophyll content
and internal leaf structure, influence the light absorption capacity and thus the rate of
electron transport in leaves [10,11]. A higher chlorophyll content generally leads to a higher
electron transport rate because more light energy is captured for electron transport [12].
Therefore, radiation absorption in the PAR region is heavily influenced by the biochemistry
and structural traits of plants [13]. On the other hand, the electron transport rate increases
with light intensity up to a certain point [14]. The light response curve is a measure
of the electron transport rate in a given system in response to light. It shows a rapid
increase at low-to-moderate light levels, followed by a plateau at higher intensities [15–17].
Furthermore, the determination of Jmax at a given temperature involves a temperature
correction function and the ratio of Jmax to the maximum rate of Rubisco activity (Vcmax)
at 25 ◦C [18]. However, the ratio of Jmax:Vcmax is highly variable due to species, season,
and leaf position in the plant canopy [19,20]. Since all aforementioned facts may introduce
errors into the calculation of the actual electron transport rate [18], real-time estimation of
it remains a challenge.

Alternatively, solar-induced fluorescence (SIF) is closely connected to the photosyn-
thetic electron transport chain, as both processes involve the absorption of light and the
subsequent excitation of chlorophyll molecules [21]. Thus, it has been proposed that the
actual electron transport rate (Ja) can be determined from chlorophyll fluorescence pa-
rameters [9,22]. However, the relationship between SIF and photosynthetic activity has
been shown to vary among different plant types, growth stages, sky conditions, and time
scales [23–28]. Furthermore, accurate detection of solar-induced chlorophyll fluorescence
in plants is inherently challenging because only a small fraction of absorbed photons
(typically ≤ 5%) is re-emitted as fluorescence [29–31]. Although SIF provides a means to
monitor the electron transport rate, using SIF to estimate the electron transport rate requires
sophisticated instrumentation and data processing techniques [9].

Hyperspectral reflectance has become a valuable tool for estimating the biochemical
status of leaves [32,33]. By capturing detailed spectral information across a broad range of
wavelengths, hyperspectral imaging enables precise detection and quantification of various
biochemical constituents in plant leaves [34]. This technique enables a non-destructive,
rapid, and detailed assessment of a plant’s biochemical parameters, which is essential for
plant physiological research. Recently, many statistical regression techniques have been
proposed and applied to retrieve photosynthetic capacity parameters from hyperspectral
reflectance spectra. Spectral vegetation indices and multiple regressions have been applied
to estimate Vcmax and Jmax from hyperspectral reflectance [35–39]. However, most of them
focus on Vcmax and Jmax at a reference [35,37,38,40] rather than the actual real-time electron
transport rate.

This study was inspired by Liran et al. (2020), who proposed a model for electron
transport rates based on a combination of solar-induced fluorescence, the NDVI (normal-
ized difference vegetation index), and light intensity [41]. This model has been validated on
crops such as lettuce (L. sativa) and maize (Z. mays), showing a strong correlation with tradi-
tional fluorometer measurements [41]. The estimation of photosynthesis from fluorescence
is based on the electron transport rate, which can be calculated as PAR × leaf absorbance
× fluorescence-related parameters [9,21,42]. Given that fluorescence parameters can be
effectively monitored by combining hyperspectral reflectance with light drivers [43,44], the
combination of light drivers and reflectance to directly track the electron transport rate is
worth exploring.
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Therefore, this study addresses the potential application of combining incident light
intensity and hyperspectral reflectance data for real-time quantification of the actual leaf
electron transport rate. Thus, the main objectives of this study focus on (1) exploring the
variations in the actual electron transport rate under different incident light levels and the
feasibility of estimating J directly from light conditions; (2) investigating the potential of
using leaf reflectance-based vegetation indices to estimate the actual electron transport rate;
(3) determining the feasibility of estimating the actual electron transport rate based on a
combination of incident light intensity and leaf reflectance information.

2. Materials and Methods
2.1. Measurements of Leaf Gas Exchange for the Determination of the Actual Electron Transport
Rate and Leaf Reflectance

Leaf gas exchange and reflectance measurements were conducted to determine the ac-
tual electron transport rate in mango leaves (M. indica L.) at the Baise National Agricultural
Sci-tech Zone in Guangxi, China. Sampling took place from 7 August to 1 September 2021,
using the detached branch method at an Integrated Remote Sensing Experimental Site for
mango trees (23◦42′09.5′′N, 106◦59′42.2′′E) [45]. Fully expanded mature leaves at the top
and bottom of the canopy were classified as sunlit and shaded, respectively. Branches with
at least four leaves were collected daily before sunrise from 7 August to 1 September 2021,
using the detached branch method. A total of 590 measurements were collected and used
for the analysis.

The gas exchange data for the mango leaves were recorded with the use of an LI-6800
portable photosynthesis system (LI-COR Inc., Lincoln, NE, USA) [46]. The CO2 concentra-
tion entering the cuvette and the automatic flow control were set to 400 µmol CO2 mol−1

and 500 µmol s−1, respectively. The chamber temperature was set to ambient, and the
humidity was set to 55%. Measurements were made at ten different light intensities. The
PAR (photosynthetically active radiation) values ranged from 200 to 2000 µmol m−2 s−1,
including 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000 µmol m−2 s−1. Initially,
the light source was 90% red and 10% blue. Blue light levels were progressively raised, and
red light levels were reduced in 10% increments. The leaves were allowed to acclimate to a
specific light intensity and quality for a minimum of 20 min, and gas exchange parameters
were recorded as soon as ∆H2O and ∆CO2 had stabilized. Immediately after each gas
exchange measurement, leaf reflectance (from 350 to 2500 nm) was recorded by using an
ASD field spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) attached
to a leaf clip. Further details of the synchronous measurement procedure can be found
in [46,47]. The measured reflectance spectra of sunlit and shaded leaves are shown in
Figure 1.
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The FvCB biochemical model has been widely used in many land surface models to
compute photosynthesis for C3 species [6,48]. The actual electron transport rate (Ja) can be
calculated based on the net photosynthesis (An) and respiration (Rd) [9,18]:

Ja = Ag·
4Ci + 8Γ∗

Ci − Γ∗ = (An + Rd)·
4Ci + 8Γ∗

Ci − Γ∗ (1)

Ag represents the gross photosynthesis; Rd is the day respiration; Ci is the intercellular
CO2 concentration; Γ* represents the CO2 compensation point in the absence of mitochon-
drial respiration in the light for C3 plants; and Ja stands in for the actual electron transport
rate balanced by carboxylation and photorespiration in the carbon reactions.

The CO2 compensation point in the absence of mitochondrial respiration (Γ*) can be
calculated from the air temperature [49]:

Γ∗ = 36.9 + 1.18(T − 25) + 0.036(T − 25)2 (2)

2.2. Hyperspectral Reflectance and Vegetation Indices for Tracing the Actual Electron Transport Rate

There are various hyperspectral vegetation indices and most of them can be cat-
egorized into several general types [50]. Most published indices can be expressed as
single-band reflectance (R), two-band reflectance difference (D), the two-band simple ratio
(SR), and two-band normalized difference (ND) [51]. In this study, these four commonly
used spectral index types were investigated to trace the variation in Ja.

All possible combinations of bands within the 350–2500 nm range (listed in Table 1) for
the VI (vegetation index) were tested for Ja estimation using polynomial regression (linear
to the first order) or logarithmic regression methods.

Ja = β1·VI + β0 + ε (3)

Ja = β1· ln(VI) + β0 + ε (4)

where β represents the fitting coefficient; and ε is the modeling error.

Table 1. The index types and spectral band combinations used for this study.

Index Type Index Formula Band Combinations

1. R(λ1) = Rλ1 λ1 ∈ [350, 2500]
2. SR(λ1, λ2) = Rλ1

Rλ2
λ1 ∈ [350, 2500], λ2 ∈ [350, 2500], λ1 ̸= λ2

3. D(λ1, λ2) = Rλ1 − Rλ2 λ1 ∈ [350, 2500], λ2 ∈ [350, 2500], λ1 ̸= λ2
4. ND(λ1, λ2) = (Rλ1−Rλ2)

(Rλ1+Rλ2)
λ1 ∈ [350, 2500], λ2 ∈ [350, 2500], λ1 ̸= λ2

A correlation analysis was conducted on each VI and the actual electron transport rate
to investigate their relationship. In order to enhance computational efficiency, the five-point
center average method was used, and the reflectance data were resampled to 5 nm.

2.3. Composite Model Development and Statistical Criteria

To explore the ability of leaf reflectance to describe Ja under different PAR conditions,
parsimonious models were constructed to estimate Ja using polynomial regression (first-
order linear) and logarithmic regression methods. Ja was first estimated using both PAR
and vegetation indices (VIs) derived from leaf reflectance.

The Ja models were obtained as follows:

Ja = β1·PAR·VI + β0 + ε (5)

Ja = β1·ln(PAR·VI) + β0 + ε (6)

where β represents the fitting coefficient; and ε is the modeling error.
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The coefficient of determination (R2), the root mean square error by mean (RMSE), the
ratio of performance to deviation (RPD), and the corrected Akaike information criterion
(AICc) [52] were calculated and used as the statistical criteria to evaluate the models:

R2= 1−∑n
i
(
Yi − Ŷi

)2

∑n
i
(
Yi − Y

)2 (7)

RMSE =

√
1
n∑ n

i
(
Yi − Ŷi

)2 (8)

RPD =
Sd

SEP
(9)

AICc = ln
(

RSS
n

)
+

n + m
n − m − 2

(10)

where Y is the measured Ja value, Ŷ is the model-estimated Ja value, Y is the average value
of Ja for all samples, n is the leaf sample number, Sd is the standard deviation of Ja, SEP is
the standard error of prediction (calculated as the root mean squared error here), m is the
number of model parameters, and RSS refers to the residual sum of squares.

According to the RPD values, the models can be classified into the following groups:
excellent (models with RPD ≥ 2.5), very good (models with 2.0 ≤ RPD < 2.5), good
(models with 1.8 ≤ RPD < 2.0), fair (models with 1.4 ≤ RPD < 1.8), poor (models with
1.0 ≤ RPD < 1.4), and very poor (models with RPD < 1.0) [53].

3. Results
3.1. Variations in Actual Electron Transport Rate under Different Light Intensities

The impact of light intensity (PAR, µmol m−2 s−1) on the electron transport rate was
examined, and the correlation between PAR and Ja was plotted in Figure 2a. In general,
the shaded leaves had lower actual electron transport rates than the sunlit leaves. The
scatter plot suggests a significant correlation between the actual electron transport rate and
incident light intensity, as indicated by the R2 value. The actual electron transport rate of
mango leaves increased with light intensity. The polynomial regression method (first-order
linear) involving the incident light intensity could follow the variation in Ja, with an R2

of 0.68, an RPD of 1.76, and an RMSE of 11.60 µmol m−2 s−1 (Figure 2a). The logarithmic
regression model was more effective in capturing the variation in Ja, with an R2 of 0.73, an
RPD of 1.92, and an RMSE of 10.65 µmol m−2 s−1 (Figure 2c).

However, the actual electron transport rate of different leaves varied significantly
under the same incident light intensity level. Therefore, the characteristics of different
leaves should be considered when estimating the electron transport rate. The logarithmic
regression model was excellent for capturing the variation in Ja in sunlit leaves, with an R2

of 0.90, an RPD of 3.21, and an RMSE of 6.62 µmol m−2 s−1 (Figure 2c). Meanwhile, the
logarithmic regression model was good at describing the variation in Ja in shaded leaves,
with an R2 of 0.69, an RPD of 1.80, and an RMSE of 10.05 µmol m−2 s−1 (Figure 2d).

3.2. Relationship of Actual Electron Transport Rate with Hyperspectral Reflectance and
Vegetation Indices

The correlation coefficients (r) between the actual electron transport rate and leaf
reflectance at each wavelength are displayed in Figure 3. It was found that leaf reflectance
values from 400 to 2500 nm were positively correlated with the actual electron transport
rates. Leaf reflectance values around 490 nm, 655 nm, 730 nm, and 1920 nm were sig-
nificantly correlated with Ja (r > 0.25). Among them, reflectance at 655 nm showed the
strongest correlation with Ja (r = 0.30).
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The model based on single-band reflectance at 655 nm was poor at estimating Ja, with
an RPD value of 1.05 (Figure 4a). The SR index and the ND index using reflectance at
2070 nm and 2075 nm were the most effective in estimating Ja (R2 = 0.25, RPD = 1.16,
RMSE = 17.65, AICc = 6.75) (Figure 4b,d). The results show that the model using one-
or two-band vegetation indices was not effective (poor) in estimating the actual electron
transport rate.
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3.3. Estimation of Actual Electron Transport Rate with Both Incident Light Intensity and Reflectance

The actual electron transport rate was then estimated using Equation (5) with both
incident light intensity and leaf reflectance. Among all single-band models, the coupling
of reflectance values at 715 nm with incident light intensity showed the best performance
in tracking the variation in the actual leaf electron transport rate (Ja) (Figure 5a). The
relationship between the measured actual leaf electron transport rate and the estimated
values with PAR and reflectance at 715 nm is shown in Figure 5a. The accuracy of this model
can be classified as good, as the RPD value of this model was 1.91. The R2 value between
the measured and estimated values was 0.72, and the RMSE for the model prediction of
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the actual leaf electron transport rate was 10.73 µmol m−2 s−1. Additionally, combining
the simple ratio index using reflectance values at 715 nm and 790 nm with incident light
intensity demonstrated superior performance compared to single-band models (Figure 5b).
The RPD value of this model was 1.99.
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715 nm fitted using the linear-to -first-order polynomial regression, (b) a scatter plot of the measured
Ja and estimated values coupling PAR and the SR (715, 790) index fitted using the linear-to-first-order
polynomial regression, (c) a scatter plot of the measured Ja and PAR times leaf reflectance at 715 nm
fitted using logarithmic regression, and (d) a scatter plot of the measured Ja and PAR times the SR
(715, 790) index fitted using logarithmic regression.

The logarithmic regression method proved to be more effective in estimating the
actual electron transport rate from incident light intensity and leaf reflectance-based VIs
(Figure 5c,d). The model constructed using polynomial regression demonstrated good
predictive capabilities with regard to the coupling of PAR and leaf reflectivity. The RPD
value of the model coupling PAR and single-band leaf reflectance at 715 nm was 2.12.
In addition, the RPD value of the model coupling PAR and the two-band simple ratio
index (SR) (715, 790) reached 2.24. The AICc value of this model coupling PAR and the SR
(715, 790) index was 5.44, which was lower than the values of the models based on PAR
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alone (5.74 shown in Figure 2b) or the spectral index alone (6.75 shown in Figure 4b,d).
Both RPD and AICc values indicate that the model coupling PAR and the two-band simple
ratio index (SR) (715, 790) was more effective in tracking the variation in the actual electron
transport rate.

4. Discussion
4.1. Estimation of Actual Electron Transport Rate from Hyperspectral Reflectance and
Vegetation Indices

Hyperspectral remote sensing has become a valuable method for estimating various
physiological parameters in plants, including the electron transport rate [32,35,54,55]. This
technology captures reflectance data over a wide range of narrow spectral bands, allowing
for a detailed analysis of plant characteristics. Several studies have identified specific
hyperspectral bands or indices that are sensitive to changes in photosynthetic activity,
which is directly related to leaf electron transport rates [41].

The red edge refers to a narrow spectral band situated between the red and near-
infrared (NIR) wavelengths, spanning 680–750 nm, where there is a sharp increase in
reflectance due to chlorophyll absorption. This region is highly sensitive to changes in
photosynthetic activity [56]. Our results show that reflectance at 715 nm combined with
light intensity could accurately predict the actual electron transport rate in all leaves, which
is consistent with previous studies.

Furthermore, near-infrared (NIR) reflectance has been proposed as an important band
to quantify the status of electron transport chain dynamics [57]. The reflectance in the NIR
band region is influenced by both the leaf water content and the internal leaf structure.
These factors are related to the photosynthetic capacity and overall health of the leaf and
indirectly affect the electron transport rate [58]. In addition, the bands around 760 nm
are typically used for retrieving chlorophyll fluorescence [31]. These bands may be useful
for estimating the electron transport rate, as a strong relationship between chlorophyll
fluorescence and photosynthesis has been shown [59–63]. The correlation patterns between
chlorophyll fluorescence parameters and reflectance are identifiable in the NIR band [64].
We also found that reflectance values within 760–1320 nm were effective in determining
the actual electron transport rate in sunlit leaves.

4.2. Calculation of Actual Electron Transport Rate under Different Light Conditions

In the commonly used FvCB model, the actual electron transport rate has been esti-
mated as a function of PAR, the leaf absorbance (α), Jmax, and the curvature factor (θ) related
to the transition between the light-limited photosynthesis phase and the light-saturated
photosynthesis phase [6,65,66]. Among these parameters, the intensity of incident light or
the amount of PAR is critical in determining the electron transport rate in leaves [67,68].

Our findings indicate that the actual electron transfer rate (Ja) of mango leaves
exhibited a positive correlation with increasing light intensity. At PAR values below
1000 µmol m−2 s−1, no significant difference was observed between the leaf groups ex-
posed to sunlight and those in the shade. At PAR exceeding 1000 µmol m−2 s−1, the electron
transport rates (Ja) of sun-exposed leaves were found to be significantly higher than those
of shaded leaves. Sunlit leaves are adapted to high light intensity, which significantly
increases their photosynthetic capacity. Thus, sunlit leaves typically exhibit higher photo-
synthetic rates and are more efficient in using the available light [69,70]. In contrast, shaded
leaves receive lower light intensities and have adapted to maximize their photosynthetic
efficiency under these conditions. They typically have a lower electron transport rate than
sunlit leaves due to the reduced availability of light energy [71]. However, shaded leaves
compensate by having a higher chlorophyll b-to-chlorophyll a ratio, which allows them to
capture the limited light more efficiently [72].
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4.3. Inference of Actual Electron Transport Rate from Both Incident Light and Reflectance and
Their Relative Importance

Hyperspectral reflectance can be used to infer biochemical or physiological properties
of plants [31,32]. It has been demonstrated that photosynthetic capacity parameters can be
retrieved from hyperspectral reflectance spectra [39,73]. Various spectral indices or multiple
regression models have been proposed to estimate Vcmax and Jmax (typically measured at a
reference temperature such as 25 ◦C) from hyperspectral data [35,37,38,40].

However, real-time photosynthetic activities are influenced by both environmental
conditions and plant biochemistry [66]. Calculation of the leaf-level electron transport rate
in physiological models has always included leaf absorbance, the photosynthetic photon
flux density absorbed by the leaf, and other parameters [74]. Therefore, to accurately
model the real-time electron transport rate, both incident light and reflectance must be
considered. Liran et al. (2020) proposed calculating the electron transport rate by using
the product of PAR, the NDVI, and solar-induced fluorescence [41]. In this study, we also
found that coupling incident light and reflectance improved the predictive performance for
estimating the actual leaf electron transport rate (Ja). The accuracy of the model using both
incident light and reflectance can be classified as having a very good prediction (RPD = 2.12
for single-band reflectance and RPD = 2.24 for the two-band SR index), while the model
using incident light provided only a good (RPD = 1.92) prediction. The model using the
reflectance-based spectral index gave a poor prediction (RPD = 1.16). The results obtained
in this study prove that the integration of incident light data with hyperspectral reflectance
measurements provides a robust approach to infer the real-time electron transport rate.

In the model coupling PAR and the single-band reflectance index, the relative impor-
tance [75] of PAR and the index R715 for the estimation of the actual electron transport rate
was 93.59% and 6.41%, respectively, while in the model coupling PAR and the two-band
index SR (715, 790), the relative importance of PAR and the index was 92.69% and 7.31%,
respectively.

4.4. Differences between Leaves Exposed to Sunlight and Leaves in Shade

The developed model (see Figure 5c) in this study combining both leaf reflectance at
715 nm and incident light intensity could track the variation in the electron transport rate
for all leaf samples. However, the physiological behavior of leaves can vary significantly
depending on their exposure to sunlight [76–78]. Furthermore, the spectral characteristics
of sunlit leaves and shaded leaves may exhibit notable discrepancies [71,79]. As a result,
the correlation coefficients of leaf reflectance and the actual electron transport rate were
quite different between the sunlit and shaded leaves, and the correlation between the actual
leaf electron transport rate and the reflectance of shaded leaves was stronger compared
to that of sunlit leaves (Figure 6). The results are in agreement with previous reports of
hyperspectral remote sensing of physiological parameters, which include the maximum
rate of photosynthetic electron transport [36], the maximum quantum yield for whole-chain
electron transport [71], and chlorophyll fluorescence [47]. The combination of light intensity
and leaf reflectance greatly improves the accuracy of predicting the actual leaf electron
transport rate of sunlit leaves. The Ja of sunlit leaves can be predicted with an RPD value of
around 2.60 (excellent performance) using light intensity and reflectance in a single band
within 760–1320 nm. However, for shaded leaves, the actual electron transport rate can
only be predicted with a lower RPD value of 1.73 (fair performance) using light intensity
and reflectance at 685 nm.
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