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Abstract: Few-shot hyperspectral image classification aims to develop the ability of classifying
image pixels by using relatively few labeled pixels per class. However, due to the inaccuracy of the
localization system and the bias of the ground survey, the potential noisy labels in the training data
pose a very significant challenge to few-shot hyperspectral image classification. To solve this problem,
this paper proposes a weighted contrastive prototype network (WCPN) for few-shot hyperspectral
image classification with noisy labels. WCPN first utilizes a similarity metric to generate the weights
of the samples from the same classes, and applies them to calibrate the class prototypes of support
and query sets. Then the weighted prototype network will minimize the distance between features
and prototypes to train the network. WCPN also incorporates a weighted contrastive regularization
function that uses the sample weights as gates to filter the fake positive samples whose labels are
incorrect to further improve the discriminative power of the prototypes. We conduct experiments on
multiple hyperspectral image datasets with artificially generated noisy labels, and the results show
that the WCPN has excellent performance that can sufficiently mitigate the impact of noisy labels.

Keywords: hyperspectral image (HSI); few-shot learning; prototype network; contrastive learning;
noisy labels

1. Introduction

Hyperspectral images (HSIs) are three-dimensional cubes composed of hundreds of
spectral channels. Each pixel of the images is a high-dimensional spectral vector. With rich
spatial and spectral information, HSIs can reflect the radiometric properties and spatial
geometric relationships of ground targets simultaneously. This results in HSIs that can
capture more subtle differences between ground targets, and have great application values
in various fields such as environmental monitoring [1,2], precision agriculture [3,4], and
military applications [5,6].

HSI classification is to predict the classes of each pixel in the images, which is one of
the important tasks in remote sensing applications. With the wide use of deep learning,
significant improvements have been made in the accuracy of HSI classification [7,8]. In
general, existing HSI classification methods can be divided into two categories, i.e., pixel-
wise methods and spectral–spatial joint methods. The former focus on the spectral vectors
behind each pixel, and apply the classifiers directly to them to predict their classes. In
contrast, the latter consider the spectral information contained in the vectors but also
the local spatial information around each pixel. For example, by cutting the fixed-size
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(e.g., 9 × 9) patches centering around each pixel from HSIs and taking them as samples
to be classified, the spectral–spatial joint methods can capture the spectral–spatial fusion
features and have shown great advantages in HSI classification.

As it is usually expensive and time-consuming to obtain a large number of labeled
samples, which are often required by current deep learning methods, few-shot learning
methods have been widely used for HSI classification in recent years. Few-shot learning
aims to develop the ability of identifying new samples of some classes by using only
few labeled samples per class. To achieve this goal, current few-shot learning methods
usually train a model with available source datasets which already consist of abundant
labeled samples and then fine-tune the model with these few-shot labeled samples in
the target dataset. Based on the classical few-shot learning methods such as prototype
network [9] and relation network [10], a series of few-shot methods have been designed for
HSI classification. And considering that the source and target datasets are from different
domains, many cross-domain few-shot methods including DCFSL [11], Gia-FSL [12], and
RPCL-FSL [13] have also been proposed.

However, existing few-shot methods for HSI classification have assumed that the
labels of all training samples are correct. These methods will suffer from performance
degradation if there are noisy labels in the training data. Noisy labels are the labels that are
mistakenly assigned to samples. For HSIs, accurate annotation may be difficult to achieve
due to the inaccuracy of the localization system and the bias of the ground survey [14,15].
Also, the annotator may make mistakes when confronted with certain ambiguous samples.
All these make it difficult to avoid noisy labels in HSI classification in practice.

The noisy labels problem has been investigated by many works in computer vision
applications [16,17]. There are two kinds of solutions: one is to detect the noisy labels and
clean the samples before training [18], and the other is to train a robust model directly on the
corrupted dataset [19]. Due to the differences between hyperspectral images and natural
images, these solutions cannot be directly applied to HSI classification. But by following
the above two routes to address noisy labels, some methods have been proposed for HSI
classification with noisy labels. For example, Tu et al. [20] proposed the density peak noisy
label detection method to identify noisy labels and eliminate anomalous samples from
training datasets. In contrast, Xu et al. [15] presented the dual-channel residual network to
deal with noisy labels at the model level. But how to address the noisy labels for few-shot
HSI classification remains the issue to be resolved.

To address HSI classification with noisy labels under the few-shot setting, this paper
proposes a Weighted Contrastive Prototype Network (WCPN). While combining few-shot
learning and contrastive learning to solve few-shot HSI classification, the main idea of the
proposed method is to identify the potential noisy samples and assign different weights to
them to balance their impact. All samples are passed through an adaptive mapping module
and a deep 3D residual network to extract the embedding features, and then the proposed
method employs a metric function to estimate the weights of each sample by utilizing the
similarities between the samples. These weights are then used for the computation of the
prototypes of both support and query sets, to calibrate the prototypes at the presence of
noisy labels. In order to further improve the self-calibration capability of the model to
reduce the impact of noisy labels, we design a regularized contrastive loss function that
uses the estimated weights as gates to constrain the model. With these improvements, we
aim to make the clean samples closer, and keep clean and noisy samples farther apart. The
main contributions of the proposed WCPN are as follows.

1. To the best of our knowledge, a prototype network for handling noisy labels under few-
shot setting has been introduced to the HSI classification for the first time. We provide
better anti-noise performance than existing methods for few-shot HSI classification.

2. Our proposed weighted prototype network utilizes the weights calculated from simi-
larities between samples to calibrate the prototypes and bring the samples closer to
their clean prototypes at the presence of noisy labels.
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3. We make full use of the noise information contained in the similarity weights of
different samples and propose a new contrastive regularization function. This function
can further constrain the model to reduce the impact of noisy samples and learn a
clean feature representation.

2. Background and Related Work

The work in this paper involves few-shot learning for HSI classification, HSI classifica-
tion with noisy labels, and contrastive learning with noisy labels. In this section, we give a
brief introduction about these related works.

2.1. Few-Shot Learning for HSI Classification

As mentioned earlier, few-shot learning aims to solve the tasks where relatively
few labeled samples are available. It has aroused much attention in a wide range of
applications [21,22], and this research focuses only on its use for HSI classification.

Current works for few-shot HSI classification mainly follow the metric-based learning
method which strives to learn a distance function that can measure the similarity between
samples. Such a distance function is expected to have good generalization ability so that it
can be well migrated to these samples in the target tasks. The classes of unlabeled samples
in the target tasks can then be predicted based on their similarity with the given few labeled
samples or their prototypes. By following the classical metric-based few-shot learning
models, many methods have been presented for few-shot HSI classification. For example,
based on the twin network [23], which receives a pair of samples and generates their simi-
larity, ASSP-SCNN replaced the feature extractor with 3D CNN for HSI classification [24].
Based on the prototype network which predicts the sample classes according to their dis-
tance to different prototypes [9], DFSL [25] took a deep 3D residual network to learn the
metric space in order to maximize class discriminability and separability; SSPN [26] used
the local pattern coding to extract better features for HSI classification; HSEMD-Net [27]
used the Earth Mover’s distance instead of the Euclidean distance to improve the model
performance. Based on relational network, which is an improved version of prototype
network [10], RN-FSC [28] and RL-Net [29] follow the meta-learning to train the model for
few-shot HSI classification.

The above works for few-shot HSI classification usually take the source datasets which
already consist of lots of labeled samples to train the model and learn a suitable distance
function, and then transfer it to the target dataset. They often assume that the source
datasets and the target datasets are from the same domains. To relax this assumption
and address the cross-domain few-shot HSI classification, DCFSL [11] followed the ad-
versarial way to train the model with the aim to obtain domain-independent features;
SSFT [30] adopted a feature-wise transformation module to extract more generalized fea-
tures; CMFSL [31] used the modules of spectral prior-based refinement and a lightweight
cross-scale convolution to increase the feature extraction ability under few-shot setting;
Gia-CFSL [12] used a domain alignment strategy to suppress domain bias; GPN [32] used a
global prototype strategy to train the network, where the global prototypes are continuously
updated during iterative training; RPCL-FSL [13] integrated supervised contrastive learn-
ing into few-shot HSI classification, in order to obtain better prototypes and improve the
classification accuracy. Liu et al. [33] incorporated contrastive learning and a transformer-
based cross-attention module into few-shot HSI classification to enhance multi-level sample
relations and improve classification performance.

Different from these works, the proposed method in this paper aims to explore the
similarities between the samples themselves, and study how to utilize them to identify the
noisy samples and reduce their impact on cross-domain few-shot HSI classification.

2.2. HSI Classification with Noisy Labels

The majority of existing research approaches for learning with noisy labels in the
literature reduce the impacts of noise by creating robust loss functions [34,35], a noise
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transition matrix [36,37], confident examples selection [38,39], reweighting examples [40,41],
introducing regularization [42,43], and generating pseudo labels [44,45]. Specifically for
few-shot learning, the existing methods focus on selecting credible samples from the model
level. Mazumder et al. proposed RNNP [46] which combined data augmentation with
k-means to produce refined prototypes. RapNets [47] utilized a BiLSTM-based attention
module to overcome representation with noisy labels. Liang et al. proposed TraNFS [48]
utilizing the Transformer’s attention mechanism to trade-off between noisy samples and
correct samples. These methods can mitigate the effects of noisy labels somewhat, but
mainly focus on the noisy samples in the support set.

In the field of HSI, many methods have been also proposed to address the noisy label
problem by detecting and removing noisy labels before training or directly training robust
models with noisy data. Among the methods for detecting and removing noisy labels, Jiang
et al. [49] proposed RLPA to construct a spectral–spatial probabilistic transferring matrix,
and utilized hyperpixel-constrained random labels to reduce the noisy labels. Tu et al.
proposed an SDP method [50] based on spatial density peak clustering and a SPWD
method [14] incorporating super-pixel weighted distance to detect mislabeled samples in
the training set. Among the methods for training robust models on noisy data, Jiang et al.
proposed MSSAs [51] that used spectral and spatial similarity to construct affinity graphs to
regularize the process of noisy labels cleaning, thus transforming noisy labels cleaning into
an optimization problem with graph constraints. Xu et al. proposed a two-channel residual
network DCRN [15] to reduce the impact of noisy labels by utilizing a noise robust loss
function to detect and reject these abnormal samples. All of the above methods mitigate the
impact of noisy labels in HSIs to a certain extent. Different from these works, the proposed
method in this paper focuses on how to address the noisy labels and train a robust model
for HSI classification in the few-shot setting.

2.3. Contrastive Learning with Noisy Labels

Contrastive learning [52,53] has demonstrated impressive results not only in represen-
tation learning but also in various downstream tasks, where the learned representations
have shown strong generalization capabilities. The essence of contrastive learning lies
in learning to differentiate between similar and dissimilar samples by contrasting their
representations. In particular, by maximizing the agreement between positive samples
and minimizing it for negative samples, the model is able to learn rich, meaningful fea-
ture embeddings from data. One specific variant of contrastive learning is supervised
contrastive learning [54], which extends this concept by incorporating class labels. The
objective of supervised contrastive learning is to ensure that samples from the same class
are pulled closer together in the representation space, while samples from different classes
are pushed apart. This label-guided approach further enhances the discriminative power
of the learned representations, making it particularly effective in scenarios where class
distinctions are crucial.

The noisy labels problem also has much impact on the supervised contrast learning. To
address this issue, there are some methods proposed by now. For example, the methods of
ProtoMix [55] and NGC [56] perform pseudo-label generation and supervised contrastive
learning against noisy labels. Sel-CL proposed by Li et al. [57] identifies plausible examples
for constructing confidence pairs by measuring the consistency between learning and given
labels; Yi et al. [58] combined the non-robustness of cross-entropy loss with a novel contrast
regularization function so that noisy data do not dominate the learning of features. Our
work takes full advantage of contrast learning by considering the different weights of
different samples in the presence of noisy samples, thereby providing better regularization
of features.

3. The Proposed Method

The proposed WCPN solves the task of few-shot HSI classification with noisy labels.
The framework of the proposed method is shown in Figure 1. In an episodic manner of
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meta-learning, firstly, the support set and query set of a task are constructed from the
source dataset and target dataset. Considering the presence of noisy labels, there are some
noisy samples in the constructed support and query set, which are indicated by the red
squares in Figure 1. Then, two trainable adaptive mapping modules are used to unify
the spectral dimensions of the samples from the source dataset and target dataset, and a
3D residual module is taken to extract the features of all the samples. Following that, the
weights of these samples in the support and query set are calculated, respectively, and
the class prototypes of the support and query set are obtained accordingly. Finally, the
weighted few-shot learning loss and weighted contrastive loss are derived to update the
model. The model is trained alternately with the tasks constructed from the source and
target datasets. When testing, the KNN classifier is used once the features of the support
and query samples are obtained.

Query set

Support  set

… …

…

…

… …

Query set

Support  set

… …

…

…

… …

Source dataset

Target dataset

Meta-task

Meta-task

Data 
Augment

𝑴𝑴𝒔𝒔

Mapping
module

𝑴𝑴𝒕𝒕

Mapping
module

𝐹𝐹

Feature 
extractor
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Weighted Contrastive 
regularization

Query features

Support features

Support
weights

Query
weights

𝐿𝐿𝑤𝑤𝑤𝑤𝑙𝑙

𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

Calibrated support 
prototypes

Calibrated query 
prototypes

…
…

Figure 1. Flowchart of the proposed WCPN, which consists of two meta-training processes running
alternately on the source and target datasets. In the meta-training process, the support and query
sets are first constructed, where the red squares are the noisy samples. Then two trainable adaptive
mapping modules are used to unify the spectral dimensions of the source and target datasets and
a feature extractor is adopted to extract the features of the support and query samples. After that,
calibrated prototypes are obtained by calculating the weights of each sample in the support and
query sets. Lastly, the weighted few-shot learning loss and weighted contrastive regularization loss
are used to update the entire model.

3.1. Meta-Learning and Feature Extraction

For few-shot learning, there are two datasets given: the source dataset Ds with Cs
classes and the target dataset Dt with Ct classes. It is worth noting that there are only few
labeled samples in Dt and all the unlabeled samples are to be classified. The Ct is also
smaller than Cs. In the training phase, a task which consists of the support and query sets
is constructed from the dataset in each episode. There are N-way (K + M)-shot samples
randomly selected from the dataset for constructing the task. The N-way refers to the
number of classes selected, which is often set to the number of classes of the dataset. K is
the number of support samples per class and M is the number of query samples per class.
That is, there are N × K samples to form the support set S = {(xi, yi)}N×K

i=1 , and N × M
samples to form the query set Q = {(xj, yj)}N×M

j=1 . In this paper, K is set to 5 and M is set
to 15.

To alleviate the problem of domain shift between Ds and Dt , we train the model
alternately with labeled samples in Ds and Dt. However, one problem with alternate
training is that the spectral dimensions of the samples from source and target datasets are
different. In order to unify the dimensionality, two mapping modules are used which are
implemented with a two-dimensional convolutional layer consisting of d convolutional
kernels of size 1 × 1 × ch, where ch and d are the dimensionality of the input and output
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data, respectively. Given different patches with the size of 9× 9× ch, the mapping modules
transform them into the new patches with the size of 9 × 9 × d. After that, the spatial–
spectrial joint features are extracted by the feature extractor module which is implemented
with a deep 3D residual network. The components of the feature extractor are shown in
Figure 2, and for more details of its implementation, please refer to [59].

Res Block1

3D Conv

3D Conv

Res Block2

Linear

3D Conv

3D BatchNorm

3D Conv

3D BatchNorm

ReLU

3D Conv

3D BatchNorm

ReLU

ReLU

SUM

Residual Block 1

OUTPUT

INPUT

3D Conv

2D Conv

2D BatchNorm

ReLU

2D Conv

2D BatchNorm

ReLU

ReLU

SUM

Residual Block 2

Figure 2. The architecture of the feature extractor.

3.2. Weighting Samples with Noisy Labels

Prototype network [9] is a simple and efficient method for few-shot learning. It weights
all the samples in the support set equally and generates the class prototypes by means of
mean aggregation. With the class prototypes, it predicts the classes of samples according to
their distance to the prototypes. However, when noisy labels are present, the generated
prototypes will deviate from the true ones and the classification performance is affected.
An obvious solution is to remove the noisy samples [57], but this way tends to remove the
useful information brought by them at the same time. This paper proposes to weight the
samples by using the similarity information among them. While suppressing the noisy
samples and amplifying the clean samples, it makes full use of the noisy samples as much
as possible.

To calculate the similarity among samples, the cosine metric which performs well for
high-dimensional data is used in this paper. With the cosine metric, the average similarity
between one sample and all other samples of the same class is computed by Equation (1).

a(c)i =
1

K − 1 ∑
i ̸=j

h(c)i · h(c)j∥∥∥h(c)i

∥∥∥∥∥∥h(c)j

∥∥∥ (1)

where K is the number of samples per class, and a(c)i is the average similarity between the

ith sample to the other samples of class c. The larger a(c)i is, the closer the sample is to other
similar samples.

Then, the average similarities a(c)i of the samples from the same classes are normalized

by the softmax function shown in Equation (2), and the weights w(c)
i of each sample

are generated.

w(c)
i =

exp
(

a(c)i /T
)

∑
j

exp
(

a(c)j /T
) (2)
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where T is the temperature term that controls softmax diffusion. When T → 0, the sample
with the smallest distance to the other samples will be selected as the class prototype, and
when T → ∞, it is equal to the mean operation.

The similarity-based way to weight samples can measure the noise distribution of the
sample labels by using their inherent characteristics. The smaller w is, the less similar the
sample is to the other samples of the same classes, and the higher the confidence that the
sample is considered a noisy sample. In contrast, if w is larger, the sample is cleaner.

3.3. Weighted Prototype Network

The prototype network trains the feature extractor fθ by minimizing the distance
between the query set samples and the class prototypes of the support set. As shown in the
left part of Figure 3, the class prototypes are computed as the mean of the features of the
samples from the same classes, which can be also seen in Equation (3).

Support features Dirty support
prototypes Query features

Calculate the 
mean 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓

Support features

Calibrated support
prototypes

Query features

Weighted 
averaging

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓
𝑞𝑞

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠

Weighted 
averaging

Weighted contrastive
regularization

Calibrated query
prototypes

Original prototype network with noisy labels Weighted Contrastive prototype network with noisy labels

𝐿𝐿𝑤𝑤𝑤𝑤𝑙𝑙

Figure 3. Comparison of original prototype network with noisy labels and weighted contrastive
prototype network with noisy labels. Red samples indicate noisy samples. The prototypes of the
original prototype network are obtained from the mean of the support features and then the model
is trained by minimizing the Euclidean distance between the query features and the prototypes.
The WCPN calibrates the prototypes of support and query sets using the weights of the samples
according to the similarities between the samples from the same classes, and updates the contrastive
regularization function by taking the weights as gates to filter the potential noisy samples when
calculating the contrastive loss.

Pc =
1
K ∑

xi∈Sc
fθ(xi) (3)

where Pc represents the prototype of class c, Sc denotes the set of samples belonging to
class c in the support set, and K is the number of support samples per class.

After obtaining the support prototypes, the embedded features of the query samples
are also extracted by the feature extractor. For the query samples xj ∈ Q with true label cj,
the prototype network predicts the probability that sample xj belongs to cj by following
Equation (4).

p(yj = cj|xj) =
exp

(
−d

(
fθ(xj), P

cj
s

))
N
∑

c=1
exp

(
−d

(
fθ(xj), Pc

s
)) (4)

where d(·) denotes the Euclidean distance used to calculate the distance between features
and prototypes. Following this, the few-shot learning loss can be calculated by Equation (5).
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Lfsl = − 1
nq

nq

∑
j=1

logp(yj = cj|xj) (5)

From Equations (3) and (4), it can be seen that in the presence of noisy support
samples (e.g., red circles and red triangles shown in the left part of Figure 3), the dirty
support prototypes will be generated, which will greatly affect the model’s performance.
In particular, there may also be noisy samples in the query set, which will also affect the
training effect. To address this problem, our idea is to weight the samples in both the
support set and query set, and use the weights to balance the impacts of noisy samples, as
shown in the right part of Figure 3.

Specifically, both the support prototypes and the query prototypes are first computed
and calibrated by using the weights obtained by Equation (2). The clean prototypes
obtained after calibration are shown in Equation (6) where Sc is the set of samples of class c
in either the support set or query set.

Pc =
1
K ∑

xi∈Sc
fθ(xi) · wi (6)

Second, with the calibrated support prototypes and the weights of query samples, the
original few-shot learning loss function of prototype network is updated so that the noisy
samples do not dominate the calculation of the loss. The updated loss function is shown
in Equation (7), where Pc

s denotes the class prototypes in support set and wq
j denotes the

weights of query samples.

Lq
f sl = − 1

N × M

N×M

∑
j=1

log
exp

(
−d

(
fθ(xj), P

cj
s

))
· wq

j

N
∑

c=1
exp

(
−d

(
fθ(xj), Pc

s
)) (7)

Third, in order to make full use of the information contained in the samples to ehance
the training effect, the prediction loss of taking the query prototypes as anchors to predict
the classes of the support samples is also utilized in this paper, which is similar with
RPCL [13]. By using the calibrated query prototypes and the weights of support samples,
the function for calculating such a loss is defined in Equation (8), where Pc

q denotes the
class prototypes in the query set and ws

j denote the weights of support samples.

Ls
f sl = − 1

N × K

N×K

∑
j=1

log
exp

(
−d

(
fθ(xj), P

cj
q

))
· ws

j

N
∑

c=1
exp

(
−d

(
fθ(xj), Pc

q

)) (8)

Finally, the weighted few-shot learning loss function of the prototype network is
defined as Equation (9), where Ls

f sl denotes the loss of support set weight calibration and

Lq
f sl denotes the loss of query set calibration.

Lw f sl = Ls
f sl + Lq

f sl (9)

3.4. Weighted Contrastive Regularization Function

To further enhance the model’s performance, this paper also augments the prototype
network with a contrastive regularization function. It is expected to constrain the model
so that samples within classes are closer together and samples between classes are farther
apart. By following the supervised contrastive learning, the positive samples of a sample in
the support set are the other samples of the same class, and all the remaining N × (K − 1)
are the negative samples. For a positive sample pair, the contrastive loss item can be derived
by Equation (10) after obtaining the sample features.
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Li,j
cl = − log

exp
(
sim

(
zi, zj

)
/τ

)
N×(K−1)

∑
k=1

exp(sim(zi, zk)/τ)

(10)

where zi and zj are the feature representations of the samples in the pair, and sim
(
zi, zj

)
measures the cosine similarity between them. τ is a temperature coefficient set to 0.5 in our
experiment. And K is the number of samples per class in the support set.

Considering the presence of noisy labels, when there are noisy samples in the same
class, these noisy samples are actually the negative samples instead of the positive samples.
Thus, it is reasonable to exclude them from the set of positive samples. Inspired by the work
of Yi et al. [58], this paper uses an indicator function to filter these fake positive sample
pairs, as shown by the weighted contrastive regularization function of Equation (11).

Lwcl =
1

N2 × K2

N×K

∑
i=1

N×K

∑
j=1,j ̸=i

Li,j
cl · 1{wi ≥

(1 − β)

Ms
} (11)

where 1{wi ≥
(1−β)

K } is the indicator function whose output is equal to 1 when wi ≥
(1−β)

K

and 0 when wi < (1−β)
K . β denotes a tolerance hyperparameter. Our idea behind the

indicator function is that when all the samples of a class are clean and the same, the weights
of the samples should be 1/K. When there are noisy samples, for a sample with the weight
ws, if ws > 1/K , it means that the sample is closer to the other samples than the average
case and has a higher probability of being a clean sample. Otherwise, if ws < 1/K , it
indicates that the sample is further away from the other samples than the average case and
has a higher probability of being a noisy sample. Therefore, 1/K is taken as the threshold
which is further balanced by the hyperparameter β.

Finally, the overall loss function of the proposed model is defined as Equation (12)
where λ1 and λ2 are the weights given to the two kinds of losses. Both λ1 and λ2 are set to
be 1 in this paper.

L = λ1Lw f sl + λ2Lwcl (12)

4. Experiments

To validate the proposed method, several experiments have been conducted. In this
section, we describe the experimental setup and results.

4.1. Datasets Description

In order to fairly evaluate the performance of the proposed method, we have selected
datasets that are widely used in related works for training and testing. There are four
datasets used, including Indian Pines (IP), Pavia University (PU), Salians (SA), and Chikusei.
In a few-shot setting [25], Chikusei is selected as the source dataset, and the other three
datasets are selected as the target datasets.

(a) Chikusei dataset: Acquired on 29 July 2014, in Chikusei, Ibaraki, Japan, the dataset was
gathered using Hyperspectral Visible/Near-Infrared Cameras (Hyperspec-VNIRC). It
encompasses 19 distinct classes and spans 2517 × 2335 pixels, maintaining a spatial
resolution of 2.5 m per pixel. Comprising 128 spectral bands spanning from 363 to
1018 nm, this dataset provides comprehensive spectral information. The pseudo-color
composite image and the ground-truth map of Chikusei are depicted in Figure 4.
Table 1 shows the land cover classes and the corresponding numbers of samples in
the Chikusei dataset.
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Table 1. Land cover classes and numbers of sampless in Chikusei.

Class Name Pixels Class Name Pixels

1 Water 2345 11 Row crops 5961
2 Bare soil (school) 2859 12 Plastic house 2193
3 Bare soil (park) 236 13 Manmade (non-dark) 1220
4 Bare soil (farmland) 48,525 14 Manmade (dark) 7664
5 Natural plants 4297 15 Manmade (blue) 431
6 Weeds in farmland 1108 16 Manmade (red) 222
7 Forest 20,516 17 Manmade grass 1040
8 Grass 6515 18 Asphalt 801
9 Rice field (grown) 13,369 19 Paved ground 145
10 Rice field (first stage) 1268 Total: 77,592

(a)

Grass

Forest

Weeds in 
farmland

Natural 
plants

Bare soil
(farmland)

Bare soil
(park)

Bare soil
(school)

Water

Background

Rice field
(grown)

Paved ground

Asphalt

Manmade
(red)

Manmade
(blue)

Manmade
(dark)

Manmade
(non-dark)

Plastic house

Row crops

Rice field
(first stage)

Manmade grass

(b) (c)

Figure 4. Pseudo-color composite image and ground-truth map of Chikusei. (a) False-color image.
(b) Ground truth. (c) Labels illustration.

(b) IP dataset: Acquired via the airborne visible infrared imaging spectrometer (AVIRIS)
sensor at the Indiana Pine test site situated in northwestern Indiana, this dataset
comprises 145 × 145 pixels and initially included 224 spectral bands. However, 20 de-
fective bands were removed, resulting in the utilization of the remaining 200 spectral
bands for the experiment. With a spatial resolution of 20 m, this dataset encompasses
16 distinct classes. The pseudo-color composite image and the ground-truth map of IP
are depicted in Figure 5. Table 2 shows the land cover classes and the corresponding
numbers of samples in the IP dataset.

Table 2. Land cover classes and numbers of samples in IP.

Class Name Pixels Class Name Pixels

1 Alfalfa 46 10 Soybean-notill 972
2 Corn-notill 1428 11 Soybean-mintill 2455
3 Corn-mintill 830 12 Soybean-clean 593
4 Corn 237 13 Wheat 205
5 Grass-pasture 483 14 Woods 1265
6 Grass-trees 730 15 Buildings-Grass-Trees-Drives 386
7 Grass-pasture-mowed 28 16 Stone-Steel-Towers 93
8 Hay-windrowed 478 Total: 10,249
9 Oats 20

(c) SA dataset: Collected using a 224-band AVIRIS sensor over the scenic Salinas Valley
in California, USA, the Salinas Valley dataset boasts high spatial resolution at 3.7 m
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per pixel. Featuring an image encompassing 512 lines by 217 samples, this dataset
underwent the removal of 20 abundant spectral bands, leaving behind 204 bands that
effectively represent 16 diverse classes. The pseudo-color composite image and the
ground-truth map of SA are depicted in Figure 6. Table 3 shows the land cover classes
and the corresponding numbers of samples in the SA dataset.

Grass-pasture-mowed

Grass-tree

Grass-pasture

Corn

Corn-mintill

Corn-notill

Alfalfa

Background

Stone-Steel-Towers

Buildings-Grass-Trees-Drives

Woods

Wheat

Soybean-clean

Soybean-mintill

Soybean-notill

Oats

Hay-windrowed

(a) (b) (c)

Figure 5. Pseudo-color composite image and ground-truth map of IP. (a) False-color image.
(b) Ground truth. (c) Labels illustration.

Table 3. Land cover classes and numbers of samples in SA.

Class Name Pixels Class Name Pixels

1 Brocoli_green_weeds 1 2009 10 Corn_senesced_green_weeds 3278
2 Brocoli_green_weeds 2 3726 11 Lettuce_romaine_4wk 1068
3 Fallow 1976 12 Lettuce_romaine_5wk 1927
4 Fallow_rough_plow 1394 13 Lettuce_romaine_6wk 916
5 Fallow_smooth 2678 14 Lettuce_romaine_7wk 1070
6 Stubble 3959 15 Vinyard_untrained 7268
7 Celery 3579 16 Vinyard_vertical_trellis 1807
8 Grapes_untrained 11,271 Total: 54,129
9 Soil_vinyard_develop 6203

(d) PU dataset: Captured over the Pavia University, Italy, utilizing the reflective optics
system imaging spectrometer (ROSIS-3), this image spans a size of 610 × 340 pixels and
maintains a spatial resolution of 1.3 m per pixel across 115 spectral bands. Following
the removal of 12 noisy bands, subsequent experiments were carried out using the
remaining 103 bands. The pseudo-color composite image and the ground-truth
map of PU are depicted in Figure 7. Table 4 shows the land cover classes and the
corresponding numbers of samples in the PU dataset.

Table 4. Land cover classes and numbers of samples in PU.

Class Name Pixels

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Bricks 3682
9 Shadows 947

Total 42,776
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Figure 6. Pseudo-color composite image and ground-truth map of SA. (a) False-color image.
(b) Ground truth. (c) Labels illustration.

Shadow

Bricks
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Bare Soil

Metal Sheets

Trees
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Background
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Figure 7. Pseudo-color composite image and ground-truth map of PU. (a) False-color image.
(b) Ground truth. (c) Labels illustration.

4.2. Experiment Setting

Since the research in this paper addresses the few-shot HSI classification with noisy
labels, two types of state-of-the-art methods are compared in this paper. First, two latest
few-shot HSI classification methods, Gia-FSL [12] and RPCL [13], are selected for com-
parison to indicate the impact of the noisy labels on few-shot HSI classification and the
outperformance of the proposed method under such impact. Gia-FSL [12] combined
graph information aggregation-based FSL with domain alignment to address domain bias.
RPCL [13] integrated supervised contrastive learning into few-shot HSI classification to
obtain better prototypes. Second, two typical methods which can handle HSI classification
with noisy labels, SSRN [59] and DCRN [15], are also selected to indicate the superiority of
the proposed method to address noisy labels in the task of few-shot HSI classification. SSRN
designed an end-to-end spectral–spatial residual network for performing hyperspectral
image classification. DCRN [15] employed a two-channel residual network structure and
an anti-noise loss function to enhance the robustness of the model to noisy labels.

In the comparison, 200 labeled samples per class from the source dataset were ran-
domly selected for training. For the target datasets, only five labeled samples per class
were selected for training. These were augmented to 200 samples per class by cropping
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and restoration. And the rest of the samples in the target datasets were used for testing.
In each episode of the training process, a N-way K-shot task was constructed to form the
support set, where N is the number of classes in the dataset (e.g., N = 16 for IP and SA, and
9 for PU) and K is set to 5. At the same time, the number of samples per class composing
the query set is set to 15, i.e., M = 15.

For the ablation experiment’s purpose, we name the method that removes the weighted
contrastive regularization function from the proposed method as WCPN-CL, to validate
the contribution of the weighted contrastive regularization function.

Since the datasets used for evaluation do not contain noise themselves, we need to set
the noisy labels manually to validate the effectiveness of the proposed method. To simulate
the real-world noise situation, we choose the paired label swap method [60] which swaps
the labels of two samples selected randomly. This is in accordance with the premise that
the number of classes in the datasets is determined. We selected the support set and query
set from the dataset to which noise has been added, and the number of noise samples
for each task has randomness due to random sampling, which is more in line with real
noise-construction scenarios. For the proportion of samples over the datasets, we set it
consistent with most of the methods [46,48], including 0% (i.e., no noise), 20%, 40%, and
60%, so as to better verify the model’s robustness at different noise levels. Excessive noise
such as noise rate greater than 80% is often discarded in real scenarios, so we do not take it
into account.

In the meta-testing phase, the testing samples from the target datasets are fed into the
trained mapping module and feature extractor to obtain discriminative features, and then
a KNN classifier is used to classify the unlabeled samples. Overall accuracy (OA), average
accuracy (AA), and kappa coefficient were used to evaluate the performance of different
methods. We randomly ran each experiment 10 times and report the average results. All
experiments were conducted on a Pytorch computer with a 56 MHz CPU, Tesla T4 GPU, and
64 GB of RAM. Adam was used as the optimizer and the number of training iterations was set
to 3000. The learning rate was set to 0.001. The window size of the input patches was set to
9 × 9.

4.3. Comparing with Other Methods

Tables 5 and 6 show the classification performance of the different methods on the
IP dataset with different noise settings. For the few-shot methods for HSI classification,
Gia-FSL and RPCL are very sensitive to noise. As the noise rate goes from 0% to 60%,
the performance of Gia-FSL and RPCL decreases by 8.79% and 24.9%, respectively. At
the same time, the performance of SSRN and DCRN are relatively stable with increasing
noise rates. However, their accuracy rates are lower than WPCN, which shows the effect of
the calibration brought by weighted samples. For WCPN and WCPN-CL, they perform
relatively well at all noise rates, especially at noise levels of 20% and 40%. The WPCN
exhibits better robustness, and the changes in noise do not have a significant effect on it.
Figure 8a visualizes the classification effect of different methods on the IP dataset, and the
advantages of the WCPN-CL and WCPN become more obvious as the noise rate increases.

Tables 7 and 8 show the classification performance of the different methods on the SA
dataset. Compared with the performance on IP dataset, all methods are less affected by
noise on this dataset. This may be because the HSI images of this dataset are easy to classify
(the OA accuracy of most methods exceed 90%). WPCN only achieved an advantage with
the noise rate of 0% and 20%, indicating that the role of sample weights for decreasing
the impact of noisy labels is not significant for datasets that are easy to classify. It may be
because a lot of useful information is filtered out when using the weights for calibration.
Figure 8b visualizes the classification effectiveness of the different methods on the SA
dataset, which also confirms the superiority of the proposed method.

Tables 9 and 10 show the classification performance of the different methods on the
PU dataset. WPCN achieves optimal performance over different levels of noise rate, out-
performing the mainstream method DCRN by about 1.5% on average. Its noise immunity
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is also well demonstrated on the PU dataset. Although the increase in noise rate signif-
icantly affects the classification accuracy, the presence of weighted contrastive learning
suppresses this effect to some extent due to the large differences between the noisy samples
of different classes. Figure 8c visualizes the classification effect of different methods on
the PU dataset. And the advantages of WCPN-CL and WCPN can be also found from the
results in this figure.

(a) (c)(b)

Figure 8. OA results for GIAFSL, RPCL,SSRN, DCRN, WCPN-CL, and WCPN methods at different
noise rates: (a) IP, (b) PU, and (c) SA.

Table 5. Classification performance of the GIAFSL, RPCL,SSRN, DCRN, WCPN-CL, and WCPN
methods on the IP dataset with noise rate 0% and 20%.

Class
Noise Rate = 0% Noise Rate = 20%

GIAFSL RPCL SSRN DCRN WCPN-CL WCPN GIAFSL RPCL SSRN DCRN WCPN-CL WCPN

1 89.76 99.76 99.51 99.76 99.02 99.76 88.54 96.83 99.27 99.76 99.51 98.54
2 41.33 64.27 65.04 65.4 70.71 68.4 33.46 48.38 60.87 63.94 69.69 65.73
3 44.06 61.99 61.31 67.85 64.27 64.36 31.61 51.09 67.41 61.61 67.15 66.81
4 72.46 88.36 90.52 92.84 89.61 90.04 48.32 76.55 88.92 92.33 90.26 92.2
5 69.67 79.85 79.25 80.17 80.9 80.94 64.31 73.08 77.2 79.81 78.83 79.29
6 76.23 90.69 89.85 92.79 90.76 89.26 69.61 86.19 91.23 91.77 91.13 90.83
7 99.13 100 100 100 100 100 90.43 99.13 99.57 100 98.7 100
8 88.44 91.54 96.28 94.8 98.08 98.84 85.58 89.92 94.31 94.33 94.06 94.29
9 98 100 100 99.33 100 100 96.67 100 100 100 100 100

10 57.39 69.19 70.56 71.95 68 72.09 53.07 64.98 71.34 68.84 70.8 69.98
11 58.88 67.36 66.22 65.8 70.4 70.42 54.19 58.46 62.89 67.68 67.98 72.7
12 44 60.43 68.11 68.57 66.6 66.12 32.65 42.33 61.89 63.08 65.94 67.23
13 96.95 98 96.25 97.7 96.55 96.4 94.8 97.2 97.95 96.5 98.6 98
14 76.58 89.29 89.3 89.25 89.9 91.8 70.79 88.88 90 90.38 91.48 88.03
15 69.71 85.72 83.39 90.52 88.48 87.09 47.74 72.07 81.36 88.11 87.17 83.96
16 99.2 96.93 97.39 98.18 95 95.68 92.95 97.39 97.73 98.3 98.3 97.39

OA 61.62
± 2.98

74.64
± 2.88

75.05
± 3.05

76.22
± 3.15

77.22
± 2.28

77.4
± 2.83

54.24
± 4.26

66.37
± 3.01

73.79
± 2.59

75.26
± 3.66

76.92
± 3.53

76.96
± 2.38

AA 73.86
± 1.68

83.96
± 1.63

84.56
± 1.43

85.93
± 1.7

85.52
± 1.32

85.7
± 1.55

65.92
± 2.59

77.66
± 1.72

83.87
± 1.27

84.78
± 2.0

85.6
± 1.47

85.31
± 1.62

Kappa 0.56
± 0.03

0.71
± 0.03

0.71
± 0.03

0.73
± 0.03

0.74
± 0.03

0.74
± 0.03

0.48
± 0.05

0.62
± 0.03

0.70
± 0.03

0.72
± 0.04

0.74
± 0.04

0.74
± 0.03
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Table 6. Classification performance of the GIAFSL, RPCL, SSRN, DCRN, WCPN-CL, and WCPN
methods on the IP dataset with noise rate 40% and 60%.

Class
Noise Rate = 40% Noise Rate = 60%

GIAFSL RPCL SSRN DCRN WCPN-CL WCPN GIAFSL RPCL SSRN DCRN WCPN-CL WCPN

1 89.27 92.2 99.51 99.76 99.27 99.51 84.39 67.56 98.29 99.76 98.54 98.78
2 32.24 37.24 59.95 62.75 62.42 65.43 29.99 26.44 54.88 54.48 60.02 62.45
3 29.28 43.66 54.12 65.14 61.83 63.61 30.22 29.49 60.52 63.81 64.72 60.42
4 56.16 49.14 84.91 91.25 89.87 89.27 46.64 26.03 82.07 87.89 88.58 86.38
5 61.97 65.21 76.32 79.62 80.04 80.13 57.47 59.14 71.44 80.52 80.08 79.54
6 65.67 76.91 89.34 92.61 93.56 91.52 66.23 73.39 88.94 92.87 90.87 92.8
7 96.52 97.39 100 99.57 100 100 92.61 91.3 100 100 100 100
8 82.14 81.25 92.01 95.67 94.59 95.98 85.29 69.77 87.76 92.16 92.18 94.84
9 96 98 100 100 100 100 98 90.67 100 100 100 100

10 52.83 56.53 67.38 70.72 70.02 71.81 52.15 50.36 67.31 64.59 71.19 72.7
11 52.6 56.76 69.06 67.19 71.28 68.7 53.18 52.13 64.02 68.36 63.98 66.98
12 32.77 31.11 59.49 66.43 63.44 65.36 31.24 21.9 59.88 63.42 66.05 66.77
13 96.15 96.05 98.4 98.15 98.8 97.7 93.25 90.25 97.85 97.8 97 96.5
14 74.36 80.84 92.13 90.08 92.63 92.75 73.24 72.52 88.61 91.02 91.06 90.81
15 47.38 47.45 85.83 89.5 84.65 84.12 46.59 32.44 81.78 86.06 78.85 83.94
16 96.02 84.2 98.98 97.16 98.18 97.5 92.73 68.18 98.64 97.95 97.61 97.16

OA 53.61
± 3.36

58.2
± 3.67

73.64
± 2.58

75.76
± 2.64

76.35
± 2.42

76.45
± 2.97

52.83
± 3.37

49.74
± 3.07

71.12
± 2.66

73.83
± 3.76

73.97
± 2.74

75.2
± 2.64

AA 66.34
± 3.53

68.37
± 2.51

82.96
± 1.32

85.35
± 1.74

85.04
± 1.52

85.21
± 1.92

64.58
± 2.91

57.6
± 3.56

81.37
± 1.31

83.79
± 2.2

83.8
± 1.65

84.38
± 1.82

Kappa 0.48
± 0.04

0.53
± 0.04

0.70
± 0.03

0.73
± 0.03

0.73
± 0.03

0.73
± 0.03

0.47
± 0.04

0.43
± 0.03

0.68
± 0.03

0.71
± 0.04

0.71
± 0.03

0.72
± 0.03

Table 7. Classification performance of the GIAFSL, RPCL, SSRN, DCRN, WCPN-CL, and WCPN
methods on the SA dataset with noise rates of 0% and 20%.

Class
Noise Rate = 0% Noise Rate = 20%

GIAFSL RPCL SSRN DCRN WCPN-CL WCPN GIAFSL RPCL SSRN DCRN WCPN-CL WCPN

1 98.62 99.39 99.24 97.78 99.47 99.78 96.35 98.29 99.44 99.39 98.36 98.7
2 99.42 99.94 99.38 99.17 99.96 99.87 97.77 99.55 99.44 99.82 99.93 99.56
3 90.7 90.59 90.55 91.73 94.16 95.31 87.97 91.22 92.2 94.61 94.04 90.63
4 98.81 99.18 99.03 98.81 98.83 99.63 99.16 99.48 99.58 99.59 99.52 99.55
5 89.62 90.96 91.83 92.6 93.12 94.34 92.54 91.71 94.44 95.35 94.55 96.23
6 99 98.81 98.24 98.84 98.77 98.75 98.88 98.99 98.91 99.14 98.92 98.51
7 98.59 99.55 96.79 98.98 99.55 99.43 98.55 99.23 97.31 98.14 99.17 99.47
8 74.85 80.37 81.43 80.45 83.69 84.82 69.85 72.95 78.68 76.66 82.12 81.03
9 97.43 99.73 99 99.15 99.52 99.9 97.88 99.84 99.18 99.85 99.41 99.73

10 79.93 86.66 86.03 87.71 91.06 90.93 72.17 85.46 89.18 90.93 88.22 92.13
11 96.62 98.89 98.54 98.67 99.14 99.63 95.96 98.28 99.54 99.18 99.44 99.69
12 99.12 98.82 98.89 98.46 96.47 98.22 97.81 99.61 99.84 99.37 98.68 98.76
13 98.16 99.25 99.07 99.08 99.17 96.98 99.42 99.2 99.24 99.53 99.17 99.34
14 98.14 97.91 98.51 99.46 97.2 99.03 98.23 98.57 98.44 99.5 95.97 97.43
15 73.18 79.23 78.53 81.48 82.59 79.57 71.91 76.79 83.82 82.42 79.66 82.15
16 89.33 91.59 95.77 93.61 96.94 96.47 84.42 92.32 92.9 95.06 96.41 96.34

OA 87.98
± 2.34

90.93
± 1.76

90.84
± 2.34

91.28
± 1.89

92.62
± 1.37

92.67
± 1.4

86
± 2.49

89.04
± 1.47

91.45
± 1.88

91.33
± 2.16

91.79
± 1.82

92.15
± 1.61

AA 92.59
± 1.35

94.43
± 1.2

94.43
± 1.61

94.75
± 1.28

95.6
± 0.95

95.79
± 1.08

91.18
± 1.37

93.84
± 0.74

95.13
± 1.13

95.54
± 0.96

95.22
± 1.15

95.58
± 1.18

Kappa 0.87
± 0.03

0.90
± 0.02

0.90
± 0.03

0.90
± 0.02

0.92
± 0.02

0.92
± 0.02

0.84
± 0.03

0.88
± 0.02

0.91
± 0.02

0.90
± 0.02

0.91
± 0.02

0.91
± 0.02
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Table 8. Classification performance of the GIAFSL, RPCL, SSRN, DCRN, WCPN-CL, and WCPN
methods on the SA dataset with noise rates of 40% and 60%.

Class
Noise Rate = 40% Noise Rate = 60%

GIAFSL RPCL SSRN DCRN WCPN-CL WCPN GIAFSL RPCL SSRN DCRN WCPN-CL WCPN

1 98.17 98.31 98.84 99.6 99.34 98.84 95.78 93.41 98.32 99.44 98.82 99.5
2 96.17 99.04 99.2 99.52 99.11 98.4 97.82 97.02 99.14 99.54 99.47 99.2
3 87.84 90.59 93.64 92.57 90.67 93.27 85.78 87.52 87.5 89.64 88.24 89.1
4 99.6 99.34 99.68 99.53 99.52 99.69 99.42 99.01 99.78 99.62 99.59 99.6
5 91.93 91.28 94.61 95.72 94.07 92.96 91.37 90.62 93.49 94.9 93.92 94.52
6 99.27 98.81 99.46 99.59 99.31 99.3 99.14 98.13 98.98 99.75 99.42 99.29
7 99.06 98.46 99.14 98.36 97.64 93.88 99.5 98.24 99.49 98.9 99.64 97.42
8 68.73 68.29 78.36 74.62 80.71 80.76 70.88 65.68 73.18 74.84 75.13 76.1
9 97.72 99.71 99.53 99.78 99.39 99.56 98.17 97.34 99.66 99.5 99.08 99.53

10 75.35 77.58 89 91.02 89.47 90.97 78.17 69.11 85.62 89.74 85.41 87.54
11 97.59 97.37 99.53 99.46 99.06 99.01 96.58 92.8 98.65 98.76 99.08 99.29
12 99.59 99.31 99.67 99.43 99.84 99.33 99 95.85 99.01 99.32 98.85 99.83
13 99.31 98.91 99.7 99.6 99.59 98.99 99.09 98.88 99.42 99.86 99.45 99.77
14 97.62 97.19 98.85 99.59 99.34 98.78 97.42 96.05 98.78 99.3 98.89 98.19
15 74.12 69.57 81.9 81.92 79.01 78.14 67.21 63.35 81.09 81.59 79.35 81.62
16 87.65 89.71 95.99 95.97 96.2 96.8 86.25 84.61 94.66 94 91.63 93.75

OA 86.42
± 1.24

86.31
± 1.61

91.45
± 1.77

90.85
± 2.23

91.34
± 1.75

91.05
± 2.66

86
± 2.41

83.2
± 1.25

89.67
± 2.69

90.56
± 2.17

89.8
± 3.41

90.5
± 2.4

AA 91.86
± 1.35

92.09
± 0.89

95.45
± 1.09

95.39
± 1.24

95.14
± 0.92

94.92
± 1.82

91.35
± 1.66

89.23
± 1.11

94.17
± 2.1

94.92
± 1.32

94.12
± 2.55

94.64
± 1.71

Kappa 0.85
± 0.01

0.85
± 0.02

0.91
± 0.02

0.90
± 0.02

0.90
± 0.02

0.90
± 0.03

0.84
± 0.03

0.81
± 0.01

0.89
± 0.03

0.90
± 0.02

0.89
± 0.04

0.89
± 0.03

Table 9. Classification performance of the GIAFSL, RPCL, SSRN, DCRN, WCPN-CL, and WCPN
methods on the PU dataset with noise rates of 0% and 20%

Class
Noise Rate = 0% Noise Rate = 20%

GIAFSL RPCL SSRN DCRN WCPN-CL WCPN GIAFSL RPCL SSRN DCRN WCPN-CL WCPN

1 79.88 85.4 91.51 89.92 88.59 86.82 73.06 80.5 87.77 87.93 88.94 89.81
2 87.7 79.99 79.69 78.35 81.44 82.57 80.18 77.57 83.57 80.54 83.49 86.39
3 56.24 65.54 76.4 76.1 79.37 80.6 55.98 67.09 78.51 77.13 82.35 77.79
4 93.11 91.89 92 92.27 86.95 85.72 89.6 91.45 89.64 90.76 87.21 88.17
5 98.82 99.39 98.58 98.69 99.19 99.09 94.17 98.44 99.71 99.19 99.6 99.72
6 74.88 82.68 75.26 84.07 82.13 81.92 62.21 70.7 77.91 83.84 79.47 79.64
7 75.46 84.29 92.83 89.15 92.12 93.18 74.26 79.69 94.31 94.62 93 91.09
8 72.3 83.47 92.08 89.68 84.55 90.84 63.01 68.58 86.28 88.82 88.43 87.84
9 97.28 97.75 96.85 95.68 96.66 96.5 96.6 98.12 96.13 95.99 98.15 96.82

OA 82.68
± 2.88

82.72
± 4.26

84.17
± 4.75

84.03
± 4.23

84.42
± 4.5

85.15
± 4.07

75.59
± 4.24

78.1
± 3.85

85.09
± 3.19

84.71
± 3.95

85.62
± 4.11

86.75
± 3.56

AA 81.74
± 1.21

85.6
± 3.11

88.36
± 2.2

88.21
± 2.63

87.89
± 2.88

88.58
± 2.42

76.56
± 1.74

81.35
± 2.35

88.2
± 2.84

88.76
± 2.59

88.96
± 2.57

88.58
± 3.12

Kappa 0.77
± 0.03

0.78
± 0.05

0.80
± 0.05

0.80
± 0.05

0.80
± 0.05

0.81
± 0.05

0.69
± 0.05

0.72
± 0.04

0.81
± 0.04

0.80
± 0.05

0.81
± 0.05

0.83
± 0.04

Table 10. Classification performance of the GIAFSL, RPCL, SSRN, DCRN, WCPN-CL, and WCPN
methods on the PU dataset with noise rates of 40% and 60%

Class
Noise Rate = 40% Noise Rate = 60%

GIAFSL RPCL SSRN DCRN WCPN-CL WCPN GIAFSL RPCL SSRN DCRN WCPN-CL WCPN

1 71.69 75.13 89.23 87.88 90.12 89.66 70.57 68.25 86.31 86.99 87.96 86.45
2 84.64 76.15 81.7 79.39 83.32 82.93 82.04 77.54 77.95 79.36 79.47 80.5
3 60.3 56.93 74.22 73.23 77.75 78.25 52.94 55.66 75.45 68.22 79.38 74.28
4 89.24 89.9 92.14 91.59 91.38 89.67 89.61 73.44 90.67 92.68 90.29 90.05
5 95.53 95.49 99.49 98.97 99.18 99.81 95.77 88.11 99.73 97.68 99.59 99.45
6 59.53 64.48 79.77 85.52 77.8 81.35 54.43 60.23 75.46 77.52 78.58 81.66
7 81.15 79.9 95.08 91.68 95.74 93.41 79.83 78.74 92.32 90.69 92.95 92.58
8 61.58 61.17 86.38 86.5 86.24 89.43 61.82 46.6 81.64 81.14 82.71 83.05
9 96.97 96.86 97.1 94.7 97.81 97.87 96.68 93.97 97.41 94.43 98.05 98.81

OA 77.34
± 3.48

74.55
± 3.79

84.74
± 3.23

83.94
± 4.83

85.48
± 3.47

85.78
± 3.89

75.08
± 2.88

70.77
± 2.72

81.62
± 4.21

82.14
± 5.52

83.19
± 4.81

83.53
± 4.09

AA 77.85
± 1.61

77.34
± 1.31

88.35
± 1.75

87.72
± 2.14

88.81
± 1.82

89.15
± 1.83

75.97
± 1.54

71.39
± 2.42

86.33
± 2.74

85.41
± 1.99

87.67
± 2.08

87.43
± 1.77

Kappa 0.70
± 0.04

0.67
± 0.04

0.80
± 0.04

0.80
± 0.05

0.81
± 0.04

0.82
± 0.05

0.68
± 0.03

0.62
± 0.03

0.77
± 0.05

0.77
± 0.06

0.79
± 0.05

0.79
± 0.05
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4.4. Classification Visualization

In order to further demonstrate the noise immunity and the accuracy of the proposed
method in the presence of increasing noise, we show the classification maps and 2D feature
visualization of the different methods on the IP, SA, and PU datasets. However, due to
space constraints, we only show RPCL [13] which is the latest few-shot method for HSI
classification, and our WCPN-CL and WCPN methods. Figures 9–11 are the classification
maps, and Figures 12–14 are the 2D feature visualizations. The results in these figures also
confirm the advantages of the proposed method.

Figure 9 shows the classification map on the IP dataset. For the different methods in
the presence of a gradually increasing noise rate, the degree of confusion of the classifi-
cation also gradually increases. However, it can be clearly seen that RPCL is much more
disorganized in the presence of noise than our WPCN-CL and WCPN methods. The WCPN
achieves a good noise-resistant classification for both class 7 (Grass-pasture-mowed) on the
left and class 8 (Hay-windrowed) on the right. Figure 12 shows the 2D feature visualization
on the IP dataset. The clustering of each class keeps getting worse with the increase in
noise, and our WPCN method shows significant advantages when noise rate is greater than
40%. Figure 10 shows the classification map on the SA dataset, where the WCPN achieves a
better classification for the two classes located at the top left (Brocoli-green-weeds 2), even
similar to the noiseless case. Figure 13 shows the 2D feature visualization on the SA dataset;
the clustering of each class does not differ much when the noise rate increases, but there is
an indistinguishable case in RPCL in orange color (class 8) and blue color (class 15), which
coincides with the results in Tables 7 and 8. Figure 11 shows the classification map on the
PU dataset, where the WCPN achieves a better classification for class 8 (Bricks) located in
the center. Figure 14 shows the 2D feature visualization on PU dataset, where the class 8 in
orange color also gets better 2D clustering.

Ip_orgin

RPCL(0%) RPCL(20%) RPCL(40%) RPCL(60%)

WCPN-CL(0%) WCPN-CL(20%) WCPN-CL(40%) WCPN-CL(60%)

WCPN(0%) WCPN(20%) WCPN(40%) WCPN(60%)

Figure 9. Classification map on the IP dataset. RPCL (0%), 74.64%; RPCL (20%), 66.37%; RPCL (40%),
58.2%; RPCL (60%), 49.74%; WCPN-CL (0%), 77.22%; WCPN-CL (20%), 76.92%; WCPN-CL (40%),
76.35%; WCPN-CL (60%), 73.97%; WCPN (0%), 77.4%; WCPN (20%), 76.96%; WCPN (40%), 76.45%;
WCPN (60%), 75.2%.
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Sa_
o

RPCL(0%)

WCPN-CL

WCPN

RPCL(20%) RPCL(40%) RPCL(60%)

WCPN-CL(0%) WCPN-CL(20%) WCPN-CL(40%) WCPN-CL(60%)

WCPN(0%) WCPN(20%) WCPN(40%) WCPN(60%)

Figure 10. Classification map on the SA dataset. RPCL (0%), 90.93%; RPCL (20%), 89.04%; RPCL
(40%), 86.31%; RPCL (60%), 83.2%; WCPN-CL (0%), 92.62%; WCPN-CL (20%), 91.79%; WCPN-CL
(40%), 91.34%; WCPN-CL (60%), 89.8%; WCPN (0%), 92.67%; WCPN (20%), 92.39%; WCPN (40%),
91.39%; WCPN (60%), 90.5%.

Up_
o

RPCL(0%) RPCL(20%) RPCL(40%) RPCL(60%)

WCPN-CL(0%) WCPN-CL(20%) WCPN-CL(40%) WCPN-CL(60%)

WCPN(0%) WCPN(20%) WCPN(40%) WCPN(60%)

Figure 11. Classification map on the PU dataset. RPCL (0%), 82.72%; RPCL (20%), 78.1%; RPCL (40%),
74.55%; RPCL (60%), 70.77%; WCPN-CL (0%), 84.42%; WCPN-CL (20%), 85.62%; WCPN-CL (40%),
85.48%; WCPN-CL (60%), 83.19%; WCPN (0%), 85.15%; WCPN (20%), 86.75%; WCPN (40%), 85.78%;
WCPN (60%), 83.53%.
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sa

RPCL(0%) RPCL(20%) RPCL(40%) RPCL(60%)

WCPN-CL(0%) WCPN-CL(20%) WCPN-CL(40%) WCPN-CL(60%)

WCPN(0%) WCPN(20%) WPCN(40%) WPCN(60%)

Figure 12. 2-D feature visualization on IP.

sa

RPCL(0%) RPCL(20%) RPCL(40%) RPCL(60%)

WCPN-CL(0%) WCPN-CL(20%) WCPN-CL(40%) WCPN-CL(60%)

WCPN(0%) WCPN(20%) WPCN(40%) WPCN(60%)

Figure 13. 2-D feature visualization on SA.
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sa

RPCL(0%) RPCL(20%) RPCL(40%) RPCL(60%)

WCPN-CL(0%) WCPN-CL(20%) WCPN-CL(40%) WCPN-CL(60%)

WCPN(0%) WCPN(20%) WPCN(40%) WPCN(60%)

Figure 14. 2-D feature visualization on PU.

4.5. Sensitive Analysis of Parameters

As shown in Equation (11) above, there is a hyperparameter β in the weighted con-
trastive regularization function, which indicates how tolerant the regularization function is
to the noise weights below the mean. In our experiments, we set β ∈ [0, 0.3], and changed
it with a step size of 0.05 to see how sensitive the proposed method is to the change of β.

Figure 15 shows the classification results of the WCPN when changing the value of β
under different noise rates. From the sub-figures (a–c), it can be seen that the sensitivity
of the proposed method to the hyperparameter increases when the noise rate is greater
than 40% on different datasets. When the noise rate is less than 20%, the change in the
hyperparameter β does not have a significant impact on the proposed method. The reasons
are that when β = 0, the criteria for determining whether it is a clean or a noisy positive
sample are strict, and when β is larger, the criteria are more lenient. When the noise rate is
large, there are many noisy samples, and a smaller β will filter more noisy samples and
improve the credibility of positive samples. There will be better classification performance.
Meanwhile, when the noise rate is small, there are fewer noisy samples, and either harsh or
lenient criteria will have less impact on the classification performance.
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(a) (c)(b)

Figure 15. WCPN classification results for β at different noise rates: (a) IP, (b) PU, and (c) SA.

5. Discussion

In this study, we propose WPCN to address the challenges posed by noisy labels in
few-shot hyperspectral image classification. While our method demonstrates promising per-
formance in mitigating the impact of noisy labels, several points warrant further discussion.

Firstly, in our experiments, noise was introduced by swapping the labels of part of
the data in one dataset with those of another part. This method simulates label errors but
does not necessarily reflect the arbitrary nature of real-world label noise, which might not
be readily identifiable. Future work could explore more realistic noise models to better
simulate the variability and complexity of label errors encountered in practical scenarios.
Secondly, we observed that WPCN shows higher noise resistance in datasets that are
relatively easy to classify. However, its effectiveness is less pronounced in more challenging
datasets. This suggests that our method may need further refinement to handle complex
data more robustly. Finally, incorporating contrastive learning into the WPCN results in
increased training time. While contrastive learning enhances feature representation, its
computational cost is non-trivial. Future research should address how to optimize the
training process to reduce computational expenses while maintaining or improving the
method’s efficacy.

6. Conclusions

In this paper, we propose a WCPN to address the challenges posed by noisy labels
in few-shot HSI classification. By utilizing the similarity between the samples from same
classes to obtain the sample weights and applying it to the prototype calculation of support
and query sets, the WCPN demonstrates some self-calibration ability in the presence of
noisy samples. In addition, we introduce a weighted contrastive regularization function
to enhance the degree of data aggregation and improve the differentiation of prototypes.
Experiments on artificially generated noisy labels on several HSI datasets are conducted,
and the results show that the WCPN has excellent performance in mitigating the impact of
noisy labels. This shows that for HSI classification, the proposed method can better adapt
to noisy environments where there are small amounts of labeled data available. But it is
worth noting that the proposed method will cost more time because of the computation of
the weights of the samples.
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