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Abstract: Advanced receiver autonomous integrity monitoring (ARAIM) is an integrity technique for
a global navigation satellite system (GNSS), centered on the multiple hypothesis solution separation
(MHSS) test, which assesses the consistency between a subset and the all-in-view solution. Successful
fault exclusion (FE) in ARAIM relies on identifying exclusion candidates that ensure no faults among
the remaining satellites, a process requiring computationally expensive MHSS tests. The existing
methods guide exclusion candidate searches based on the size of the normalized solution separation
statistics, i.e., the normalized absolute difference between the subset solution and the all-in-view
solution. However, in scenarios involving more than one satellite fault, these statistics can become
unreliable due to fault diversity and interactions, perhaps misleading the FE process and causing
its failure. To overcome this issue, our study proposes employing sparse estimation to simply
identify satellite faults in one go, leveraging the sparsity of faulty satellites compared to the total
number of observations in civil aviation GNSSs. Unlike the existing methods, which infer the fault
likelihood indirectly through solution separation statistics, our approach represents an improvement
that directly indicates potential exclusion candidates. Our experiments demonstrate that this method
is fast and accurate. As a fundamentally different approach, it serves as a valuable complement or an
alternative to the existing methods, enhancing the success and efficiency of the ARAIM FE process.

Keywords: GNSS; integrity; ARAIM; fault exclusion; sparse estimation

1. Introduction

With the increasing demand for global navigation satellite system (GNSS) applications
in life safety, integrity research has garnered significant attention. Receiver autonomous
integrity monitoring (RAIM), a classic integrity technology, is widely adopted in civil avia-
tion due to its fast alerting and independence from additional equipment [1]. The evolution
of GNSS constellations motivates the development of advanced RAIM (ARAIM) to harness
multi-constellation and dual-frequency signals for vertical services [2]. The EU-US Cooper-
ative Working Group-C (WG-C) has led the effort to develop ARAIM [3] and formulated
the reference ARAIM algorithm description document (ADD) [4]. The core of ARAIM
as described in the ADD is the multiple hypothesis solution separation (MHSS) test. It
assumes possible satellite faults, known as fault modes, and compares the consistency
between the subset (i.e., the remaining satellites after removing a fault mode) and the
all-in-view (i.e., incorporating all the satellites used) positioning solution. ARAIM then
calculates the protection level (PL) based on the MHSS results, providing a reliability
measure for the declared fault-free positioning solution. Overall, the ARAIM algorithm
consists of three steps [5]: first, forming a list of the fault modes monitored; second, per-
forming fault detection and exclusion (FDE) via solution separation; and finally, generating
integrity indicators.

ARAIM is still in the experimental testing stage, with room for improvement in
its baseline algorithm [6]. This paper focuses on the second step of the ARAIM baseline
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algorithm—the FDE process—and specifically on the FE operation. The crux of ARAIM’s FE
operation is searching for an exclusion candidate, which, when removed, produces a fault-
free subset of satellites that pass the MHSS test [4,7]. Each candidate verification involves
a complete MHSS test, equivalent to the complexity of one fault detection (FD), which is
computationally expensive [8]. Consequently, a prioritized search guide is necessary, as we
cannot rely on luck to find an exclusion candidate among the many fault modes. Otherwise,
the computational load from blindly searching may prevent users from finding a candidate
within the required time, leading to FE failure [9]. Even if an exclusion candidate is found,
this may be down to chance, and it may consume significant computational resources.
Therefore, providing the search order for the exclusion candidates is crucial for successful
and fast FE, which is the research objective of this paper.

There are two existing methods for determining the priority order for the exclusion
candidate search. The first method considers the severity of the subset solution separation
statistic (i.e., the absolute difference between the subset solution and the all-in-view solu-
tion) exceeding the corresponding detection threshold [10]. This statistic is normalized by
dividing it by the detection thresholds to eliminate the impact of different subsets’ detection
thresholds. The greater the exceedance, the higher the likelihood of the fault mode being
real, thus prioritizing it for verification. This is an intuitive approach. The second method
determines the verification priority order based on the chi-square statistic of the subset’s
pseudorange residuals [4]. The smaller the chi-square statistic of the pseudorange residuals
for a subset, the more likely the subset is to be free of faults [11], making its corresponding
fault mode the likely exclusion candidate. This method is recommended by many stud-
ies [6,7,12]. Indeed, literature [13] shows that these two methods are essentially the same
because the chi-square statistic of the subset in the second method is inversely proportional
to the normalized solution separation statistic in the first method.

However, we recognize that the existing methods have a shortcoming: using the
subset’s solution separation statistic as the basis for determining the exclusion candidate
order is effective for single-satellite faults but not for multi-satellite faults. In multi-fault
conditions, due to the diversity of the faults and their interactions, the solution separation
statistic for the actual fault may not be significant, and it could be small or even the smallest
value. Specifying the order according to the existing method and searching for exclusion
candidates through MHSS tests can lead to a waste of resources and may even fail to identify
the exclusion candidate. This situation means that the current method based on the solution
separation statistic can mislead the search for exclusion candidates. Relying solely on this
method is insufficient and not robust, which not uncommonly hinders the FE process.

To achieve a faster and more successful FE process and to address the potential for the
search for exclusion candidates to be misled in the presence of multi-satellite faults using
the current methods, we propose a new approach to aid in finding exclusion candidates.
This is the main contribution of this paper. Unlike existing methods that infer the fault
likelihood indirectly through solution separation statistics, our proposed method quickly
and directly estimates which satellites are faulty in one go. Considering the sparsity of
faulted pseudoranges compared to the total pseudorange observations in civil aviation
applications and leveraging the consistency of fault-free pseudoranges, this study employs
sparse estimation to directly identify faults. Related experiments demonstrate that this
method is fast, efficient, and accurate. As a fundamentally different approach, our method
is a valuable substitution for or complement to existing methods, facilitating smooth
execution of the FE process.

This paper is organized as follows. Section 2 introduces the fundamentals of ARAIM
and related works. Section 3 presents the motivation behind this study, detailing why
solution separation statistics are unsuitable for searching for exclusion candidates in cases
with multiple satellite faults. Section 4 describes the proposed method, which uses sparse
estimation to directly identify potential faults. Section 5 evaluates the effectiveness and
efficiency of this approach through experiments. Finally, this paper concludes with the
key findings.
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2. Related Works

This section provides the groundwork for our research and consists of two main subsec-
tions. The first subsection briefly outlines the fundamentals of ARAIM, including the MHSS
test and the FE process. The second subsection presents the existing methods for determining
the search order for exclusion candidates, emphasizing their essential sameness.

2.1. ARAIM Fundamentals
2.1.1. The MHSS Test

ARAIM technology for civil aviation targets the integrity of GNSS standard point
positioning (SPP). The classic linearization process for SPP can be represented as [14]

y=Gx+e (@)

where

ey € RN is the pseudorange difference vector (the difference between the measured
pseudorange and the pseudorange generated by the position estimate). For ARAIM,
pseudoranges are typically obtained through ionosphere-free combinations of carrier-
smoothed processing.

e G € RNarx(3+Neonst) js the observation geometry matrix indicating the geometric
relationship between satellites and the receiver. Each row represents the linearized
line-of-sight direction from the satellite to the receiver.

o x & RGHNanst) is the state difference vector (the difference between the previous state
estimate and the current state estimate), including the receiver’s position and clock bias.

e ¢ & RN is the pseudorange error vector, which includes various errors mapped to the
pseudorange, such as the satellite clock; ephemeris; ionospheric delay; tropospheric,
multipath errors; and receiver noise errors [15]. e is modeled as a Gaussian distribution,
and even if it does not conform perfectly, a Gaussian distribution can always be found
to overbound it [16,17]. The covariance matrix of e is a diagonal matrix C, where
the diagonal elements represent the square of user equivalent range errors (UEREs),
indicating the nominal errors of each pseudorange.

e Nt is the number of satellites, and N5 is the number of constellations. Unless oth-
erwise noted, the vectors described in this paper are column vectors.

For SPP, the above model, Equation (1), incorporates a fault bias vector b € RNsat o
reflect malfunctions:
y=Gx+e+b (2)

The basic principle of solution separation is that the difference between the positioning
solution using all satellites and the solution after removing the faulty satellite(s) should be
significant. Accordingly, ARAIM first assumes Ny, different faults, i.e., fault modes, in
carrying out the solution separation test. These fault modes form a monitor list labeled from
1to N4 The monitored fault modes must be numerous enough to ensure their combined
a priori probability exceeds a predetermined threshold. Additionally, an important concept
corresponding to fault modes is the “subset”, which refers to the set of remaining satellites
after removing the fault mode(s) from the all-in-view satellites (i.e., all the satellites used
for positioning).

The second step of ARAIM is to perform solution separation for each fault mode in
the monitor list. For fault mode k, using the weighted least squares (WLSQ) method to
solve Equation (1), the positioning solution for subset k, £(X), can be obtained:

20 — S(k)y ()

where
s = (gTwk G)-1gTwk) (4)
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In the above, Equations (3) and (4), superscript (k) represents the value corresponding
to the removal of fault mode k. Specifically, superscript (0) represents the all-in-view value.
Accordingly, £() is the all-in-view positioning solution. W(©)is the weight matrix used
in WLSQ to solve £(9), which is the inverse of the covariance matrix C and is a diagonal
matrix. W) is the weight matrix for solving £(X), obtained by setting the diagonal elements
corresponding to the faulty satellites of fault mode k in W(%) to zero.

Both the subset solution £) and the all-in-view solution £(©) are vectors, where the
first three elements are the position solutions in three directions. The ADD denotes these
using subscript q: ¢ = 1,2 for the two horizontal directions, and g = 3 for the vertical
direction. If

) < i

(5)

For all the fault modes monitored and all three directions, the measurements are
consistent, and no malfunction is detected. The detection threshold for the kth subset is
given by

k
T, = Ky goil) (6)

where Ky, ; is a coefficient related to the probability of a false alarm and the number of fault

modes Nyg,;;, which does not change in the current epoch; Us(f, 27 is the standard deviation

model that J?E,O) — J?t(]k) should follow. A description of Equations (3)—-(6) and the relevant
parameters is detailed in the ADD [4].

If |3?,§k) - 32,50) | > Tq(k) occurs, ARAIM detects a fault, and FE can be performed. The pro-
cess for FE is introduced in Section 2.1.2.

After completing the FDE step, ARAIM finally generates integrity indicators for the
fault-free solution, either when no fault is detected or after successfully excluding faults.
The integrity indicator can be the positioning solution’s protection level or integrity risk.

2.1.2. The FE Process

The prerequisite for fault exclusion to be functional is to find at least one subset that is
considered fault-free to provide a reliable positioning solution. Naturally, this fault-free
subset must pass the MHSS test. The fault mode corresponding to this subset is defined as
an “exclusion candidate”, meaning that this fault mode can be selected as the exclusion
target [4]. An exclusion candidate j must satisfy the following condition for all monitored
fault modes k: ‘ ‘

‘ﬁf(ik) _ J?g]rk) | < T[;]rk) (7)
where x,(/ ) is the subset solution after removing faults j and k, and T;] ) is the correspond-
ing detection threshold.

Verifying whether a fault mode is an exclusion candidate requires a complete MHSS
test, which is computationally expensive. It is important to note that the MHSS test in FD,
as shown in Equation (5), and the MHSS test in FE, as shown in Equation (7), are two distinct
processes. The former checks for faults in the all-in-view satellites, while the latter verifies
whether the remaining satellites after exclusion are fault-free. Ideally, the exclusion process
requires just one MHSS test, approximately equivalent to the computational load of FD.
However, FE often requires multiple MHSS tests to find a fault-free subset, as identifying an
exclusion candidate on the first attempt is quite challenging. As a result, the computational
burden of FE is typically several times higher than that of FD, making the FE process more
resource-intensive.

Given that the computational load of a one-time MHSS test is substantial [8], it is
therefore impractical to perform an MHSS test for each fault mode in the monitoring list
one by one or randomly without any strategy. Otherwise, the possible consequence is that
ARAIM may not find an exclusion candidate within the required time, and the exclusion
process will fail. Even if an exclusion candidate is discovered by chance, such a laborious
process is detrimental to the real-time performance of ARAIM. In response, the ARAIM
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user algorithm must set a priority order to verify whether a fault mode is an exclusion
candidate. This is our study’s objective, which will be explored in depth later.

The exclusion candidates may not be unique. Exclusion candidate j is not necessarily
the actual fault as long as the subset solution’s integrity risk, including the wrong exclusion
risk, is correctly calculated because the MHSS test has already confirmed its subset is
fault-free. Thus, a simple and common approach is to immediately exclude a candidate
once it is found according to the verification order without continuing to search for other
candidates, aiming to reduce the computational complexity of ARAIM’s fault exclusion
process. Furthermore, since the exclusion candidate is obtained based on a prioritized order
guided by a specific method, the first candidate found is likely the actual fault among all
possible exclusion candidates.

2.2. Existing Methods for Setting the Search Order

To reduce the computational load of FE and increase its success, the ARAIM user
algorithm must set a priority order for searching for exclusion candidates. Currently, there
are two methods.

(1) The first method considers the severity of the fault mode exceeding its detection
threshold. The greater the ratio of the exceedance to the threshold, the higher the likelihood
of the fault mode being an exclusion candidate, and the higher its verification priority [10].
This means that the method is based on

| 2(0) fg]k”

Xq
(k)
T

(®)

where dividing by threshold Ték) eliminates the impact of the different thresholds for
(k)

different subsets. As shown in Equation (6), Tq(k) is proportional to 0555, so the above
criterion is equivalent to

Uss,q
This method essentially examines the ratio of the actual solution separation statistic to
the nominal solution separation standard deviation. Accordingly, it is referred to as the
normalized solution separation statistic method.
(2) The other method prioritizes based on the chi-square statistic of the pseudorange
residuals for each satellite subset [13]. The chi-square statistic for subset k is calculated as

2=y" (W(k) _ w(k)G(GTW(k)G)*lGTW(k))y (10)

This method is inspired by the traditional RAIM approach of examining the pseudorange
residuals: subsets with lower x values are more likely to be fault-free, and their corresponding
fault modes should be given higher priority for verification as exclusion candidates.

Finally, it is essential to emphasize that Appendix F in Ref. [13] has confirmed that
the chi-square statistic size for subset k directly reflects the size of k’s normalized solution
separation statistic. Indeed, the two existing methods for quickly delineating the search
order are the same, with both grounded in the solution separation statistic.

3. Motivation: Challenges in Solution-Separation-Statistic-Based Searches

Sections 3 and 4 are the core of our work. This section proves that the solution
separation statistic is not a good criterion for guiding the exclusion candidate search under
multi-satellite failures due to the uncertainties in the satellite geometry and faults. More
specifically, when more than one satellite malfunctions, the actual fault’s corresponding
solution separation statistic—i.e., the absolute difference between its subset solution and
the all-in-view solution, influenced by §%), §(), and b,—may not be the largest, may not be
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significant, and may even be below the detection threshold. In these cases, it is challenging
to find exclusion candidates using the existing methods.
Before an in-depth analysis, we will define some concepts for clarity.

*  Single-satellite fault mode: The assumption that only one satellite has a fault.

*  Dual-satellite fault mode: The assumption that two satellites have faults simultaneously.

¢ Multi-satellite fault mode: The assumption that more than one satellite has faults
simultaneously. A dual-satellite fault mode is a type of multi-satellite fault mode.

*  Single-satellite real fault: A real occurrence of only one satellite having a fault.

*  Dual-satellite real fault: A real occurrence of two satellites having faults simultaneously.

¢ Multi-satellite real fault mode: A real occurrence of more than one satellite having
faults simultaneously. A dual-satellite real fault is a type of multi-satellite real fault.

Furthermore, the solution separation statistics discussed in this section are not normalized,
as Us(sk, ?4 is influenced by the error model and introduces significant difficulty into the analysis.
Fortunately, the solution separation statistic is the decisive factor affecting the normalized
solution separation statistic, and lenient qualitative conclusions about it can be extended to
the normalized solution separation statistic. For instance, if the solution separation statistic
is large, its normalized value is usually also large; if the solution separation statistic is close
to zero, its normalized value is similarly close to zero.

According to Equation (3), £(?) — £() can be obtained by
20 — k) — (5(0) _ gkl (11)
Substituting Equation (4) into the above, Equation (11), we have

20 — 20 = (50 _ g0 Gx 1 (5© — 5K)) (b +e)
= 50Gx - s®Gx+ (5O — 80 (b +¢)

=x—x+ (8O —s®)(b+e) (12)
= (8O —s®) (b +e)
= Sk(b +e)

where we define S0 — ) ag Sk
S0 _ gk — gk (13)

It is not hard to see that S has the two following significant characteristics.

(1)  All the columns in S are zero vectors except for those corresponding to the faulty
satellite, indicated by fault mode k.
(2)  The non-zero column vectors in S¥ are those in $(°). For clarity, we will give two examples.

Example 1. Assume a single-satellite fault mode m, where the Ath satellite fails. Accordingly, S™,
ie., SO — 8(m) has zero elements except for the Ath column. The Ath column in S™ is the same as
S(0)’s Ath column. Then, S™ is expressed as

s"=100...0,5'",0...0 (14)
Ath

where 0 and Sl(f) are both column vectors of Neonst + 3 dimensions; Sff) is the Ath column
vector of $(0), located in the Ath column of S™.

Example 2. Assume a dual-satellite fault mode n, where the Ath and Bth satellites simultaneously
fail. Accordingly, S", i.e., SO — 8("), has zero elements except for the Ath and Bth columns.
The Ath and Bth columns in S™ are the same as those in S0, Then, S" is expressed as
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s"=100...0,5,0...0,5,0...0] (15)
Aith B%h

where Sgo) is the Bth column vector of S©) located in the Bth column of S".

These two characteristics can be explained by the physical principles of solution
separation: in $%), the corresponding column is zero, meaning the pseudorange of the
corresponding satellite does not participate in positioning. Therefore, the distinction
between %) and $() is only in the former’s corresponding column becoming a zero vector.
Mathematically, these characteristics are determined by the difference between W) and
W in $®and $(© shown in Equation (4). Detailed proofs can be found in reference [18].
Additionally, they are demonstrated in the generation functions of $*) and (%) in Stanford
University’s ARAIM simulation software, MATLAB Algorithm Availability Simulation
Tool (MASST) [19].

Next, without a loss of generality, we use the vertical direction (7 = 3) to show
that variation in the solution separation statistic, i.e., |3?§0) — fgk) |, in cases of single- and
dual-satellite real faults.

(1) When the real fault is a single-satellite fault

Given only one satellite failure, the fault bias vector b can be represented as

b=10...0,by,0...0]7 (16)

where b, is the fault bias of a specific satellite’s pseudorange, which can be either positive
or negative and typically has a magnitude larger than the nominal error.
For vertical direction g = 3 and fault mode m, it is known from Equation (12) that

20— 2" — 2 (b +e) (17)
where S? is the third row of §™, that is,

sy =1[0...0,5),0...0] (18)
J

Ath

Clearly, Sg)}‘ is the third element of 51(4?), i.e., the element in the third row and the Ath

column of (). Equations (17) and (18) describe the results for a single-satellite fault mode.
Subsequently, a dual-satellite fault mode is tested under the condition that a single real
fault is present.

For the dual-satellite fault mode 7, it is known that

O ((F™) (19)
Sy =10...0,5,},0...0,553,0...0] (20)
A\Eh Bit/h

where Sé(,)L)? is the third element of 51(30), i.e., the element in the third row and the Bth column

of §(0),
Then, e is represented as

e=le;...eq...ep...0;i...en,,]" (21)

where ¢; is the ith element of e. Note that the absolute value of ¢; is much smaller than that
of fault b,,,; since the former represents nominal errors.
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Once we know S%', S5, b, and e and that b,,,; is much larger than ¢;, the following
findings can easily be reached.

e For the single-satellite fault mode m: |5f§0) - fém)| is maximized to ISé?A(bml +ey)]
(0) (0)

when S5, and by, are at the same location in their respective vectors, i.e.,, when S, )
and b, are both the Ath element. Otherwise, i.e., if Séoj,‘ and b, are at different

locations, |J?§0) - £§m>| becomes a small value, |S§0216 Al
This indicates that the solution separation statistic for a single-satellite fault mode is
large or maximized when it is precisely the real single-satellite fault.

¢  For the dual-satellite fault mode n: |5€§0) — &én) | is generally maximized when b,,,; is the
Ath or Bth element in b, reaching |S§O[)‘(bm1 +eq)+ Sg(,);eg| or \SéOAeA + Sé% (brear +€B)|-

Otherwise, |5c§0) - &gn)| will be |S§02‘e A+ Sé(,)g;eB |, which is noticeably decreased.
This indicates that the solution separation statistic for the dual-satellite fault mode is
large or maximized when it includes the single-satellite real fault.

Given that b is much more significant than e in terms of pseudorange deviation,
we approximate (b + e) as b, which does not affect the qualitative analysis. Under this
simplification, our discussion is reduced to the locations of non-zero elements in S relative
to byeq1. Here, k is not just limited to single- or dual-satellite fault modes (m or n) but can also
be extended to more than two satellite fault modes. Consequently, the solution separation
statistic is not zero only when one of the non-zero elements in S corresponds to the non-
zero element b,,,;. In other words, only when fault mode k contains the single-satellite real

fault will |92§O) — J?ék)| be other than zero.

In summary, if the real fault is a single-satellite fault, the fault mode k with the greatest
or maximum value for ‘}2;0) - J?ék)| is likely to contain (or even be) the real fault. At this
point, we have the first key conclusion.

Conclusion 1: When a single-satellite fault occurs, the solution separation statistic
is an excellent criterion for determining the search order for exclusion candidates.

(2) When the real fault is a dual-satellite fault

However, our conclusion changes when it comes to a dual-satellite real fault.

Given two satellite failures, vector b is represented as
b=1[0...0,byea11,0...0,byeqs2,0...0]" (22)

where by, 1 and by, are the fault biases imposed on the two pseudoranges.
Let us assume that the dual-satellite fault mode # corresponds to the real fault, that is,

b=10...0,bre01,0...0,breq2,0...0] (23)
i i

SI(L?) and Sg)) in S% correspond to by, 1 and by, o, respectively; then,

~(0 s 0 0
|x§ ) - xén)| = |S:(5,21(breal,1 + eA) =+ Sé/];(breal,Z + 63)’ (24)
Unfortunately, \5@1 (breai1 +ea) + Sé?; (brea 2 + €p)| may not be large, and it might not
even exceed the detection threshold. This is because Sé% (breai1 +e4) and Sé% (brear2 +eB)

might have opposite signs, i.e., SéO,Z;(breal,l +eq)- Sgog(bmlrz +ep) < 0. Particularly, it is
noticed that b, 1 and b,,,; » could be positive or negative due to the variability in faults.

Given the results of Equation (24) and if Sé%(breﬂl,l +ey) - Sé?g(breal,z +ep) <O,

|S§OA (breain +e4) + Séog (byea1 2 + ep)| manifests in the following scenarios.
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1.  Smaller than the solution separation statistic for single-satellite fault mode: The
solution separation statistic for single-satellite fault mode where the Ath satellite malfunc-

tions is |S§%(bml,l +e4)|. For the Bth satellite malfunctioning, it is \Sg)g(breal,z +ep)|.

Both of these are likely larger than |S§(,)21 (brear1 +€4) + Sg% (brea12 +ep)|. However, ex-
cluding the Ath satellite alone or the Bth satellite alone based on the solution separation
statistics apparently does not produce a set of fault-free satellites.

2. Smaller than the solution separation statistic for multi-satellite fault mode: This
scenario refers to a multiple satellite fault involving one of the Ath or Bth satellites combined
with other satellites. For example, the solution separation statistic for dual-satellite fault

mode involving the Ath satellite and another Cth satellite is |Sgg(bml,1 +eq)+ Sé?ged,

where Sg)(): represents the Cth element of Sgo). This can be larger than |S§?)1(bmlll +ea)+

Séog (brea12 + )| However, excluding the Ath and Cth satellites based on the solution
separation statistics is inappropriate since a fault remains, that is, the Bth satellite.

3.  Below the detection threshold: |Sg(,)121 (breain +€4) + Sg% (byeqr 2 + ep)| may be close to
zero, thus falling below the detection threshold. It is important to emphasize that this
does not mean ARAIM cannot detect faults. Other fault modes monitored, such as
single-satellite fault mode where the Ath satellite malfunctions, would produce large
enough solution separation statistics to exceed the detection thresholds.

4.  Exactly zero: In the extreme situation that Séogl(bmlrl +e4) equals —Sg?g (breai2 +e),

|S§(,)12‘ (brear1 +ea) + Sé% (byea1 2 + €B)| is zero. Both scenarios 3 and 4 would pose tough
challenges for excluding the real fault, as their solution separation statistics would be
quite small.

In summary, under multiple faults, the diversity of the faults and their interactions
can cause the size of the solution separation statistic to become irregular. Therefore, we can
draw another critical conclusion.

Conclusion 2: When multiple satellites experience faults, the size of the solution sepa-
ration statistic exhibits randomness and is not a suitable criterion for determining the search
order for exclusion candidates. This conclusion is validated in Section 5 through experiments.

Conclusion 2 is the primary motivation for this study. The existing methods may not
quickly find exclusion candidates under multi-satellite faults because the real faults or
exclusion candidates may be at the end of the search order. This can misleadingly guide the
search for exclusion candidates, increasing the difficulty of fault exclusion. Additionally,
the current methods limit the exclusion candidates in the monitoring list, making ARAIM
unable to exclude real faults outside the monitored list. Although ARAIM involves integrity
and continuity for unmonitored fault modes, excluding faults that are outside of the list is
still an attractive option which can enhance ARAIM’s FDE capability.

4. Proposed Method: Yielding Possible Faults Directly through Sparse Estimation

The fundamental limitation of the existing methods lies in their inability to identify
which satellites are failures directly. Instead, they infer potential faults through the solution
separation statistic, which becomes random under multiple faults. In view of this, we
propose a different approach: directly estimating faulty satellites, i.e., identifying the
non-zero values in b.

Transcribing Equation (2), the positioning model with fault b can be expressed as

y=Gx+e+b (25)

Note a characteristic of b: in civil aviation applications, b is sparse [14,20], meaning that
most of the elements are zero because the signal propagation and reception environments in
aviation are good [21,22], the civil aviation receivers are robust, and the nominal model on
the user side is usually accurately established. Additionally, ARAIM hardly ever monitors
more than two satellite faults with independent failure causes. Based on the sparsity of b,
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sparse estimation methods can directly figure out b independently of ARAIM. Then, we
can describe in step-by-step detail how to arrive at an estimate of b.

A classical estimation method known as linear regression can be mathematically
expressed as

. 1
9:argmin§||Y—H9H§ (26)
0

where Y is the observation vector; H is the known state transition matrix; and 0 is the state
vector to be estimated.
Given the sparsity of 8, Equation (26) is regularized by an additional norm #:

A 1
6 = argmin _ | Y — HO|[3 + A[|6]] (27)
0

8]0 = #{i|6; # 0} (28)

where A is a constant known as the regularization parameter controlling the strength of
regularization, and # is the counting symbol.

However, Problem (27) is non-convex, and finding its solution requires a computa-
tionally challenging combinatorial search. Therefore, approximating it using the ¢; norm
instead of the ¢y norm to form a standard LASSO problem [23] is expected.

A .1
6:argmmEHY—HE?H%—l—/\||6||1 (29)
0

1811 = 3 16] (30)

The standard LASSO of Equation (29) may occasionally yield an imprecise solution.
In response, an improved estimation method called the reweighted-¢; LASSO algorithm
has been proposed [24]. It utilizes a diagonal weight matrix W, to enhance the sparsity and
accuracy of the estimated value 8:

A 1
9:argmmEHY—Heﬂg+A||WL9||1 (31)
0

A desirable value for Wy can strongly refine the estimation of 6. Ideally, the weight in
W, should be reciprocal of the absolute value of 8’s true magnitude, but this is unattainable
in practice, as the true value of 8 is unknown. The nature of matrix Wy, is that higher weights
encourage the estimated values to be zero, while lower weights encourage non-zero values.
The creator of the reweighted-¢; LASSO algorithm provided a general but complicated
approach to setting Wy . Fortunately, according to the SPP and ARAIM processes, a simple
and effective Wy, is apparent: the covariance matrix C of the nominal pseudorange errors.
We have
W, =C (32)

The larger the UERE of a pseudorange, the more the deviation in that pseudorange
should favor the nominal error e rather than the fault bias b. In other words, the higher the
UERE for a pseudorange, the closer the estimated value for b should be to zero. Therefore,
a covariance matrix C consisting of the square of the UERE is a suitable weight matrix.

For the specific algorithm design, the crux is to transform the estimation of b into the
standard LASSO, according to Equation (29). According to Equations (2), (31), and (32), we
can initially formulate the problem of sparsely estimating b as follows.

.1
argmin 5 ly — Gx = b3 + Al|Cb, (33)
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Equation (33) is our core model for estimating b, which is derived via reweighted-/{;
LASSO. In order to make Equation (33) exclusively comprise the unknown variable b, x is
converted into

x=(G"G)"'G"(y - b) (34)

Equation (34) can be obtained from Equation (2) using least squares, which reflects the
consistency of the fault-free pseudorange. It can also use weighted least squares. However,
to simplify the variable transformation and because the weights already constrain b, addi-
tional weighting for Equation (34) does not significantly improve the results. Therefore,
using simple least squares is appropriate.

Substituting Equation (34) into Equation (33), we have

1 Ty aT 2
arg;nmEHy—G(G G) G (y—b)—b|[ +Alcb], (35)

After performing variable replacement, Equation (35) is transformed into

arg;nin;HY—HBH%*FMe”l (36)
where -
Y = (I, ~ )y )
H=(Iy,, — H)C! (38)
0=Cb (39)
f=G(GTG) 16T (40)

and Iy, is the Nsgt X Ngq¢ identity matrix.
Equation (36) is precisely the standard LASSO problem. At this point, estimating
b becomes straightforward. We solve Equation (36) to obtain solution # and yield the
estimated bias vector b:
b=Cc"'6 (41)

Equation (36) has efficient solution methods, such as coordinate descent (CD) [25]
and the least angle regression method [26]. We choose the classical CD method for solving
LASSQO, which iteratively progresses along the coordinate axes” directions until convergence
is reached. Appendix A describes how to solve Equation (36) and illustrates that its
computational load is typically low.

In addition, there is no need for extensive tuning of the regularization parameter A.
This is because the primary focus is identifying which elements of the estimated vector b
are non-zero rather than precisely quantifying the magnitude of these non-zero values. We
have selected the commonly used value of A = 1 for simplicity, and research using sparse
estimation for GNSSs suggests that A =1 is a robust choice that can effectively ensure the
estimation accuracy [14].

As a summary, Table 1 presents the algorithm for directly estimating faults using
reweighted-/; LASSO. This algorithm is quite simple: it involves “variable substitution to
form a standard LASSO” followed by “solving the LASSO”. The proposed algorithm serves
as a solid complement to the existing normalized solution separation statistic method,
and both methods can be applied sequentially. Considering the advantages of sparse
estimation principles and the experimental results discussed in Section 5, we recommend
initially employing our method for rapid, one-time identification of the exclusion candi-
dates. If this approach fails to identify the candidates, the normalized solution separation
statistic method can then be applied. This recommendation is further explained in Section 6.
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Table 1. Fault identification for the ARAIM FE process based on reweighted-f; LASSO. The FE
process only needs to confirm whether the satellites identified in step 4 are fault-free through the

MHSS test.

Step Operation Description

1 Input parameters Input y, G, and C.

2 Formulate the standard Apply Equation (37)-(40) to form the standard LASSO

LASSO problem problem, Equation (36).
3 Solve LASSO Use the CD method to obtain an estimate of the fault
bias vector, b.
4 Output satellites Output the satellites corresponding to the non-zero

elements in b.

5. Experiments and Results

This section evaluates the performance of the proposed algorithm using both real and
simulated data. To maintain consistency with most of the domestic and international tests
and simulations, this experiment adopts a GPS—Galileo dual-constellation configuration,
referring to the Stanford University MAAST program and related literature [19,27,28] to
ensure the conservativeness of the integrity support message (ISM) parameters.

The receiver is the mosaic X5 from Septentrio, statically positioned on the roof of the
Weiqging Building at Tsinghua University. The true coordinates of the receiver’s location
in terms of Latitude, Longitude, and Altitude (LLA) are [40.0014762483°, 116.3302357350°,
84.5217 m]. The data collection window is the entire solar day of 12 January 2024, with a
time step of one minute. The specific test configuration is shown in Table 2.

Table 2. Main ISM and ARAIM system parameters. They are referenced from existing studies, and the
chosen values are both common and conservative.

Parameters Description Values
Psat,i Prior fault probability of satellite i 1 x 1075 for GPS; 1 x 10~* for
other constellations
Peonst Prior fault probability of constellation 1 x 1075 for all constellations
OURA,j The standard deviation of clock and 2.4 m for GPS satellites; 4 m for other
ephemeris errors of satellite i used for constellation satellites
integrity from ISMs
OURE,i The standard deviation of clock and 2/3 oyyra i
ephemeris errors of satellite i used for
accuracy from ISMs
brom,i Maximum nominal bias for satellite i 0.75 m for all satellites
from ISMs
PHMI Integrity budget 9.8 x 1078 for g = 3; 2 x 107 for
g=12
PFA Continuity budget allocated to disrup- 3.9 x 1076 for ¢ = 3; 9 x 1077 for
tions due to false alerts g=12
PryrEs The threshold for the risk of unmoni- 6 x 10~8
tored faults
K Number of Monte Carlo simulations 200

5.1. Estimation Performance of Our Method
5.1.1. Validation of Our Method’s Effectiveness through Real-Time Data

We first evaluate the reweighted-¢{; LASSO’s capability in identifying faults. Since
satellite failures do not frequently occur in real life, this experiment artificially introduces
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fault bias b. In b, non-zero elements signify faults, which are set to be more than ten
times the corresponding UERE. We simultaneously added 40 m and —40 m biases to two
pseudoranges, representing dual-satellite real faults. The faulty satellites correspond to the
GPS and Galileo satellites with the lowest pseudo-random noise (PRN) numbers, denoted
as GPS #1 and Galileo #1, respectively. The results suggest that our method is highly
effective in estimating the fault bias vector b.

Figure 1 shows the real-time estimation of the dual-satellite real faults. The horizontal
axis represents 1440 epochs within a 24 h window with a 1-min step size. The blue dotted
line represents the fault bias estimated by the proposed algorithm, i.e., non-zero elements
in the estimated vector b, denoted as b,,,;. The red dotted line represents the artificially set
fault bias, i.e., non-zero elements b,.,;; in b. The yellow dotted line, the UERE, shows the
nominal error of the pseudorange. From Figure 1, it is clear that our method can effectively
identify real-time faults in the two channels. The estimated results are quite accurate,
with b, consistently near b,.;;. Moreover, there were no instances of omission among the
1440 values, meaning no cases were estimated as zero.

GPS #1; byeqi = 40m

T
40 Vi o iR T 1 IR e e e e
) e g A
s0F M [ s A
IS ! —breal
=20+ ——breal
UERE
10+ —
0 I I
0 500 1000 1500
Galileo #1; by = —40m
0F - =
—breal
100 —brea |
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e-20F -
30+ —
‘ l ) k 1 ] “ Al ¢ d i
40 ilili ﬁ i w‘i:“““ “m.w gL L‘m,\‘.u;‘ bRl ik ikl u‘ Jip “u; e |
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| |
0 500 1000 1500

Epoch/min

Figure 1. Real-time estimation of dual-satellite real faults using reweighted-¢; LASSO.

We emphasize that setting the fault magnitudes to 40 m and —40 m is intended
to penalize solution-separation-statistic-based searches. As discussed in Section 3, the
existing methods struggle with dual-satellite faults, especially when the fault magnitudes
have opposite signs. The value of 40 m is a typical choice without a loss of generality,
representing the UERE ten times, which ensures that we introduce a detectable fault. Other
sufficiently large fault magnitudes (usually greater than 20 m in this experiment) would
have yielded similar results as long as the two faults had opposite signs. These changes do
not affect the conclusions.

For comparison, Figure 2 illustrates the challenges of using the existing normalized
solution separation statistic method for excluding dual-satellite faults with +40 m and
—40 m biases. Unlike our approach, which directly identifies faulty satellites, this method
infers potential faults indirectly based on the magnitude of the normalized solution separa-
tion statistics.

In Figure 2, the red dotted line represents the number of fault modes monitored by
ARAIM in the current epoch, while the blue dotted line shows the ranking of the real
fault modes sorted by the normalized solution separation statistics (i.e., the values in
Equation (9)) in descending order. For instance, in the first epoch, the red indicates 54 fault
modes being monitored by ARAIM. These fault modes are ranked from largest to smallest
according to their solution separation statistics, with the real fault ranked as 9, as shown by
the blue. This implies that the traditional method would need about nine MHSS tests to
identify the real fault. Therefore, the closer the real fault is to the top of the ranking (i.e.,
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the lower the blue dotted line is), the quicker the traditional method can exclude it. If the
real fault is ranked as one, only one MHSS test is required. Conversely, if it is ranked at the
bottom, this complicates the FE sorting process.

Typically, the real fault ranks are in the middle to the later parts of the list, averaging
at around rank 15 (with an average value of 15.46). This suggests that the FE process
may need approximately fifteen MHSS tests, equivalent to the complexity of fifteen FD
calculations, to find the exclusion candidate. Sometimes, the blue dotted line is extremely
high, even close to the red dotted line, which can mislead the FE process in identifying the
correct exclusion candidates.

80 T T

Ranking of the real fault
70 F Number of mornitored fault modes 4

60

50

40

30

20

1500

Epoch/min

Figure 2. Real fault’s ranking sorted by normalized solution separation statistics in descending order.
The situation where the blue dotted line is above the red indicates that the real fault is outside the
monitored list, and at this point, we set the rank to the possible lowest value, N¢y; + 1.

The results in Figure 2 are consistent with our analysis in Section 3, showing that
under multiple faults, normalized solution separation statistics are not a reliable basis for
guiding the search for exclusion candidates, especially when two faults with the same
magnitude but opposite signs are imposed. This can lead to the failure of FE due to the
excessive time required to find an exclusion candidate.

Furthermore, there is another situation where the existing method leads to FE failure:
the real fault is outside the monitored list, and an exclusion candidate cannot be found.
Although such FE failures are permissible as ARAIM redundantly allocates continuity
and integrity budgets for them, being able to exclude out-of-list faults is still desirable
as it enhances ARAIM’s FDE capability. We include a scenario with a triple-satellite real
fault, where biases of +40 m, —40 m, and +40 m are imposed on GPS #1, Galileo #1,
and GPS #2 (i.e., the satellite with the second lower PRN number), respectively, which is an
unmonitored triple-satellite fault under the experimental conditions. The existing method
cannot identify it as an exclusion candidate because the statistic for the unmonitored fault is
not calculated. On the contrary, Figure 3 demonstrates the satisfactory results estimated in
real time for the three failed satellites, and this is a supplemental FDE capability outside of
the ARAIM list. It is learned from Figures 1 and 3 that our method can effectively point out
possible exclusion candidates in a single run, fundamentally different from using solution
separation statistics to indirectly reflect possible faulty pseudoranges.
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Figure 3. Real-time estimation of triple-satellite real fault using reweighted-¢; LASSO. Faults involving
three satellites are beyond the existing methods’ capability due to not all of them being monitored.

5.1.2. Validation of Our Method’s Accuracy through Simulated Data

After confirming the effectiveness of the proposed algorithm in real-time satellite
fault estimation, we further evaluate the accuracy rate of our method under different
constellations, fault numbers, and fault magnitudes. The accuracy rate of estimation is
defined as the proportion of estimated faulty satellites estimated among all artificially set
faults. When the fault accuracy rate reaches 100%, this means that reweighted-¢; LASSO
can accurately identify all of the faults. Figures 46 show the accuracy rates under different
numbers and sizes of faults within a 24 h observation window at Tsinghua University.

To present the accuracy rate more comprehensively, this work employs 200 Monte
Carlo simulation data points instead of actual data collected at one time. In the simulation,
the ephemeris data are real, but the pseudoranges are derived from the actual distances
between the satellite and receiver plus simulated errors conforming to the nominal model.
Faults are assigned to GPS, Galileo, BeiDou, and GLONASS in that order, with each
constellation having as equal a number of faults as possible. Faults within each constellation
are prioritized for satellites with lower PRN numbers, and each fault has the same bias
magnitude byey;. by is set in the 10 m to 100 m range, with 10 m approximately three times
the UERE and a bias smaller than this being unlikely to be considered a fault, while 100 m
represents a significant value sufficient to represent severe fault conditions. This range
covers a wide range from minor errors to severe faults. Although ARAIM hardly ever
monitors more than two satellite faults with independent failure causes, we extended the
simulation to include up to ten satellites. This was chosen for two primary purposes: first,
to explore the sparsity conditions of sparse estimation and determine when our method
becomes less effective as the number of simultaneous satellite faults increases, and second,
to demonstrate that our method can identify faults outside the monitoring list.

Figure 4 shows the simulation results under the dual-constellation configuration.
For up to three faults above 10 m, the accuracy rate of estimation reaches 100%. For four
faults with biases exceeding 30 m, the accuracy rate is about 99%. For five faults with 50 m
biases, the accuracy rate can still reach almost 90%. When the number of faults increases
to six or more, the performance of reweighted-f; LASSO is affected due to the reduced
sparsity of the fault vector b. It is quite satisfactory to accurately estimate a four-satellite
failure given that ARAIM does not normally monitor the failure of more than two satellites
from independent causes.
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Figure 4. Accuracy rate of the proposed algorithm under two constellations. For this dual-
constellation configuration, the minimum, mode, and average of visible satellites are 12, 16, and 15.71,
respectively. When the number of failed satellites is within three, all the estimation accuracy reached
100%, causing the overlap of their corresponding lines.

100 ¢9————— .
$— | 1 °
98— T .
—&— 1 satellite failed

96 —o— 2 satellites failed | 7
& 3 satellites failed
cc) 94 —— 4 satellites failed | -
kS —o— 5 satellites failed
E 9o | 6 satellites failed |
g —&— 8 satellites failed
5 —— 10 satellites failed

90 r 1
>
3
o
3 88rf q
s}
<

86 1

84 4

82 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100

/m
real

Figure 5. Accuracy rate of the proposed algorithm under three configurations. For this triple-
constellation configuration, the minimum, mode, and average number of visible satellites are 23, 28,
and 27.84, respectively. When the number of failed satellites is within six and the biases exceed 30 m,
all the estimation accuracy reached 100%, causing the overlap of their corresponding lines.
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Figure 6. Accuracy rate of the proposed algorithm under four constellations. For this quad-
constellation configuration, the minimum, mode, and average number of visible satellites are 28,
36, and 34.92, respectively. When the number of failed satellites is within eight, all the estimation
accuracy reached 100%, causing the overlap of their corresponding lines.

The proposed method relies on the number of visible satellites to meet the sparsity
requirements. With an average of 27.84 visible satellites for 2 constellations, Figure 4
represents the experimental results under the average visibility conditions. To further
illustrate the impact of satellite count on the method’s performance, Table 3 presents the
estimation accuracy under the minimum and mode visible satellite counts for the dual
constellation. The minimum satellite count reflects the worst-case scenario, while the mode
satellite count reflects the general scenario. Fault magnitudes of 10 m, 40 m, and 100 m are
selected to represent potential non-fault values, typical fault values, and significant fault
values, respectively.

Table 3. Estimation accuracy of our method under minimum and mode visible satellite counts for the
dual-constellation configuration.

Numbe{r of Fault Bias Number of Faults
Satellite
1 2 3 4 5 6 8 10

10m 100% 100% 100% 95.23% 78.57% 65.17% 48.71% 42.34%

12 satellites 40 m 100% 100% 100% 96.36% 82.04% 69.23% 51.48% 46.00%
100 m 100% 100% 100% 97.70% 86.98% 74.02% 56.67% 52.22%
10 m 100% 100% 100% 97.94% 87.78% 73.68% 64.21% 49.52%

16 satellites 40 m 100% 100% 100% 99.00% 89.38% 77.16% 67.76% 53.38%
100 m 100% 100% 100% 100% 91.03% 81.13% 73.34% 59.08%

As seen in Table 3, even under the worst-case scenario with 12 visible satellites, our
method can still accurately estimate the faults within 4 satellites. In this case, although the
estimation performance may be slightly inferior to that for 16 visible satellites or the average
performance shown in Figure 4, it remains an effective fault identification method.

Figure 5 shows the accuracy rate under the GPS, Galileo, and BeiDou triple-constellation
configuration. In this simulation configuration, the proposed algorithm can recognize up
to six faults (with biases above 20 m) with a 100% accuracy rate and up to eight faults
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(with biases above 10 m) with an accuracy rate of over 98%. When ten or more faults occur,
the accuracy rate begins to decline. In practical applications, this performance is excellent
for identifying faults.

Like Table 3, Table 4 presents the estimation accuracy for the minimum and mode
visible satellite counts under a triple-constellation scenario. Even in the worst-case scenario
with 23 visible satellites, our method achieves an accuracy of over 96% when estimating up
to 8 faults.

Table 4. Estimation accuracy of our method under minimum and mode visible satellite counts for the
triple-constellation configuration.

Numbe‘r of Fault Bias Number of Faults
Satellite
1 2 3 4 5 6 8 10

10m 100% 100% 100% 99.73% 99.05% 98.64% 96.96% 81.85%

23 satellites 40 m 100% 100% 100% 100% 100% 100% 98.03% 83.55%
100 m 100% 100% 100% 100% 100% 100% 98.73% 84.12%
10m 100% 100% 100% 100% 99.56% 99.38% 97.87% 82.13%

28 satellites 40 m 100% 100% 100% 100% 100% 100% 98.61% 84.69%
100 m 100% 100% 100% 100% 100% 100% 99.17% 88.06%

Figure 6 shows the accuracy rate under a quad-constellation configuration, where our
method continues to exhibit outstanding performance even in extreme situations with ten
faults. This indicates that with an increasing number of constellations and visible satellites,
the estimation performance is significantly enhanced. Reweighted-¢; LASSO is particularly
suitable for scenarios with multiple constellations and many visible satellites, as the sparsity
assumption for pseudorange faults is met better in such environments. Finally, Figures 46
also illustrate that the detection capability of LASSO increases with the growth of by,;: the
more apparent the fault, the easier it is to recognize.

Table 5 provides the estimation accuracy for the minimum and mode visible satellite
counts under a quadruple-constellation scenario. The data in Table 5 show that the accuracy
is consistently above 97% under all conditions, demonstrating that our method is highly
effective in the case of four constellations.

Table 5. Estimation accuracy of our method under minimum and mode visible satellite counts for the
quad-constellation configuration.
Numbe.r of Fault Bias Number of Faults
Satellite
1 2 3 4 5 6 8 10
10m 100% 100% 100% 100% 100% 100% 100% 97.24%
28 satellites 40m 100% 100% 100% 100% 100% 100% 100% 98.37%
100 m 100% 100% 100% 100% 100% 100% 100% 98.86%
10 m 100% 100% 100% 100% 100% 100% 100% 99.72%
36 satellites 40m 100% 100% 100% 100% 100% 100% 100% 99.93%
100 m 100% 100% 100% 100% 100% 100% 100% 99.93%

5.2. Computational Complexity of Our Method

Finally, we examine the complexity of our method. The additional computational com-
plexity induced has two components. One is the five matrix multiplications described in
Equations (37)—(41) for building the standard LASSO problem. The other is the CD method
for solving the LASSO, which requires iterative computation. In this study, the time com-
plexity of one iteration of CD is approximately O(N2,,) according to the LASSO-solving
process shown in Appendix A. Specifically, the local minimum of the N;; coordinates
needs to be calculated in one iteration. Each coordinate requires one matrix multiplication
of Nsgt X Nsgr and Ny X 1, two vector multiplications of 1 X Nz and Nggt % 1, one vector
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multiplication of 1 X Ns4, and a scalar, along with several additions. Taking the highest
power, the computational complexity of one iteration is approximately N2, scalar multipli-
cations, equivalent to the complexity of multiplying two Nss+ X Nsu matrices. Therefore,
incorporating the first component of the complexity, our approach is roughly equivalent
to (5 + M) matrix multiplications, where M is the number of iterations in the CD method.
Given that the convergence speed of the CD method is fast [25], M is not high, and Ny is
the number of satellites, which is generally not more than fifty. Hence, the computational
complexity introduced by the LASSO is quite limited.

In addition to the inherent simplicity of the CD method and the low dimensionality of
the matrices involved, the low computational complexity of this method is also attributed to
the fact that single- and dual-satellite faults occupy a substantial portion of the monitoring
list. These faults are pretty sparse, with b being quite close to the coordinate origin, 0,
allowing CD to converge in just a few iterations.

Figure 7 compares the FE runtime using our method with the fastest theoretical FE pro-
cess time. The “fastest theoretical runtime” refers to a scenario where we know the real fault
a priori and can troubleshoot it with only one MHSS exclusion candidate test, representing
the shortest possible time. The runtime with our method is only slightly higher than this
fastest theoretical runtime, indicating that it consumes modest computational resources.
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Figure 7. FE runtime of our method compared with the fastest theoretical FE runtime. Data processing
is implemented using Matlab 2022a on a personal computer from Lenovo Group Limited, Beijing,
China, with a 2.2 GHz i7-8750H CPU and 8 GB RAM.

We then compare the proposed method with the normalized solution separation
method in terms of the FE runtime for single-satellite and dual-satellite real faults, as shown
in Figure 8. For single-satellite real faults, the runtime of both methods is similar because
both can quickly identify the exclusion candidates. The traditional methods compare the
solution separation statistic and typically perform one MHSS test to determine the fault.
Our proposed LASSO optimization can also achieve this with a single MHSS test. The main
difference in the runtime arises from the fact that the traditional methods require calculating
the solution separation statistic for each fault mode or indirectly obtaining it through chi-
square statistics, while our method involves solving the LASSO. The time difference is
quite minimal. Naturally, if solving the LASSO takes longer than calculating the solution
separation statistic, solution separation-statistic-based searches would be slightly more
efficient than LASSO optimization, as indicated by the arrow in the top panel of Figure 8.

Overall, both methods are highly feasible for single-satellite faults and are close to the
fastest theoretical runtime.
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Figure 8. Comparison of FE runtime between our method and normalized solution separation statistic
methods. Data processing is implemented using Matlab 2022a on a personal computer from Lenovo
Group Limited, Beijing, China, with a 2.2 GHz i7-8750H CPU and 8 GB RAM. Note that the second
panel in the figure has two y-axes.

However, for a dual-satellite real fault, the runtime of the normalized solution sep-
aration method is significantly longer than that of our method. This discrepancy arises
because our method can directly estimate possible faults in just one run, whereas the real
fault’s solution separation statistics are usually small and have a lower priority in the search
order. This results in the need to perform numerous MHSS tests to determine the exclusion
candidate. Under the conditions of this experiment, the normalized solution separation
method is misguided in the search order, leading to a prolonged runtime. If the maximum
allowable FE runtime is 20 ms, the existing methods will fail for most dual-satellite FE
processes, which is precisely their serious limitation.

6. Conclusions

Finding exclusion candidates is crucial for the swift and successful execution of
the ARAIM process. The existing methods infer the likelihood of specific fault modes
being actual faults through normalized solution separation statistics, guiding the search
for exclusion candidates. However, our qualitative analysis and experimental results
indicate that solution separation statistics are not reliable indicators in scenarios involving
multiple faults.

This work presents an alternative supplementary method for identifying possible
exclusion candidates. Considering the sparsity of GNSS faults and the consistency of
normal observations, we propose using sparse estimation to find faulty pseudoranges
directly, thus rapidly and efficiently determining the exclusion candidates in a single run
without the need for sorting and sequential searching.

Our experiments demonstrate that the proposed method performs exceptionally well
under sparse conditions, being fast and accurate. However, it must be acknowledged
that while the sparsity requirements are relatively lenient (e.g., in a dual constellation,
it can identify faults among five satellites, and in a quad constellation, it can make es-
timations for up to ten satellites), this method may struggle with wide faults affecting
entire constellations, as such faults are rarely sparse. Therefore, we recommend combining
our proposed method with the existing approaches: first, execute our method due to its
rapidity. If the exclusion candidates cannot be verified, only the resources for one MHSS
test have been expended. Subsequently, the existing approach can be employed, especially
focusing on constellation-wide faults. Indeed, the method proposed in this paper is a strong
complement to the existing normalized solution separation statistic methods.
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Abbreviations

The following abbreviations are used in this manuscript:

ADD Algorithm Description Document

ARAIM  Advanced Receiver Autonomous Integrity Monitoring
CD Coordinate Descent

FD Fault Detection

FDE Fault Detection and Exclusion

FE Fault Exclusion

GNSS Global Navigation Satellite System

ISM Integrity Support Message

LLA Latitude, Longitude, and Altitude

MAAST MATLAB Algorithm Availability Simulation Tool
MHSS Multi-Hypothesis Solution Separation

PL Protection Level

PRN Pseudo-Random Noise

RAIM Receiver Autonomous Integrity Monitoring
SPP Standard Point Positioning

UERE User Equivalent Range Error
WG-C Working Group-C
WLSQ Weighted Least Squares

Appendix A. Solving for 8

Among the many methods for solving the LASSO problem, the CD method and the
least angle regression method are two widely adopted techniques. Given the considerations
of algorithm efficiency and convergence speed in practical applications, this paper chooses
the CD method as the solution method.

The CD method finds the minimum of the objective function by optimizing each target
function’s coordinate (or parameter) one at a time. Its mathematical foundation relies on a
key convex optimization principle: for a differentiable convex function J (), which in this
paper is defined as

1
J(6) = 5|Y — HO[3 + Al6l, (A1)

if at a certain point 6, the function J(6) reaches a local minimum on each coordinate
axis én(n =1,2,... Nsz), then | (é) reaches a global minimum at 0. Therefore, the optimiza-
tion goal of the CD method transforms into iteratively and gradually minimizing the loss
function on the Ny, coordinate axes (or Ny elements) of 6. The specific solving process is
as follows.

1. Initial value setting: First, an initial value for the vector 8 needs to be chosen. This
initial value is usually set based on some prior knowledge.

In this problem, the zero vector 0 is directly used as the initial value. For SPP in
civil aviation, its service performance is stable, and the actual fault probability is very low.
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This means that in most cases, vector b is sparse and close to a vector of 0. Therefore,
choosing a vector of zero as the initial value will significantly accelerate the convergence of
the solution.

2. pth Iteration: In the pth iteration, the updated value for each coordinate is calculated
sequentially from 0; to Oy,,. When finding the optimal value 67 for the ith coordinate,
the values of all other coordinates are fixed, and the zero point of the partial derivative of
J(6) with respect to 6; is calculated:

/(0
égi)‘ei_ej =0 (A2)

07 is the local minimum near the current coordinate. The analytical solution of
Equation (A2) is given directly as

9F =
' H!H;

S(H (y—H_6-),A) (A3)

where H; represents the ith column vector of matrix H; H_; and 6_; represent matrix H with
the ith column vector removed and vector 8 with the ith element removed, respectively;
and S is the soft thresholding operator, defined as

S(x,A) = sign(x) - max(|x| —A,0) (A4)

The sign function sign(x) preserves the sign (positive or negative) of the original
value x, and sign(x) - max(|x| — A,0) ensures that value x is retained only if it exceeds the
threshold A. If the absolute value of a value is less than A, the soft thresholding operation
reduces it to zero. This is the principle by which the LASSO achieves sparse solutions.
For elements with absolute values greater than A, the soft thresholding operation shrinks
them to zero by a fixed amount but does not entirely eliminate them, thus retaining the
information on those critical features.

3. Convergence determination: After each iteration, the value of the objective function
Jstep,p at step p needs to be compared with the value of the objective function Jsp,, 1 at the
previous step. If the change is minimal and reaches a preset threshold, i.e.,

|]step,p - ]step,p71| <e (A5)

It can be considered that the algorithm has converged. Otherwise, the iteration
continues. In this algorithm, ¢ is set to 1 x 1074,

Appendix B. A Numerical Example of the Proposed Algorithm

To illustrate the pseudorange fault estimation method based on the LASSO proposed
in this paper more clearly, a numerical example is provided for reproducibility. We only
consider the GPS constellation, ensuring the matrix dimensions are small enough to display
in the appendix. On 12 January 2024, at 00:00, at the top of the Weiging Building, Tsinghua
University, a fault offset of +40 m was applied to GPS #1. The pseudoranges received were

_ [21273445.9416,22601323.0668, 22846185.6945, 22467724.6946, (A6)
P = 24452074.7816,20257154.8892, 25187197.5835, 23549979.0397]1
Note that the pseudorange vector p is not y in our algorithm. GNSS standard sing]le-
point positioning employs a Newton—Raphson method, where weighted least squares
solves each iteration. y represents the pseudorange residuals rather than the pseudoranges.
More specifically, y is the pseudorange residual at the last iteration when convergence is
achieved. The value of y is

y = [3.8722,—18.9872, —14.5725, —5.4242, —20.2281, —34.5013, —16.9118, —18.0469]T (A7)
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Correspondingly, we have

[ 0.1965 —0.9763 —0.0910 17

04707 —03269 —08195 1
09403 —03238 01051 1
06883 00077 —07254 1
G=1_0870 —05007 —01221 1 (A8)
04374 —07258 —05309 1
02729 —05134 08136 1
| 07432 04703 04758 1]
28534 0 0 0 0 0 0 0
0 29206 0 0 0 0 0 0
0 0 29509 0 0 0 0 0
0 0 0 29085 0 0 0 0
C=1 o 0 0 0 37262 0 0 0 (A9)
0 0 0 0 0 28391 0 0
0 0 0 0 0 0 60783 0
0 0 0 0 0 0 0 3.1066

Then, with y, G, and C as inputs to our algorithm, we can estimate the fault bias b.
Substituting y and G into Equations (37) and (40), we obtain

Y = [19.4092, —2.5133,1.1797,10.6318, —5.5764, —18.2427, —2.2067, —2.6817] T (A10)

From Equations (38) and (39), it is known that

[ 0.1512 —-0.0191 0.0089  0.0812 —0.0333 —0.1428 —0.0081 —0.01927]
—0.0196 0.1811 0.0150 —0.0986 —0.0981 —0.0266 0.0150  0.0384
0.0092  0.0151 0.2280 —0.0929 0.0327 —0.0460 —0.0301 —0.0905
H— 0.0828 —0.0982 —0.0916 0.1294  0.0066 —0.0345 0.0149 —0.0234 (A11)
—0.0434 —-0.1252 0.0413  0.0085  0.1085  0.0520 —0.0383 0.0075
—0.1421 —-0.0259 —0.0443 —0.0337 0.0396  0.1611 0.0267 —0.0185
—-0.0172 0.0313 —-0.0620 0.0310 —0.0624 0.0572  0.0758 —0.1095

[—0.0209 0.0408 —0.0953 —0.0250 0.0063 —0.0203 —0.0559 0.2152 |
The standard LASSO problem is formulated as

.1
argm1n§||Y—H9||§+)\H6||1 (A12)
0

where A is set to 1. Solving for 8 according to Appendix A and knowing that 6=Cb, we obtain
b = [38.3843,0,0,0,0,0,0,0] ! (A13)

The proposed algorithm estimates a bias of 38.3843 m for GPS #1, which is close to the
+40 m fault setting.

In this example, the elements in p, y, Y, and b are measured in meters, the elements
in C are the variance in the pseudorange error in units of square meters, and G and H are
dimensionless.
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