Disentangling the Effects of Atmospheric and Soil Dryness on Autumn Phenology across the Northern Hemisphere
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. EOS and LAI from GIMMS Data
2.2.2. Meteorological and Other Supporting Data
2.3. Methods
2.3.1. Partial Correlation Analysis
2.3.2. Ridge Regression
2.3.3. Decoupling the Relative Effects of VPD and SM on the EOS
3. Results
3.1. Spatial and Temporal Patterns of EOS, SM, and VPD
3.2. The Effects of VPD and SM on the EOS
4. Discussion
4.1. The Trends of VPD, SM, and the EOS during the Period from 1982 to 2022
4.2. The Responses of the EOS to VPD and SM
4.3. Responses Varied among Vegetation Types and Climate Zones
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Humphrey, V.; Zscheischler, J.; Ciais, P.; Gudmundsson, L.; Sitch, S.; Seneviratne, S.I. Sensitivity of Atmospheric CO2 Growth Rate to Observed Changes in Terrestrial Water Storage. Nature 2018, 560, 628–631. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Tan, J.; Chen, A.; Fu, Y.H.; Ciais, P.; Liu, Q.; Janssens, I.A.; Vicca, S.; Zeng, Z.; Jeong, S.J. Leaf Onset in the Northern Hemisphere Triggered by Daytime Temperature. Nat. Commun. 2015, 6, 6911. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Peng, D.; Soudani, K.; Siebicke, L.; Gough, C.M.; Arain, M.A.; Bohrer, G.; Lafleur, P.M.; Peichl, M.; Gonsamo, A. Land Surface Phenology Derived from Normalized Difference Vegetation Index (NDVI) at Global FLUXNET Sites. Agric. For. Meteorol. 2017, 233, 171–182. [Google Scholar] [CrossRef]
- Fu, Y.H.; Zhao, H.; Piao, S.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.; Menzel, A.; Peñuelas, J. Declining Global Warming Effects on the Phenology of Spring Leaf Unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef]
- Estiarte, M.; Peñuelas, J. Alteration of the Phenology of Leaf Senescence and Fall in Winter Deciduous Species by Climate Change: Effects on Nutrient Proficiency. Glob. Change Biol. 2015, 21, 1005–1017. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Peng, J.; Wu, C.; Zhang, X.; Wang, X.; Gonsamo, A. Satellite Detection of Cumulative and Lagged Effects of Drought on Autumn Leaf Senescence over the Northern Hemisphere. Glob. Change Biol. 2019, 25, 2174–2188. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K. The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of the Land CO2 Sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Reichstein, M.; Tenhunen, J.D.; Roupsard, O.; Ourcival, J.m.; Rambal, S.; Miglietta, F.; Peressotti, A.; Pecchiari, M.; Tirone, G.; Valentini, R. Severe Drought Effects on Ecosystem CO2 and H2O Fluxes at Three Mediterranean Evergreen Sites: Revision of Current Hypotheses? Glob. Change Biol. 2002, 8, 999–1017. [Google Scholar] [CrossRef]
- Ge, W.; Han, J.; Zhang, D.; Wang, F. Divergent Impacts of Droughts on Vegetation Phenology and Productivity in the Yungui Plateau, Southwest China. Ecol. Indic. 2021, 127, 107743. [Google Scholar] [CrossRef]
- Castillioni, K.; Newman, G.S.; Souza, L.; Iler, A.M. Effects of Drought on Grassland Phenology Depend on Functional Types. New Phytol. 2022, 236, 1558–1571. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T. A global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Madadgar, S.; AghaKouchak, A.; Farahmand, A.; Davis, S.J. Probabilistic Estimates of Drought Impacts on Agricultural Production. Geophys. Res. Lett. 2017, 44, 7799–7807. [Google Scholar] [CrossRef]
- Cui, X.; Xu, G.; He, X.; Luo, D. Influences of Seasonal Soil Moisture and Temperature on Vegetation Phenology in the Qilian Mountains. Remote Sens. 2022, 14, 3645. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N. The Increasing Importance of Atmospheric Demand for Ecosystem Water and Carbon Fluxes. Nat. Clim. Change 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Sulman, B.N.; Roman, D.T.; Yi, K.; Wang, L.; Phillips, R.P.; Novick, K.A. High Atmospheric Demand for Water Can Limit Forest Carbon Uptake and Transpiration as Severely as Dry Soil. Geophys. Res. Lett. 2016, 43, 9686–9695. [Google Scholar] [CrossRef]
- Novick, K.A.; Miniat, C.F.; Vose, J.M. Drought Limitations to Leaf-Level Gas Exchange: Results from a Model Linking Stomatal Optimization and Cohesion–Tension Theory. Plant Cell Environ. 2016, 39, 583–596. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z. Increased Atmospheric Vapor Pressure Deficit Reduces Global Vegetation Growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, J.; Kang, S.; Slater, L.J.; Gu, X.; Volchak, A. Quantifying the Drivers of Terrestrial Drought and Water Stress Impacts on Carbon Uptake in China. Agric. For. Meteorol. 2024, 344, 109817. [Google Scholar] [CrossRef]
- Zhong, Z.; He, B.; Wang, Y.-P.; Chen, H.W.; Chen, D.; Fu, Y.H.; Chen, Y.; Guo, L.; Deng, Y.; Huang, L. Disentangling the Effects of Vapor Pressure Deficit on Northern Terrestrial Vegetation Productivity. Sci. Adv. 2023, 9, eadf3166. [Google Scholar] [CrossRef]
- He, B.; Chen, C.; Lin, S.; Yuan, W.; Chen, H.W.; Chen, D.; Zhang, Y.; Guo, L.; Zhao, X.; Liu, X. Worldwide Impacts of Atmospheric Vapor Pressure Deficit on the Interannual Variability of Terrestrial Carbon Sinks. Natl. Sci. Rev. 2022, 9, 150. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil Moisture Dominates Dryness Stress on Ecosystem Production Globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Peng, S.; AghaKouchak, A.; Huang, Y.; Li, Y.; Qin, D.; Xie, A.; Li, S. Broad Consistency between Satellite and Vegetation Model Estimates of Net Primary Productivity across Global and Regional Scales. J. Geophys. Res. Biogeosci. 2018, 123, 3603–3616. [Google Scholar] [CrossRef]
- Stocker, B.D.; Zscheischler, J.; Keenan, T.F.; Prentice, I.C.; Peñuelas, J.; Seneviratne, S.I. Quantifying Soil Moisture Impacts on Light Use Efficiency across Biomes. New Phytol. 2018, 218, 1430–1449. [Google Scholar] [CrossRef]
- Oren, R.; Sperry, J.; Katul, G.; Pataki, D.; Ewers, B.; Phillips, N.; Schäfer, K. Survey and Synthesis of Intra- and Interspecific Variation in Stomatal Sensitivity to Vapour Pressure Deficit. Plant Cell Environ. 1999, 22, 1515–1526. [Google Scholar] [CrossRef]
- Zhang, X.; Rademacher, T.; Liu, H.; Wang, L.; Manzanedo, R.D. Fading Regulation of Diurnal Temperature Ranges on Drought-Induced Growth Loss for Drought-Tolerant Tree Species. Nat. Commun. 2023, 14, 6916. [Google Scholar] [CrossRef]
- Li, W.; Migliavacca, M.; Forkel, M.; Denissen, J.M.; Reichstein, M.; Yang, H.; Duveiller, G.; Weber, U.; Orth, R. Widespread Increasing Vegetation Sensitivity to Soil Moisture. Nat. Commun. 2022, 13, 3959. [Google Scholar] [CrossRef]
- Bateni, S.; Entekhabi, D. Relative Efficiency of Land Surface Energy Balance Components. Water Resour. Res. 2012, 48, W04510. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Li, L.Z.; Li, Y.; Huntingford, C.; Ciais, P.; Cescatti, A.; Janssens, I.A.; Peñuelas, J.; Buermann, W. Summer Soil Drying Exacerbated by Earlier Spring Greening of Northern Vegetation. Sci. Adv. 2020, 6, eaax0255. [Google Scholar] [CrossRef]
- Zhou, S.; Williams, A.P.; Berg, A.M.; Cook, B.I.; Zhang, Y.; Hagemann, S.; Lorenz, R.; Seneviratne, S.I.; Gentine, P. Land–Atmosphere Feedbacks Exacerbate Concurrent Soil Drought and Atmospheric Aridity. Proc. Natl. Acad. Sci. USA 2019, 116, 18848–18853. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in Satellite-Derived Phenology in China’s Temperate Vegetation. Glob. Change Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Olson, D.M. Terrestrial Ecoregionsof the Worlds: A New Map of Life on Earth. Bioscience 2001, 51, 933938. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. Mcd12q1 Modis/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006 [Data set]; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2019. [Google Scholar] [CrossRef]
- Shen, M.; Nan, J.; Peng, D.; Rao, Y.; Yan, H.; Yang, W.; Zhu, X.; Cao, R.; Chen, X.; Chen, J. Can Changes in Autumn Phenology Facilitate Earlier Green-Up Date of Northern Vegetation? Agric. For. Meteorol. 2020, 291, 108077. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing Altitudinal Gradient of Spring Vegetation Phenology during the Last Decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 2014, 189, 71–80. [Google Scholar] [CrossRef]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Grippa, M.; Tucker, C. Re-Greening Sahel: 30 Years of Remote Sensing Data and Field Observations (Mali, Niger). Remote Sens. Environ. 2014, 140, 350–364. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Green-up dates in the Tibetan Plateau Have Continuously Advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef]
- Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D. Landscape Controls on the Timing of Spring, Autumn, and Growing Season Length in Mid-A Tlantic Forests. Glob. Change Biol. 2012, 18, 656–674. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X.; Wang, H.; Ciais, P.; Peñuelas, J.; Myneni, R.B.; Desai, A.R.; Gough, C.M.; Gonsamo, A.; Black, A.T.; et al. Contrasting Responses of Autumn-Leaf Senescence to Daytime and Night-Time Warming. Nat. Clim. Change 2018, 8, 1092–1096. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Qi, G.; She, D.; Xia, J.; Song, J.; Jiao, W.; Li, J.; Liu, Z. Soil Moisture Plays an Increasingly Important Role Role in Constraining Vegetation Productivity in China over the Past Two Decades. Agric. For. Meteorol. 2024, 356, 110193. [Google Scholar] [CrossRef]
- Tu, Y.; Wang, X.; Zhou, J.; Wang, X.; Jia, Z.; Ma, J.; Yao, W.; Zhang, X.; Sun, Z.; Luo, P. Atmospheric Water Demand Dominates Terrestrial Ecosystem Productivity in China. Agric. For. Meteorol. 2024, 355, 110151. [Google Scholar] [CrossRef]
- López, J.; Way, D.A.; Sadok, W. Systemic Effects of Rising Atmospheric Vapor Pressure Deficit on Plant Physiology and Productivity. Glob. Change Biol. 2021, 27, 1704–1720. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, S.; Bai, X.; Luo, G.; Wu, L.; Cao, Y.; Li, H.; Li, C.; Yang, Y.; Hu, Z. Variation Trend of Global Soil Moisture and Its Cause Analysis. Ecol. Indic. 2020, 110, 105939. [Google Scholar] [CrossRef]
- Fu, Y.H.; Piao, S.; Delpierre, N.; Hao, F.; Hänninen, H.; Liu, Y.; Sun, W.; Janssens, I.A.; Campioli, M. Larger Temperature Response of Autumn Leaf Senescence than Spring Leaf-Out Phenology. Glob. Change Biol. 2018, 24, 2159–2168. [Google Scholar] [CrossRef]
- Lang, W.; Chen, X.; Qian, S.; Liu, G.; Piao, S. A New Process-Based Model for Predicting Autumn Phenology: How is Leaf Senescence Controlled by Photoperiod and Temperature Coupling? Agric. For. Meteorol. 2019, 268, 124–135. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y.; Zeng, Z.; Huang, M.; Li, X.; Piao, S. Temperature, Precipitation, and Insolation Effects on Autumn Vegetation Phenology in Temperate China. Glob. Change Biol. 2016, 22, 644–655. [Google Scholar] [CrossRef]
- Gray, S.B.; Dermody, O.; Klein, S.P.; Locke, A.M.; Mcgrath, J.M.; Paul, R.E.; Rosenthal, D.M.; Ruiz-Vera, U.M.; Siebers, M.H.; Strellner, R. Intensifying Drought Eliminates the Expected Benefits of Elevated Carbon Dioxide for Soybean. Nat. Plants 2016, 2, 16132. [Google Scholar] [CrossRef]
- Wada, Y.; Van Beek, L.P.; Wanders, N.; Bierkens, M.F. Human Water Consumption Intensifies Hydrological Drought Worldwide. Environ. Res. Lett. 2013, 8, 034036. [Google Scholar] [CrossRef]
- Soni, D.K.; Ranjan, S.; Singh, R.; Khare, P.B.; Pathre, U.V.; Shirke, P.A. Photosynthetic Characteristics and the Response of Stomata to Environmental Determinants and ABA in Selaginella Bryopteris, a Resurrection Spike Moss Species. Plant Sci. 2012, 191, 43–52. [Google Scholar] [CrossRef]
- Woodruff, D.; Meinzer, F.; McCulloh, K. Height-Related Trends in Stomatal Sensitivity to Leaf-to-Air Vapour Pressure Deficit in a Tall Conifer. J. Exp. Bot. 2010, 61, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Lihavainen, J.; Ahonen, V.; Keski-Saari, S.; Sõber, A.; Oksanen, E.; Keinänen, M. Low Vapor Pressure Deficit Reduces Glandular Trichome Density and Modifies the Chemical Composition of Cuticular Waxes in Silver Birch Leaves. Tree Physiol. 2017, 37, 1166–1181. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, E.; Lihavainen, J.; Keinänen, M.; Keski-Saari, S.; Kontunen-Soppela, S.; Sellin, A.; Sõber, A. Northern Forest Trees under Increasing Atmospheric Humidity. Prog. Bot. 2019, 80, 317–336. [Google Scholar]
- Cernusak, L.A.; Goldsmith, G.R.; Arend, M.; Siegwolf, R.T. Effect of Vapor Pressure Deficit on Gas Exchange in Wild-Type and Abscisic Acid–Insensitive Plants. Plant Physiol. 2019, 181, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X. Response of Stomatal Conductance of Two Tree Species to Vapor Pressure Deficit in Three Climate Zones. J. Arid Land 2014, 6, 771–781. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, D.; Xiao, J.; Li, X.; Niu, S. Increasing Drought Sensitivity of Plant Photosynthetic Phenology and Physiology. Ecol. Indic. 2024, 166, 112469. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, R.; Wen, Z.; Khalifa, M.; Zheng, C.; Ren, H.; Zhang, Z.; Wang, Z. Assessing the Impacts of Drought on Net Primary Productivity of Global Land Biomes in Different Climate Zones. Ecol. Indic. 2021, 130, 108146. [Google Scholar] [CrossRef]
- Xu, H.-j.; Wang, X.-p.; Zhao, C.-y.; Yang, X.-m. Diverse Responses of Vegetation Growth to Meteorological Drought across Climate Zones and Land Biomes in Northern China from 1981 to 2014. Agric. For. Meteorol. 2018, 262, 1–13. [Google Scholar] [CrossRef]
- Marchin, R.M.; Salk, C.F.; Hoffmann, W.A.; Dunn, R.R. Temperature Alone Does not Explain Phenological Variation of Diverse Temperate Plants under Experimental Warming. Glob. Change Biol. 2015, 21, 3138–3151. [Google Scholar] [CrossRef]
- Cui, J.; Chen, A.; Huntingford, C.; Piao, S. Integrating Ecosystem Water Demands into Drought Monitoring and Assessment under Climate Change. Nat. Water 2024, 2, 215–218. [Google Scholar] [CrossRef]
- Miller, D.L.; Wolf, S.; Fisher, J.B.; Zaitchik, B.F.; Xiao, J.; Keenan, T.F. Increased Photosynthesis during Spring Drought in Energy-Limited Ecosystems. Nat. Commun. 2023, 14, 7828. [Google Scholar] [CrossRef]
- Yang, H.; Munson, S.M.; Huntingford, C.; Carvalhais, N.; Knapp, A.K.; Li, X.; Peñuelas, J.; Zscheischler, J.; Chen, A. The Detection and Attribution of Extreme Reductions in Vegetation Growth across the Global Land Surface. Glob. Change Biol. 2023, 29, 2351–2362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, K.; Wang, X. Disentangling the Effects of Atmospheric and Soil Dryness on Autumn Phenology across the Northern Hemisphere. Remote Sens. 2024, 16, 3552. https://doi.org/10.3390/rs16193552
Dong K, Wang X. Disentangling the Effects of Atmospheric and Soil Dryness on Autumn Phenology across the Northern Hemisphere. Remote Sensing. 2024; 16(19):3552. https://doi.org/10.3390/rs16193552
Chicago/Turabian StyleDong, Kangbo, and Xiaoyue Wang. 2024. "Disentangling the Effects of Atmospheric and Soil Dryness on Autumn Phenology across the Northern Hemisphere" Remote Sensing 16, no. 19: 3552. https://doi.org/10.3390/rs16193552
APA StyleDong, K., & Wang, X. (2024). Disentangling the Effects of Atmospheric and Soil Dryness on Autumn Phenology across the Northern Hemisphere. Remote Sensing, 16(19), 3552. https://doi.org/10.3390/rs16193552