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Abstract: In recent decades, drought has intensified along with continuous global warming, sig-
nificantly impacting terrestrial vegetation. High atmospheric water demand, indicated by vapor
pressure deficit (VPD), and insufficient soil moisture (SM) are considered the primary factors causing
drought stress in vegetation. However, the influences of VPD and SM on the autumn phenology
are still unknown. Using satellite observations and meteorological data, we examined the impacts
of VPD and SM on the end of the growing season (EOS) across the Northern Hemisphere (>30◦N)
from 1982 to 2022. We found that VPD and SM were as important as temperature, precipitation, and
radiation in controlling the variations in the EOS. Moreover, the EOS was predominantly influenced
by VPD or SM in more than one-third (33.8%) of the study area. In particular, a ridge regression
analysis indicated that the EOS was more sensitive to VPD than to SM and the other climatic factors,
with 25% of the pixels showing the highest sensitivity to VPD. In addition, the effects of VPD and
SM on the EOS varied among biome types and climate zones. VPD significantly advanced the EOS
in 25.8% of temperate grasslands, while SM had the greatest impact on advancing the EOS in 17.7%
of temperate coniferous forests. Additionally, 27.7% of the midlatitude steppe (BSk) exhibited a
significant negative correlation between VPD and the EOS, while 19.4% of the marine west coast
climate (Cfb) showed a positive correlation between SM and the EOS. We also demonstrated that the
correlation between VPD and the EOS was linearly affected by VPD and the leaf area index, while
the correlation between SM and the EOS was affected by SM, precipitation, and the leaf area index.
Our study highlights the importance of VPD and SM in regulating autumn phenology and enhances
our understanding of terrestrial ecosystem responses to climate change.

Keywords: autumn vegetation phenology; drought; vapor pressure deficit; soil moisture

1. Introduction

Terrestrial vegetation, as a crucial element of terrestrial ecosystems, is highly significant
in adjusting the exchange of water, carbon, and energy between the atmosphere and the land
surface, thereby stabilizing atmospheric carbon dioxide and mitigating climate warming [1].
Vegetation phenology, defined as the timing of cyclical features in plant growth and their
duration [2,3], e.g., the start (SOS) and end (EOS) of the growing season, serves as a direct
index of climate change [2,4]. There is ample research showing that the EOS is vital in
vegetation growth and in regulating the carbon sink and terrestrial water cycles [5,6], but
this has been largely neglected [7].

Limited water availability affects terrestrial vegetation productivity in many regions [8]
and has become a recurring condition that negatively impacts vegetation growth and
phenology, particularly in Mediterranean, arid, and semi-arid ecosystems [9]. Climate
change has led to progressively more drought events, which are among the most impactful
natural disasters affecting ecological and human systems [10] and have a non-negligible
role in vegetation phenology, growth, and survival [11].
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High vapor pressure deficit (VPD), reflecting atmospheric water demand, and low
soil moisture (SM) supply are considered the two primary drivers of drought stress on
vegetation, posing significant threats to agricultural production and causing widespread
vegetation mortality [12,13]. SM provides water directly to vegetation and is more vulnera-
ble to droughts, affecting autumn vegetation phenology [14]. VPD, defined as the difference
between the saturated vapor pressure and actual vapor pressure, could significantly influ-
ence stomatal conductance and photosynthesis [15,16]. The stomata of vegetation close to
reduce exorbitant water loss with a high VPD, which causes a reduction in photosynthesis
and carbon uptake by the vegetation [15,17,18]. There is research showing that an increase
in VPD significantly affects vegetation productivity [16,19], forest mortality [20], and the
global terrestrial carbon sink [21], while studies have shown that VPD is an important
determinant of water resources and vegetation–water relationships [19].

However, discussions are ongoing on the roles of soil moisture and vapor pressure
deficits in deciding the effects of droughts on vegetation, leading to different conclusions
regarding drought stress on vegetation [22]. On the one hand, SM supplies water directly
to the vegetation, determining the amount of water that is extractable by the roots [22],
making low SM a common indicator of vegetation drought stress and the impact on produc-
tivity [23,24]. On the other hand, a high VPD induces stomatal closure to minimize water
damage [25] and constrains photosynthesis. Several studies have expressed the importance
of VPD and suggested that it might affect vegetation more than SM [15,16,19,26]. However,
another study has shown that soil moisture dominates drought stress on vegetation [27].
It has been shown that VPD changes are influenced by air moisture content and tempera-
ture [15], while SM significantly impacts evapotranspiration [28]. During a drought, low
SM limits evapotranspiration, potentially affecting VPD [28]. Increased foliage cover in
the Northern Hemisphere can further deplete soil moisture, leading to a higher VPD [29].
Strong negative coupling between VPD and SM globally indicates a high probability of
concurrent atmospheric aridity and soil dryness, aggravated by land–atmosphere feed-
back [30]. To date, the respective influences of VPD and SM on vegetation, particularly
on autumn phenology, remain debated and challenging to disentangle. Identifying these
effects is vital for researching the responses of terrestrial vegetation to climate change
and predicting future changes in the ecosystem carbon cycle. In this study, with satellite
observations of the EOS and a climate dataset, the strong correlations of VPD and SM with
the EOS were explored, and their respective effects were discerned.

2. Data and Methods
2.1. Study Area

Our study focused on natural vegetation in the Northern Hemisphere (>30◦N), where
vegetation dynamics show evident seasonality, facilitating the extraction of the EOS [31].
This wider study area was classified into seven types based on the biome categories from
Terrestrial Ecoregions of the World (Figure 1a) [32]. Cultivation areas were eliminated
due to the interference of human activities, using the MODIS Land Cover Type Product
(MCD12Q1) [33].

Simultaneously, the wider study area was classified into seven climate zones according
to the Köppen–Geiger climate zone classification, one of the most widely used classifications
of climate zones in studies for its accuracy and universality and its simple access and
process; the categories in the study area included midlatitude steppe (BSk), marine west
coast climate (Cfb), humid continental climate (Dfb), subarctic climate (Dfd), another type
of subarctic climate (Dwc), and tundra (ET) (Figure 1b).

Focusing on the regions with evident phenology, the only pixels included were those
indicating that the July and August NDVI was more than 1.2 times the mean NDVI of
winter, the EOS occurred after June, and the annual maximum NDVI appeared between
June and October [34,35].
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2.2. Data
2.2.1. EOS and LAI from GIMMS Data

GIMMS3g+, an enhanced third-generation long-term GIMMS AVHRR dataset (https:
//daac.ornl.gov/VEGETATION/guides/Global_Veg_Greenness_GIMMS_3G.html, accessed
on 10 September 2023) was published by the National Aeronautics and Space Administra-
tion (NASA). The dataset includes the leaf area index (LAI) and normalized differential
vegetation index (NDVI), adopting the WGS84 world geodetic coordinate system with a
15-day temporal resolution and a 0.0833◦ spatial resolution [36]; it has become one of the
most widely used datasets for studying and simulating vegetation [37]. Based on the QC
quality index of GIMMS3g+ data, low-quality observation data such as snow cover and
cloud fog were identified, and low weights were assigned to the data during the fitting to
avoid the interference of outliers. We then used a curve fitting method [38] to obtain the
daily NDVI curve and reduce the impact of outliers.

The EOS was obtained through the daily NDVI curve, and the EOS was determined as
the day of the year when the NDVIratio decreased to 0.5 for the respective pixel (Figure 2).
The NDVIratio was defined as follows:

NDVIratio =
NDVI − NDVImin

NDVImax − NDVImin
(1)

where NDVIratio is the ratio of NDVI, ranging from 0 to 1. NDVImin and NDVImax repre-
sent the minimum value and maximum value of the smoothed NDVI curve, respectively.

2.2.2. Meteorological and Other Supporting Data

The VPD and SM data were obtained from the Terraclimate dataset (https://gee-
community-catalog.org/projects/terraclim/, accessed on 15 September 2023). The drought
datasets were averaged by month at a spatial resolution of 4 km (1/24◦) from 1958 to
2022 [39].

Three other factors, namely, mean temperature (TMEAN), precipitation (PPT), and
solar radiation (SRAD), were used to account for the response of the EOS to drought,
obtained from the Terraclimate dataset [39].

https://daac.ornl.gov/VEGETATION/guides/Global_Veg_Greenness_GIMMS_3G.html
https://daac.ornl.gov/VEGETATION/guides/Global_Veg_Greenness_GIMMS_3G.html
https://gee-community-catalog.org/projects/terraclim/
https://gee-community-catalog.org/projects/terraclim/
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Figure 2. An illustration of the method used to extract the end of the growing season (EOS) from
NDVI data.

2.3. Methods
2.3.1. Partial Correlation Analysis

Meteorological forces generally affect vegetation for a few months before the EOS. The
preseason lengths of factors are different due to vegetation types and positions, and the
most appropriate preseason length was determined using partial correlation coefficients
between the EOS and VPD or SM with a time span ranging from June to the month
containing the EOS, controlling other corresponding factors. It was determined that the
time span whose absolute partial correlation coefficient was the highest should be the
correct preseason length at the respective pixels [40].

The correlations of the EOS with preseason VPD/SM and other factors were deter-
mined through a partial correlation analysis. To analyze the influences of dryness on the
EOS, we used other variables as controlling factors in the partial correlation analyses. The
values of the coefficients indicate the relative importance and show which climate factors
affect the EOS more. We first standardized all the variables and then calculated the partial
correlation coefficients in each pixel of the study area, presenting the contributions of
individual factors to the EOS without the influences of other factors.

2.3.2. Ridge Regression

A ridge regression analysis was applied to assess the sensitivities of EOS to VPD, SM,
and other climate factors, reducing the effects of multicollinearity on the correct detec-
tion [41]; this linear regularization method could effectively eliminate multicollinearity and
is thus appropriate for an analysis among independent variables with severe multicollinear-
ity. We employed normalized anomalies of VPD, SM, other climate factors, and the EOS as
inputs for the regression analysis, with the resulting regression coefficients representing
the sensitivities of each factor. To facilitate a direct comparison of the effects of different
factors on the EOS, we calculated the absolute values of the regression coefficients. For
each pixel, the factor associated with the highest absolute coefficient was identified as the
most influential on the EOS.

2.3.3. Decoupling the Relative Effects of VPD and SM on the EOS

VPD and SM were typically strongly coupled in both their temporal and spatial
distributions, leading to ambiguity in determining their individual effects on EOS. To
disentangle these effects, we first calculated threshold values corresponding to the 10th,
20th, . . ., and 90th percentiles of the sorted VPD and SM for each pixel in the study area,
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which were then used to categorize the EOS values into bins. The VPD and SM data were
divided into 10 bins based on the aforementioned thresholds, representing the 0–10th,
10–20th, . . ., 80–90th, and 90–100th percentiles of VPD or SM [22,42,43]. Subsequently, the
EOS values within each SM bin were sorted based on VPD thresholds, and vice versa,
resulting in a total of 100 bins (10 bins for VPD and 10 bins for SM). We then computed
the mean EOS for the pixels corresponding to each of these bins, yielding 100 average
EOS values across the different percentiles of VPD and SM. This approach allowed us to
independently assess the changes in EOS with respect to VPD or SM, without interference
from the other variable.

3. Results
3.1. Spatial and Temporal Patterns of EOS, SM, and VPD

The spatial distribution of the averaged EOS from 1982 to 2022 is presented in
Figure 3a. EOS mainly occurred between day of year (DOY) 240 and DOY 260, accounting
for about 80% of the study area. The standard deviation was mostly between 5 and 15 days,
accounting for about 82% (Figure 3b). The EOS slope from 1982 to 2022 was mostly be-
tween −0.2 and 0.4 day/year, accounting for 63%, and about 57% of the entire study area
presented a positive slope (Figure 3c). Within the study area, 36% of the pixels exhibited a
significant trend (p < 0.05) (Figure 3d).

Regarding the averaged SM from 1982 to 2022, we found that it primarily ranged
from 10 to 50 mm, accounting for about 60% (Figure 3e), and the lowest SM was found in
East Asia (Figure 3e), while the standard deviation of SM from 1982 to 2022 was mostly
distributed from 0 to 12 mm, accounting for about 80% (Figure 3f). In addition, the SM
slope from 1982 to 2022 was mostly between −0.2 and 0.2 mm/year, accounting for about
77%, and about 46% of the whole study area presented a positive slope (Figure 3g). Within
the study area, 20% of the pixels exhibited a significant trend (p < 0.05) (Figure 3h).

We found that the averaged VPD from 1982 to 2022 was mainly distributed from 0.1
to 0.4, accounting for about 81% (Figure 3i). The lowest VPD mainly appeared in Northern
Canada and northern Russia, and the highest VPD mainly appeared in East Asia and the
central areas of the United States (Figure 3i). We found that the standard deviation of
VPD from 1982 to 2022 was mostly distributed from 0.01 to 0.04, accounting for about 76%
(Figure 3j). In addition, the slope of VPD from 1982 to 2022 was mostly distributed from 0
to 0.002/year, accounting for about 77%, and about 91% of the total study area presented a
positive slope (Figure 3k). In the study area, 56% of the pixels exhibited a significant trend
(p < 0.05) (Figure 3l).

3.2. The Effects of VPD and SM on the EOS

We found that the EOS was significantly correlated with SM for 19.3% and VPD for
18.1% of all pixels (p < 0.05), among which 73.06% showed positive correlations between
the EOS and SM and 68.5% expressed negative correlations between the EOS and VPD. SM
played the most important role in 18.4% of the study area, and VPD in 15.4% (Figure 4).
About 59% of the values of the correlation coefficients between the EOS and VPD were
from −0.6 to −0.1, and about 35% of these were from 0.1 to 0.4. Regarding the values of the
correlation coefficients between the EOS and SM, about 39% were from −0.6 to 0.1, and
about 56% were from 0.1 to 0.5; for PPT, about 52% were from −0.6 to 0.1 and 44% from 0.1
to 0.5; for SRAD, about 34% were from −0.5 to −0.1 and about 62% from 0.1 to 0.5; and for
Tmean, about 38% were from −0.5 to −0.1 and 56% from 0.1 to 0.5.

In most areas of North America and Central Asia, the number of pixels in which
the EOS was negatively significantly correlated with VPD was obviously higher than the
number of pixels in which the EOS exhibited significantly positive correlations with VPD.
Inversely, the number of pixels in which the EOS exhibited significantly positive correla-
tions with VPD was obviously higher than the number of pixels in which the EOS exhibited
significantly negative correlations with VPD in most areas of Northern Europe. In most
areas east of the Ural Mountains, the number of pixels in which the EOS was negatively sig-
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nificantly correlated with SM was obviously higher than the number of pixels in which the
EOS exhibited significantly positive correlations with SM. Inversely, the number of pixels in
which the EOS exhibited significantly positive correlations with SM was obviously higher
than the number of pixels in which the EOS exhibited significantly negative correlations
with SM in most areas of Northern Europe, Central Asia, and North America.

Using the ridge regression analysis of the data from 1982 to 2022, representing the
sensitivity of EOS to VPD and SM, a contrast in the independent influences of SM and VPD
on EOS was found. We found that the EOS exhibited positive correlations with VPD in
57.7% of the study area and negative correlations in 42.4% of the study area, and the EOS
was positively correlated with SM in 62% of the study area and negatively correlated in 38%.
SM played the most important role in 10.2% of the study area, and VPD in 25% (Figure 5).
In most areas of Central Asia and North America, the EOS was negatively correlated with
VPD. Inversely, the EOS exhibited positive correlations with VPD in most areas in the west
of Russia and the north of West Siberia. In most areas of Northern Europe, North America,
and Asia, the EOS was positively correlated with SM. We found that the sensitivity of the
EOS to VPD was obviously higher than to other factors, while the coefficients of partial
correlation between the EOS and VPD were almost equal to the others.
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Figure 4. Spatial pattern of partial correlation coefficients between factors and EOS: (a) averaged tem-
perature, (b) soil moisture, (c) precipitation, (d) vapor pressure deficit, (e) solar radiation, and
(f) the most dominant factor. The gray areas represent non-significant pixels. The bars on
the left express the proportions of the partial correlation coefficients between the EOS and
corresponding factors.
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The partial correlation coefficients between the EOS and factors for different biome
types are shown in Figure 6. The correlations between climatic factors and the EOS were
obviously different among different biome types. In cases where the date of the EOS
was postponed, the temperature was significant in most temperate grasslands, savannas,
and shrublands (more than 70% of the pixels in the areas showed positive correlations).
Precipitation was more important in temperate grasslands, savannas, and shrublands
(positive in about 69%), and solar radiation was clearly more important in temperate
broadleaf and mixed forests (positive in about 76%). VPD played a more vital role in
deserts and xeric shrublands when compared with other factors (negative in about 68%),
and the role of SM was the most dominant in montane grasslands and shrublands (positive
in about 69%).
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The partial correlation coefficients between the EOS and factors for different climate
zones are shown in Figure 7. The influences of climatic controls on the EOS were obviously
different among climate zones. That the temperature postponed the date of the EOS was
obvious in most BSk and Dfb (more than 68% of pixels in these climate zones showed
positive correlations). Precipitation was more important in BSk (positive in about 74%);
however, the effects of solar radiation were obvious in Dfb, Dfc, Dfd, Dwc, and ET (more
than 59% of pixels in these climate zones showed positive correlations). VPD played a
critical role in BSk and Dfb (more than 63% of pixels in these climate zones showed negative
correlations). SM played a critical role in Cfb (positive in about 72%).

When coupling SM and VPD, it was hard to judge whether the advance in the EOS
was due to low SM, high VPD, or both. However, regarding the variation in EOS across SM
steps in the same VPD bins (the horizontal lines) and the transformation of EOS through
VPD steps in the same SM bins (the vertical lines), the correlations between the EOS and
SM or VPD without SM-VPD coupling are displayed in Figure 8.

The respective effects of SM and VPD on the EOS in the study area were examined
and are shown in Figure 7. The variations in the EOS from low VPD to high VPD without
SM-VPD coupling can quantify the VPD-induced stress on the EOS (the vertical lines).
Meanwhile, variations in the EOS from high SM to low SM without SM-VPD coupling
quantify SM-induced stress on the EOS (the horizontal lines). As the SM gradient decreased
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and the VPD gradient increased, the EOS showed an advancing trend, and in the higher
VPD bins and lower SM bins, the distribution of the EOS was less obvious.
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As depicted in Figure 9, we investigated the partial correlation coefficients between
the EOS and SM or VPD from 1982 to 2022. The mean coefficients between SM and EOS
values rose at first and then fell above an LAI threshold (Figure 9a). The absolute value of
the mean coefficients between VPD and EOS values rose at first and then fell above an LAI
threshold (Figure 9b), which may indicate that vegetation with intermediate LAI values
has a worse resistance to drought. The mean coefficients between SM and EOS values rose
in most SM sections (Figure 9c), while the mean coefficients between VPD and EOS values
declined in most VPD sections (Figure 9d), meaning that the effects of drought vary with
the severity of drought.
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4. Discussion
4.1. The Trends of VPD, SM, and the EOS during the Period from 1982 to 2022

During the period from 1982 to 2022, VPD showed an increasing trend in most of the
study area (Figure 3k), revealing the increasing trend of atmospheric drought. There was
a trend of easing atmospheric drought in some regions in the north of the United States,
the west of China, and northwestern Asia, which was a small percentage compared with
the increasing trend. The significantly increasing values of VPD might have increased the
sensitivity of the EOS to VPD, as shown in Figure 5d,f, and many studies have shown a
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general trend of increasing atmospheric drought [18], revealing the impacts of deepening
atmospheric drought on terrestrial vegetation [18,44].

In this period, the areas where SM showed an increasing trend and a decreasing
trend were generally equal. The regions with increasing and decreasing trends of SM
did not show a clear pattern (Figure 3g), which might lead to the conclusion that SM had
a less significant effect on EOS than other factors in the experiment. At the same time,
SM was affected by temperature increases, precipitation, NDVI, etc. [45], reflecting the
interaction between climate factors, and by the interaction between the climate factors and
terrestrial vegetation.

The EOS showed a postponing trend in most of the study area during the period, and
an advancing trend was mainly found in high-latitude areas (Figure 3c). Some studies have
shown that the EOS was mainly influenced by temperature and solar radiation with global
warming [46–48].

Over time, drought has intensified at an increasing pace, which might become even
more serious in the future as global warming intensifies. At the same time, more serious
drought will deepen the impact on the growth of terrestrial vegetation [49,50]. Therefore,
the long-term monitoring of VPD and SM is necessary for research on vegetation and the
carbon sink, as well as government policy.

4.2. The Responses of the EOS to VPD and SM

SM can limit vegetation photosynthesis directly by determining the yield of water
extracted by vegetation roots [22], affecting the EOS significantly and directly. We showed
the effects of SM on the EOS and the sensitivity of the EOS to SM.

By contributing to the closing of stomata of vegetation and then reducing vegetation
productivity, a high vapor pressure deficit could bring an earlier end to the growing season
as well. However, some leaf-scale studies have shown that the stomatal conductance
of some species (e.g., Douglas fir, Pseudotsuga menziesii, and Selaginella bryopteris)
did not always decrease with increasing VPD [51,52]. In addition, as VPD increases,
the evaporation rate increases and the nutrient uptake from the soil is enhanced [53,54],
enhancing vegetation growth and possibly postponing the EOS. This phenomenon might
show how vegetation responds and adapts to atmospheric dryness, and relevant studies
might explain the positive correlations between the EOS and VPD. We found that there is a
threshold LAI value that divides the influence of VPD and SM on vegetation phenology,
and a threshold effect in response to VPD was proven in preceding studies [52,55,56].

Using a partial correlation analysis, we found that the impacts of VPD and SM on the
EOS were almost equal to other factors and were thus not significantly more important.
However, the EOS was markedly more sensitive to VPD than to other factors, which
might be caused by the phenomenon in which vegetation adapts to atmospheric dryness,
as mentioned above. Recent studies have also shown that the sensitivity of phenology
to drought increased in the 21st century [57]. The regulatory mechanism of vegetation
against atmospheric drought might play an important role in the process of resistance to
atmospheric drought, which could reduce the impact of VPD on the EOS.

4.3. Responses Varied among Vegetation Types and Climate Zones

In this study, we found that the influences of VPD or SM on the EOS differed across
various biome types and climate zones. VPD played a more important role in savannas,
shrublands, temperate grasslands, deserts, and xeric shrublands. However, in tundra, the
influence of VPD on the EOS was much weaker. In temperate coniferous forests, SM played
a vital role; however, in temperate grasslands, savannas, and shrublands, the effect of SM
on the EOS was small. At the climate level, VPD played a vital role in BSk and Dfb, but
VPD played a very minor role in Dfd; SM was more significant in Cfb and Dfb, but the
effect of SM on the EOS was smaller in ET.

Some studies showed that the effects of drought on vegetation in humid areas were
less significant than in dry areas [58,59], and drought impacts were determined by water
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stress levels and drought resistance among ecosystems, which were associated with water
balance and vegetation characteristics [59].

In addition, in the areas more affected by drought, such as savannas, shrublands,
and temperate grasslands, it was often more appropriate to consider the values of other
influencing factors. The differences in the impacts of drought on the EOS could result from
several causes, and more in-depth experiments are thus needed to explore the correlations
between the EOS and drought.

4.4. Limitations

Our findings provided evidence for the roles of VPD and SM in terrestrial ecosystems
and disentangled the interactions of VPD and SM in their effects on the EOS. Generally, an
increasing VPD and decreasing SM may lead to an earlier EOS, while the effect VPD has
on vegetation remains highly uncertain due to the complexity of and the many influences
on vegetation phenology [60]. For example, in the literature, many previously unknown
factors are increasingly being proven to impact the EOS. As many unproven factors were
not considered in this analysis, the effects on the EOS as shown in the study might not
be decided only by VPD and SM. In addition, the complex regulatory mechanisms of
vegetation in response to adverse environments are not yet fully understood.

Because of the complex adaptation mechanisms of vegetation to dryness and the many
factors affecting the EOS, there are still unknown effects of dryness on the EOS. At the
same time, there are studies showing that drought can vary across different vegetation or
areas and might change over time, and meteorological dryness and ecological responses
can be so different that they are sometimes decoupled in time and space [61–63]. Con-
tinuous experiments will enhance our knowledge of the correlations between dryness
and ecosystems.

5. Conclusions

Using remote sensing and meteorological data, our study provided a new under-
standing of the correlations between autumn vegetation phenology and dryness. It was
found that the roles of VPD and SM were different in different climate zones and biome
types: VPD contributed about 12.4% (p < 0.05) and SM contributed about 14.1% (p < 0.05)
to an advanced EOS in the study area. Further comprehensive studies on the influences
of drought on autumn vegetation phenology should therefore be conducted to obtain
well-rounded conclusions.
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