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Abstract: Translational motion compensation constitutes a pivotal and essential procedure in inverse
synthetic aperture radar (ISAR) imaging. Many researchers have previously proposed their methods
to address this requirement. However, conventional methods may struggle to produce satisfactory
results when dealing with non-stationary moving targets or operating under conditions of low
signal-to-noise ratios (SNR). Aiming at this challenge, this article proposes a parametric non-search
method that contains two main stages. The radar echoes can be modeled as polynomial phase signals
(PPS). In the initial stage, the energy of the received two-dimensional signal is coherently integrated
into a peak point by leveraging phase difference (PD) and Lv’s distribution (LVD), from which the
high-order polynomial coefficients can be obtained accurately. The estimation of the first-order
coefficients is conducted during the second stage. The auto-cross-correlation function for range
profiles is introduced to enhance the accuracy and robustness of estimation. Subsequently, a novel
mathematical model for velocity estimation is proposed, and its least squares solution is derived.
Through this model, a sub-resolution solution can be obtained without requiring interpolation. By
employing all the estimated polynomial coefficients, the non-stationary motion of the target can
be fully compensated, yielding the acquisition of a finely focused image. Finally, the experimental
findings validate the superiority and robustness of the proposed method in comparison to state-of-
the-art approaches.

Keywords: inverse synthetic aperture radar (ISAR) imaging; translational motion compensation; Lv’s
distribution (LVD); auto-cross-correlation algorithm (ACCA); polynomial phase signals (PPS)

1. Introduction

As an active microwave remote sensor that can ignore all weather and sunlight con-
ditions and produce valuable images, inverse synthetic aperture radar (ISAR) plays a
significant role in all countries today [1,2]. In ISAR imaging, wideband signals are transmit-
ted by the radar system to reach high range resolution, and coherent integration is leveraged
to actualize high cross-range (azimuth) resolution [3,4]. The relative motion between the
observed target and the radar system enables the acquisition of a clear two-dimensional
(2D) image of the target [5]. In actual application and practice, the observed target is always
non-cooperative [6], and the target’s motion can be treated as a composition of transla-
tional motion and rotational motion. However, not all motion components contribute to
the imaging process. According to the ISAR rotation imaging model [7], the rotational
motion component of the target under observation may provide the requisite Doppler
frequency gradient for the creation of a high-resolution image, whereas the translational
motion component not only lacks benefit but also introduces issues concerning range cell
migration and phase errors, consequently leading to image degradation. The primary
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objectives of ISAR imaging are typically target detection [8,9] and recognition [8,10,11],
which are essential for accurate image interpretation. High image quality is a prerequisite
for all subsequent tasks, and motion compensation is an essential and preliminary step in
obtaining high-quality images. Hence, to achieve a high-quality ISAR image of the target,
it is imperative to adequately compensate for the translational motion of the target to the
greatest extent feasible [12,13]. While numerous methods have been devised to address this
issue [14–17], they often fail to yield satisfactory outcomes in low signal-to-noise ratio (SNR)
environments, notably concerning prominent targets such as maritime vessels and stealth
fighters, which hold significant importance in ISAR applications. Therefore, achieving
perfect compensation for translational motion in low SNR environments poses a significant
practical challenge and represents a valuable area for research.

The process of translational motion compensation typically encompasses range align-
ment and phase adjustment (autofocus) [18–20]. Range alignment ensures that scatterers
remain within a specific range cell. When the SNR reaches a sufficient level, the correlation
between the adjacent echoes is markedly elevated. Founded on this fact, the maximum
correlation range alignment (MCRA) method [20] can be deployed to align the range pro-
files. However, this method has trouble concerning error accumulation and is sensitive to
the target glint effect. Moreover, it is not applicable under conditions of low SNR due to
the absence of similarity between adjacent echoes. To enhance the stability of the MCRA
method, the global range alignment (GRA) method [21] and the improved global range
alignment (IGRA) method [22] have been introduced. These approaches align the range
profiles based on the sum/average of each, thereby augmenting their suitability and effec-
tiveness. The sharpness of the 2D range profiles will be maximized if the whole profiles are
aligned accurately; hence, several optimization-based methods [23–25] are proposed with
the contrast/entropy criteria. However, these approaches [21–25] only use the range pro-
files’ magnitude information and fall into the non-coherent integration methods, exhibiting
a poor anti-noise performance. Moreover, these methods correct the range profiles to half
of the range resolution, resulting in insufficient accuracy and necessitating interpolation
in practical applications, thereby imposing an additional computational burden. There
are few methods that can effectively address the low SNR scenario with a high level of
accuracy, which is a motivating factor for us.

Phase adjustment is conducted after range alignment to linearize the phase history.
Generally, the phase adjustment methods can be categorized broadly into two diverse
classes: nonparametric and parametric. The dominant scatterers method [26] and phase
gradient autofocus (PGA) method [27] belong to the nonparametric category, and they
can achieve satisfactory results under conditions of stationary target motion and adequate
SNR. Unfortunately, these methods rely heavily on the target’s dominant scattering center,
which may be troublesome to extract in scenarios of deteriorating SNR. The PGA method
necessitates iterative computations, incurring computational expenses. For better robust-
ness, image quality-based parametric methods are developed [28–30]. When the phase
adjustment is performed perfectly, the quality of the ISAR image will be the best. The
above parametric methods commonly optimize the phase error with the goal of contrast
maximum [28,29] or entropy minimum [30]. The efficacy of these optimization techniques
in mitigating noise is excellent with the aid of the SNR gain achieved through coherent
integration in the azimuth direction. However, their high computational burden is univer-
sal, and their performance is closely linked with the range alignment. Only if the range
alignment is delivered accurately can the image quality-based methods be valid. This
prerequisite raises a higher requirement for the accuracy of the range alignment.

Essentially, the translational motion of a moving target leads to both range migration
and phase errors, presenting an opportunity for simultaneous compensation of both. Vari-
ous parametric approaches [31–33] are introduced using translational motion modeling to
realize joint range alignment and phase adjustment. These methods can take full advantage
of the SNR gain of 2D coherent integration, carrying a better anti-noise performance, but
they still exhibit certain limitations. The maximum contrast range alignment method [31]
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devises an iterative search approach to estimate model parameters by maximizing image
contrast. However, the modeling of range translational motion solely as a second-order
polynomial function in this approach may result in potential mismatching between the
model and practical scenarios, thereby imposing significant constraints on the method’s
applicability. In reference [32], an advanced high-order polynomial function was formu-
lated to characterize the translational motion, offering a more apposite depiction of the
observed moving target. What’s more, it introduced the minimum entropy image quality
evaluation metric (IQEM) as a cost function to estimate the polynomial coefficients and
designs with a quasi-Newton-based algorithm to attain the optimal solution. However,
due to the non-convex nature of the IQEM function, there remains a possibility that the
method may converge towards a local optimal solution, particularly under the low SNR
scenario. To avoid falling into a local optimal solution, particle swarm optimization (PSO)
is employed to facilitate the attainment of a global optimal solution, and the combined
IQEM-PSO method [33] is proposed. However, there are still some notable constraints for
this method. The computational demands of the PSO method remain particularly onerous,
thus precluding the system from accommodating real-time requirements. In addition, the
IQEM struggles to correctly characterize images’ quality under low SNR scenarios. The
two constraints are presumed to result in a compensation defeat and the degradation of the
generated ISAR image.

Inspired by prior research and persistent challenges, this paper proposes a paramet-
ric non-search approach based on phase difference-Lv’s distribution and an auto-cross-
correlation algorithm for ISAR translational motion compensation that spares no effort
to enhance the SNR gain. To ensure the accuracy of this model, a third-order polynomial
function is employed to represent the translational motion of the target; thus, the target’s
velocity, acceleration, and acceleration rate are all taken into account. With the assistance of
the third-order model, the proposed method can achieve joint range alignment and phase
adjustment feasibly, thus making the 2D coherent integration gain a reality. In addition, the
moving target can be treated as a rigid body, and the scatterers share the same translational
motion parameters that do not concern the scatterers’ individual positions. Based on this
fact, the phase difference (PD) operation is leveraged to coherently convert the received 2D
signal power to the one-dimensional (1D) compressive range cell signal during the first
stage of the proposed method. Meanwhile, the keystone transform (KT) plays a pivotal
role in intensifying SNR gain. Lv’s distribution (LVD) [34] follows the PD operation and
the KT transform to coherently transform the 1D chirp signal to a peak point. LVD is a
powerful tool for the analysis of non-stationary signals [34,35]. After two coherent inte-
grations, the energy of the received signal is integrated into a peak point, indicating the
strong robustness of the method and the accurate estimation of the high-order polynomial
coefficients. In the next stage, to estimate the first-order polynomial coefficients accurately
and robustly, the auto-cross-correlation function (ACCF) for range profiles is defined, which
is more robust than the cross-correlation function (CCF). Benefiting from the ACCF, a novel
mathematical optimization model for first-order parameter estimation is developed, and its
least squares (LS) solution is derived to achieve a sub-resolution level without interpolation
and searching, namely the auto-cross-correlation algorithm (ACCA). With all the estimated
polynomial coefficients, the non-stationary motion of the target can be fully compensated
using the compensation function, yielding the appearance of a clear and focused ISAR
image. Finally, the experimental findings validate the superiority and robustness of the
proposed method compared to state-of-the-art approaches.

The remainder of this article is organized as follows. Section 2 establishes the cubic
phase signal model of ISAR imaging for a non-stationary moving target. The proposed
translational motion compensation method is introduced in detail in Section 2.2 where the
PD-LVD and ACCA methods are employed to estimate the translational motion parameters.
Section 3 demonstrates several measured data processing results by different approaches
to validate the proposed method’s superiority, and Section 4 offers a comparative analysis



Remote Sens. 2024, 16, 3554 4 of 29

and discussion on the outcomes of alternative methods alongside the proposed approach.
Finally, Section 5 presents the conclusions.

2. Materials and Methods
2.1. ISAR Imaging Geometry and Cubic Phase Signal Model

This section focuses on ISAR imaging geometry and establishes the cubic phase signal
model for a non-stationary moving target. Figure 1 illustrates the classic ISAR imaging
geometry model of a moving target, where OXY is a target body Cartesian coordinate
system. Point O is the origin of OXY as well as the rotational center in the observed
target, assuming that the target contains P scatterers and point p represents the pth scatterer
whose coordinate is

(
xp, yp

)
. The physical motion of the target can be considered as the

combination of the translation and rotation motions, and v and ω represent these two
motions, respectively. Without losing generality, this thesis focuses on translational motion,
and the target can be regarded as rotating uniformly, meaning the angular velocity ω is just
a constant.
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Figure 1. General ISAR imaging geometry model of a moving target.

For the ISAR system, chirp signal usually plays the transmitting signal role [36,37],
and its mathematical expression is

st(t) = rect
(

t̂
Tp

)
exp

{
j2π

(
fct +

1
2

µt̂2
)}

, (1)

where Tp is the pulse width, t̂ ∈
[
−Tp/2, Tp/2

]
is the fast time, t is the full time, fc is the

transmitting frequency of the system, µ is the chirp rate of the transmitted signal, and
rect(∗) is defined as

rect(u) =
{

1 |u| ≤ 1/2
0 |u| > 1/2

, u ∈ R. (2)

The full-time variable t meets t = tm + t̂, where tm stands for the slow time. Assuming N is
the number of pulses and ∆T is the pulse repetition interval (PRI), tm can be expressed as
n · ∆T, n = 0, 1, 2, · · · , N − 1.

After undergoing demodulation processing by the receiver, the echo signal is shifted
to the baseband, which can be expressed in terms of t̂ and tm as follows:
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sr
(
t̂, tm

)
=

P

∑
p=1

σprect

 t̂−
2Rp(tm)

c
Tp

 exp

{
jπµ

(
t̂−

2Rp(tm)

c

)2
}

exp
{
−j4π

Rp(tm)

λ

}
, (3)

where σp is the reflection coefficient of the pth scatterer, Rp(tm) is the range distance from
the radar to the pth scatterer, c represents the velocity of light, and λ is the wavelength of
the transmitted electromagnetic wave.

According to the principle of stationary phase (POSP), the frequency response function
of the transmitted chirp signal can be written as (4) approximately:

U( f ) =
1
√

µ
rect

(
f
B

)
exp

{
−j

π

µ
f 2
}

, (4)

where f is the frequency variable, and B = µTp is the bandwidth of the chirp signal, similar
to (1).

By conducting Fourier Transform (FT) concerning the fast time t̂ based on (4), the
received signal form in the range-frequency slow-time domain is derived as

S( fr, tm) =
P
∑

p=1
σpU( fr) exp

{
−j2π fr

2Rp(tm)

c

}
exp

{
−j4π

fc

c
Rp(tm)

}
=

P
∑

p=1
σpU( fr) exp

{
−j4π

fr + fc

c
Rp(tm)

} , (5)

where fr is the range frequency variable and the equality λ = c/ fc is involved in the
derivation.

Matching filtering is employed to realize the goal of range compression, and the
compressed signal is shown in (6):

S( fr, tm) =
P

∑
p=1

σ′p exp
{
−j4π

fr + fc

c
Rp(tm)

}
, (6)

where σ′p = σp|U( fr)|2.
The detection distance of the ISAR system always satisfies the far field condition, so

the electromagnetic wave that hits the target can be seen as a plane wave. Hence, the
instantaneous range distance from the radar to the pth scatterer can be approximated as

Rp(tm) ≈ Ro(tm) + r sin θ(tm), (7)

where Ro(t) is the instantaneous range distance from the radar to the rotational center
O, and (r, θ(tm)) is the instantaneous polar coordinate of the pth scatterer whose initial
Cartesian coordinate is

(
xp, yp

)
. The instantaneous polar angle θ(tm) consists of the initial

polar angle and the rotation angle at time tm.
Assuming the initial polar angle is θ0, it is readily observed that (8) holds:{

xp = r cos θ0
yp = r sin θ0

. (8)

Assuming θω(tm) represents the real-time rotation angle, according to (7) and (8),
Rp(tm) can be rewritten as

Rp(tm) ≈ Ro(tm) + r sin(θ0 + θω(tm))
= Ro(tm) + yp cos(θω(tm)) + xp sin(θω(tm))

. (9)
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In fact, θω(tm) is usually small (3◦~5◦) [24], so the approximations in (10) are available [38].{
cos(θω(tm)) ≈ 1
sin(θω(tm)) ≈ θω(tm)

. (10)

While Ro(tm) contains the initial range distance R0 and the translation distance RT(tm),
substituting (10) into (9) yields

Rp(tm) ≈ R0 + RT(tm) + yp + xpθω(tm). (11)

For an ideal ISAR rotating imaging model [7], RT(tm) and θω(tm) are expected to be
0 and ωtm, respectively, where ω is the angular velocity. In this circumstance, Rp(tm) is
turned into

Rp(tm) ≈ R0 + yp + xpωtm. (12)

Substituting (12) into (6) yields

S( fr, tm) =
P

∑
p=1

σ′p exp
{
−j4π

fr + fc

c
(

R0 + yp + xpωtm
)}

. (13)

Subsequently, the signal form in the fast-time slow-frequency domain is acquired using the
FT and inverse FT (IFT), as illustrated in (14):

S
(
t̂, fm

)
=

P

∑
p=1

σ′psin c

{
B

(
t̂−

2
(

R0 + yp + xpωtm
)

c

)}
sin c

{
Td

(
fm −

2xpω

λ

)}
, (14)

where fm is the slow frequency variable and Td is the dwell time during the imaging. In
(14), xpωtm can be negligible compared to

(
R0 + yp

)
in the first sinc function, and a clear

ISAR image is obtained. This is why ISAR has the capability to generate high-resolution
2D images of a moving target.

Unfortunately, due to the substantial disparity between ideal conditions and real-world
applications, obtaining a clear image without compensating for translational motion is
rendered unfeasible. A third-order Taylor expansion polynomial is used to mathematically
approximate the target’s translational motion to investigate the ISAR translational motion
compensation, as shown in (15):

RT(tm) = vtm +
1
2

αt2
m +

1
6

βt3
m, (15)

where v, α, and β correspond to velocity, acceleration, and jerk, respectively. By substituting
(15) into (11), the expression for the range distance that aligns more closely with reality is
provided as follows:

Rp(tm) ≈ R0 + yp + xpωtm + vtm +
1
2

αt2
m +

1
6

βt3
m. (16)

Substituting (16) into (6), the compressed signal can be rewritten as

S( fr, tm) =
P

∑
p=1

σ′p exp
{
−j4π

fr + fc

c

(
R0 + yp + xpωtm + vtm +

1
2

αt2
m +

1
6

βt3
m

)}
, (17)
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and the cubic phase signal emerges. To investigate the detrimental impact induced by
translational motion, (17) is converted to the fast-time domain using the IFT:

S
(
t̂, tm

)
=

P
∑

p=1
σ′psin c

B

t̂−
2
(

R0 + yp + xpωtm + vtm +
1
2

αt2
m +

1
6

βt3
m

)
c




× exp

−j
4π

(
R0 + yp + xpωtm + vtm +

1
2

αt2
m +

1
6

βt3
m

)
λ


. (18)

According to (18), the issues posed by translational motion affect not only the range profile
envelope but also the Doppler modulation phase. On the one hand, the range migration
term is incorporated into the envelope. On the other hand, phase error is introduced into
the Doppler modulation phase. To address the aforementioned challenges and achieve a
sharp ISAR image, it is essential to accurately estimate the translational parameters v, α,
and β, and endeavor to compensate (17) to the greatest extent possible.

2.2. Proposed Translational Motion Compensation Method

This section introduces a robust translational motion compensation method in ISAR
imaging for a non-stationary moving target. With the help of the cubic phase signal model,
two sequential procedures have been formulated to estimate the high-order and first-order
polynomial coefficients accurately, as shown in Figure 2. The observed target is abstracted
as a set of several scatterers, depicted in Figure 2a. There is nonlinear migration for original
range profiles in Figure 2b due to the non-stationary motion of the target. After PD and
LVD processing, the high-order polynomial coefficients’ estimations are obtained so the
nonlinear migration can be removed. The resulting range profiles with linear migration are
presented in Figure 2c. The invocation of a first-order polynomial coefficient estimation
based on ACCA follows, yielding aligning range profiles shown in Figure 2e. Eventually, a
well-focused ISAR image is generated through Doppler frequency analysis, as depicted in
Figure 2d. The subsequent segment elaborates in detail on enhancing the SNR gain and
accurately estimating the parameters.
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focused ISAR image of the moving target. (e) Fully compensated range profiles with the estimated
first-order motion parameters.



Remote Sens. 2024, 16, 3554 8 of 29

2.2.1. High-Order Polynomial Coefficient Estimation Based on PD-LVD

It is evident that the compressed signal (17) constitutes a multicomponent cubic phase
signal at each range frequency fr. Considering the independence of the target’s motion
mode from the scatterers’ positions, a PD operation can be employed to integrate signal
energy into a single range cell. Simultaneously, the reduction of the Doppler modulation
phase’s order and the issue’s simplification are achieved. The following Equation (19)
illustrates the PD operation outcome for signal (17) in the range-frequency slow-time
domain:

SPD( fr, tm; τ) = S( fr, tm + τ)S∗( fr, tm − τ)

=
P
∑

p=1

∣∣∣σ′p∣∣∣2 exp
{
−j4π

fr + fc

c

[
2τ
(
v + xpω

)
+

1
3

βτ3 + 2ατtm + βτt2
m

]}
+SPDcross−term

, (19)

where τ is the constant lag time variable, X∗ represents the complex conjugate of X, and
SPDcross−term are the cross-terms caused by the PD operation. Clearly, the PD operation
metamorphoses the cubic phase signal into a chirp signal. For the convenience of observ-
ing the integration result, the signal is transformed to the fast-time domain via an IFT
concerning the range frequency fr, as shown in (20):

sPD
(
t̂, tm; τ

)
=

P
∑

p=1

∣∣∣σ′p∣∣∣2sin c

B

t̂−
2
(

2τ
(
v + xpω

)
+

1
3

βτ3 + 2ατtm + βτt2
m

)
c




× exp
{
−j4π

fc

c

[
2τ
(
v + xpω

)
+

1
3

βτ3 + 2ατtm + βτt2
m

]}
+SPD−IFTcross−term

, (20)

where SPD−IFTcross−term stand for the cross-terms.
From the observation in (20), it is not difficult to find that all of the signal energy is

concentrated within range cell
(
2τ
(
v + xpω

)
+ βτ3/3 + 2ατtm + βτt2

m
)
, where only tm is

varying over time in the expression. Although βτt2
m can be neglected as a high-order term,

the linear term 2ατtm is large enough that the signal energy will be integrated into different
range cells, and against overall SNR gain enhancement. Fortunately, such range migration
can be mitigated effectively through the application of KT [39,40]. The virtual slow-time
variable tn is formulated as specified in (21) in accordance with the KT.

tm =
fc

fr + fc
tn, (21)

where tn is the virtual slow-time variable.
Substituting (21) into (19), yields the result of KT as follows:

SPD−KT( fr, tn; τ) =
P
∑

p=1

∣∣∣σ′p∣∣∣2 exp
{
−j4π

fr + fc

c

[
2τ
(
v + xpω

)
+

1
3

βτ3
]}

× exp
{
−j4π

fc

c
· 2ατtn

}
× exp

{
−j4π

f 2
c

c( fr + fc)
· βτt2

n

}
+SPD−KTcross−term

, (22)

where SPD−KTcross−term represent the cross-terms. One can observe that after applying
the KT, the range frequency fr and the slow-time variable tn have been decoupled in
the first-order coefficient. However, the coupling phenomenon persists in the second-
order coefficient despite the application of KT, necessitating crucial approximations and
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operations. Given that fr ≪ fc, the following approximation is justified according to Taylor
expansion:

f 2
c

fr + fc
≈
(

1− fr

fc

)
fc = fc − fr. (23)

Substituting (23) into (22), the KT result can be rewritten as

SPD−KT( fr, tn; τ) =
P
∑

p=1

∣∣∣σ′p∣∣∣2 exp
{
−j4π

fr + fc

c

[
2τ
(
v + xpω

)
+

1
3

βτ3
]}

× exp
{
−j4π

fc

c
· 2ατtn

}
× exp

{
−j4π

fc − fr

c
· βτt2

n

}
+SPD−KTcross−term

. (24)

To observe the fast-time domain signal, IFT concerning the range frequency fr is
conducted, obtaining

sPD−KT
(
t̂, tn; τ

)
=

P
∑

p=1

∣∣∣σ′p∣∣∣2sin c

B

t̂−
2
(

2τv + 2τxpω +
1
3

βτ3 − βτt2
n

)
c




× exp
{
−j

4π

λ

[
2τ
(
v + xpω

)
+

1
3

βτ3 + 2ατtn + βτt2
n

]}
+sPD−KTcross−term

, (25)

where sPD−KTcross−term are the cross-terms in the fast-time domain.
From (25), it’s obvious that all of the signal energy is concentrated within range cell(

2τv + 2τxpω + βτ3/3− βτt2
n
)
. The monomials 2τxpω and βτt2

n are somewhat small and
always negligible in practical scenarios, despite their spatial and temporal variability. In this
manner, the range cell of energy concentration can be determined as

(
2τv + βτ3/3

)
. As for

the cross-terms sPD−KTcross−term, as detailed in Appendix A, their energy also concentrates
within certain range cells, albeit with significantly weaker amplitudes compared to the
auto-terms. Therefore, the 2D echo data can be coherently integrated into the 1D signal
by extracting the certain range cell with the maximum energy, shown in (26), thereby
potentially yielding a significant SNR gain enhancement:

s(tn) =
P
∑

p=1
Ap exp

{
−j

4π

λ

[
2τ
(
v + xpω

)
+

1
3

βτ3 + 2ατtn + βτt2
n

]}
=

P
∑

p=1
Ap exp

(
jφp + j2π f0tn + jπµ0t2

n
) , (26)

where Ap =
∣∣∣σ′p∣∣∣2sin c

[
B
(
t̂− t0

)]
, t0 is the fast time corresponding to the maximum energy

range cell, and φp = − 4π
λ

[
2τ
(
v + xpω

)]
, f0 = − 4ατ

λ , and µ0 = − 4βτ
λ are the initial phases

of the pth scatterer, center frequency, and chirp rate, respectively.
As indicated in (26), the extracted range cell manifests as a multicomponent chirp

signal, wherein the center frequency and chirp rate denote the parameters of translational
motion for the observed target. Supposing that accurate estimations for the chirp signal are
acquired, the motion parameters can be determined as follows:{

α̂ = −λ
f̂0
4τ

β̂ = −λ
µ̂0
4τ

, (27)

where f̂0 and µ̂0 represent the estimations of f0 and µ0, respectively.
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Now the current issue shifts to the parameter estimation of the chirp signal. Once
the signal parameters (center frequency and chirp rate) are accurately estimated, the
translational parameters of the target can be precisely inferred, thus enabling the completion
of translational compensation. Fortunately, LVD [34], a bilinear time-frequency method that
transforms a chirp signal to the center frequency-chirp rate (CFCR) domain, can qualify this
issue effectively. One of the pivotal procedures of LVD involves a scaling transformation
that ensures its outcomes are devoid of cross-term interference [41]. A comprehensive
introduction to LVD will be provided in the subsequent paragraphs.

The parametric symmetric instantaneous auto-correlation function (PSIAF) for the
s(tn) is denoted as

RPSIAF(tn, τ̂) = s
(

tn +
τ̂
2

)
s∗
(

tn − τ̂
2

)
=

P
∑

p=1
A2

p exp{j2π f0τ̂ + j2πµ0tnτ̂}+ RPSIAFcross−term
, (28)

where τ̂ is a time lag variable and RPSIAFcross−term represent the cross-terms in the PSIAF.
From (28), there is coupling between the time variable tn and the lag variable τ̂. This

coupling phenomenon can be eliminated by employing a scaling transformation approach,
which is inspired by KT. With the help of the construction of a virtual time variable tn = tnτ̂,
the PSIAF can be rewritten as

RPSIAF
(
tn, τ̂

)
=

P

∑
p=1

A2
p exp

{
j2π f0τ̂ + j2πµ0tn

}
+ RPSIAF−cross−term, (29)

where RPSIAF and RPSIAF−cross−term are the PSIAF and cross-terms after the scaling trans-
formation. It is clear that RPSIAF has been decoupled and a 2D FT is applied to compute the
LVD of s(tn), as illustrated in (30).

LVD{s(tn)} = FT2D
{

RPSIAF
(
tn, τ̂

)}
=

P
∑

p=1
A2

pδ( f − f0)δ(µ− µ0) + FT2D
{

RPSIAF−cross−term
} , (30)

where δ(∗) is the Dirac function, and f and µ are the center frequency variable and chirp
rate variable, respectively.

Obviously, the 1D signal is coherently integrated to a peak point in the CFCR plane,
and the estimations of the signal’s parameters can be obtained by easily determining the
location of the peak. However, it is noteworthy that the cross-terms are still lying in (30).
Indeed, prior research by the authors, as cited in [3], has demonstrated that the cross-terms
do not coherently integrate after FT, thus exerting a negligible impact on the resulting
outcome. This finding leads to the asymptotic linearity of LVD, as shown in (31):

LVD{s(tn)} ≈
P

∑
p=1

A2
pδ( f − f0)δ(µ− µ0). (31)

Due to this attribute, LVD is a gifted time-frequency method whose performance of robust-
ness and estimation accuracy is awesome.

Since there is both a PD operation and an LVD transformation in the proposed high-
order polynomial coefficient estimation method, it is named PD-LVD. According to the
descriptions of the proposed method above, Figure 3 presents a specific depiction of
PD-LVD to enhance understanding of the entire procedure. After range FT and pulse
compression, the first coherent integration is executed to transform all the scatterers’ energy
into a certain range cell. One of the most important steps is the PD operation during the
first coherent integration, which also contains KT and range IFT. Then the second coherent
integration follows, which is composed of signal extraction and LVD. The estimations of
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signal parameters imply that high-order translational motion coefficients can be derived
just by a simple peak point detection.
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After two coherent integrations, the energy of the received signal is integrated into a
strong peak point by PD-LVD, and the signal parameters’ estimations f̂0 and µ̂0 are acquired
successfully. This allows the construction of the high-order translation compensation
function, seen in (32).

ΦHigh−Order( fr, tm) = exp
{

j4π
fr + fc

c

(
1
2

α̂t2
m +

1
6

β̂t3
m

)}
. (32)

With the help of the high-order phase compensation function, the negative effects caused
by acceleration and jerk will be eliminated heavily:

Sv( fr, tm) = S( fr, tm)×ΦHigh−Order( fr, tm)

=
P
∑

p=1
σ′p exp

{
−j4π

fr + fc

c
[
R0 + yp +

(
xpω + v

)
tm
]} . (33)

2.2.2. First-Order Polynomial Coefficient Estimation Based on ACCA

The PD-LVD processing gives a compensated signal with a linear phase concerning tm
from (33). For a further investigation on the linear phase, Sv( fr, tm) is transformed to the
fast-time domain, as (34) presents:

sv
(
t̂, tm

)
=

P
∑

p=1
σ′psin c

{
B

[
t̂−

2
(

R0 + yp +
(
xpω + v

)
tm
)

c

]}
× exp

{
−j4π

fc

c
[
R0 + yp +

(
xpω + v

)
tm
]} . (34)
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Although rotation and translation motions have a similar influence in the linear phase,
there is a seriously huge difference in magnitude, in other words, xpω ≪ v. In such a cir-
cumstance, the envelope of the fast-time domain signal can be approximately expressed as

∣∣sv
(
t̂, tm

)∣∣ ≈ P

∑
p=1

σ′psinc

{
B

(
t̂−

2
(

R0 + yp + vtm
)

c

)}
, (35)

where |X| represents the modulus of X. Looking at the expression, a linear migration
in the range profiles is observed due to the velocity, and the displacement between two
consecutive envelopes is solely contingent upon the velocity magnitude, implying that the
velocity estimation may be generated from the displacement estimation.

As indicated in Section 2, the received data comprises N pulses with a PRI of ∆T,
where additionally, tm = n∆T and n = 0, 1, 2, · · · , N − 1. Supposing there are K sample
points in a range profile pulse, and the sampling interval is denoted as ∆t̂, then (35) can be
discretized as follows:

rn(k) =
P

∑
p=1

σ′psinc

{
B

[
k∆t̂−

2
(

R0 + yp + vn∆T
)

c

]}
, (36)

where rn(k) means the nth pulse’s kth sample point, and k = 0, 1, 2, · · · , K− 1.
Clearly, there is a fixed displacement for arbitrary range profiles rn1(k) and rn2(k), as

(37) demonstrates:
rn2(k) = rn1(k− k(n2, n1)), (37)

where k(n2, n1) = v(n2 − n1)∆T/(c/2B) represents the displacement of rn2(k) relative to
rn1(k). When we perform a Discrete FT (DFT) on both sides of (37) simultaneously, and the
frequency domain expression is shown as

Rn2(u) = Rn1(u) exp
{
−j

2π

K
uk(n2, n1)

}
, (38)

where u is the frequency variable, and Rn1(u) and Rn2(u) represent the DFT results of rn1(k)
and rn2(k), respectively. The displacement manifests through the linear phase, which can
be acquired via a cross-correlation operation, as (39) shows.

SCC(u) =
Rn1(u)R∗n2

(u)∣∣Rn1(u)R∗n2
(u)
∣∣ = exp

{
j
2π

K
uk(n2, n1)

}
, (39)

where SCC(u) represents the cross-correlation function of Rn1(u) and Rn2(u), and u ∈
[−(K− 1), K− 1] is the index variable. The result is normalized since the pertinent infor-
mation resides only within the phase component.

According to (39), a simple inverse DFT (IDFT) is capable to estimate the displacement
k(n2, n1), as shown in

sCC(k) = IDFT{SCC(u)} = δ(k− k(n2, n1)), (40)

where sCC(k) is the IDFT result of SCC(u).
Under ideal conditions, displacement estimation can be successfully derived through

peak detection simply. Unfortunately, this method is seriously affected by the noise and
clutter inevitable in the realistic complex electromagnetic environment. Furthermore, it
can only offer a solution with an accuracy limited to one range resolution for the reason
of discretization, leading to terrible performance. The following offers a comprehensive
introduction to ACCA, a method adept at effectively addressing these issues.
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Consider that the frequency spectrum of the range profiles is affected by zero mean
additive Gaussian noise, which has a constant variance, as illustrated in (41).{

R̂n1(u) = Rn1(u) exp{jηn1(u)}
R̂n2(u) = Rn2(u) exp{jηn2(u)}

, (41)

where R̂n1(u) and R̂n2(u) represent the DFT results with noise, and ηn1(u) and ηn2(u) are
the phase noise that is assumed to be independent and identically distributed. In this way,
the cross-correlation function (CCF) of R̂n1(u) and R̂n2(u) can be written as

ŜCC(u) = SCC(u) exp{jηS(u)}, (42)

where ŜCC(u) is the CCF with noise and ηS(u) = ηn1(u)− ηn2(u) is the phase noise. The
aforementioned IDFT method employs ŜCC(u) for estimation instead of SCC(u), which
contributes to its poor performance.

The auto-cross-correlation function (ACCF) of R̂n1(u) and R̂n2(u) in this paper is
defined as

SACC(ξ) =
1

C(ξ)∑
u

ŜCC(u)Ŝ∗CC(u− ξ)

=
1

C(ξ)
SCC(ξ)∑

u
exp{jηS(u)− jηS(u− ξ)}

, (43)

where C(ξ) is the number of sum terms, and ξ ∈ [−(2K− 2), 2K− 2] is the index variable.
Significantly, the ACCF SACC(ξ) represents the auto-correlation function of CCF ŜCC(u)
from (43), and that’s why it’s named ACCF. Appendix B demonstrates that the expectation
of SACC(ξ) shares the same phase as the idea of noise-free CCF SCC(ξ), while additionally
exhibiting superior noise variance performance compared to CCF ŜCC(ξ), making ACCF a
preferable alternative for estimating. The remainder of this section introduces the proposed
method for estimating displacement (velocity) using ACCF, referred to as the auto-cross-
correlation algorithm (ACCA).

The ACCF can be rewritten as

SACC(ξ) = exp
{

j
2π

K
ξk(n2, n1)

}
· NACC(ξ), (44)

where NACC(ξ) = ∑
u

exp{jηS(u)− jηS(u− ξ)}/C(ξ) represents the phase noise. It is worth

noting that not all elements in the SACC(ξ) sequence are employed in reality. To ensure
robustness and accuracy, only elements incorporating a significantly greater number of
summation terms prove beneficial. This assumes that Q elements are selected to be treated
by the proposed method, which can be expressed as

sQ =
(
SACC(ξ1), SACC(ξ2), SACC(ξ3), · · · , SACC

(
ξQ
))T, (45)

where sQ is the selected vector, and
(
ξ1, ξ2, ξ3, · · · , ξQ

)
correspond to the indexes of ele-

ments that have the first Q large sum terms.
Let

wQ =
(
exp{jw1k(n2, n1)}, exp{jw2k(n2, n1)}, · · · , exp

{
jwQk(n2, n1)

})T, (46)

where wq = 2πξq/K. Then the displacement estimation problem can be regarded as an
unconstrained global optimization, as shown in〈

k̂(n2, n1)
〉
= arg min

k(n2,n1)

∥∥sQ −wQ
∥∥2

2, (47)
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where k̂(n2, n1) is the estimation of the displacement. Thanks to the fact that the valuable
information only lies in the phase component, the optimization model can be reformulated
into a phase representation as〈

k̂(n2, n1)
〉
= arg min

k(n2,n1)

∥∥Phase
{

sQ
}
− Phase

{
wQ
}∥∥2

2, (48)

where Phase{X} means the phase of X, and Phase
{

wQ
}
= k(n2, n1)

(
w1, w2, · · · , wQ

)T.
Let ψ = Phase

{
sQ
}

and w =
(
w1, w2, · · · , wQ

)T, then (48) can be rewritten as〈
k̂(n2, n1)

〉
= arg min

k(n2,n1)
∥ψ− k(n2, n1)w∥2

2, (49)

where k(n2, n1) is an unknown parameter to be determined, w represents an artificially
constructed vector, and ψ can be computed from the received signal. The LS solution of
this optimization is derived as

k̂(n2, n1) =
(

wTw
)−1

wTψ. (50)

The estimation of displacement between any two arbitrary range profiles can be ob-
tained by leveraging Equation (50). Thanks to the LS solution, the optimization-based
method achieves a more accurate sub-resolution solution without escalating the computa-
tional load. Selecting the initial range profile as the reference, the displacement vector ∆k
can be generated, as illustrated in

∆k =
(

k̂(1, 1), k̂(2, 1), k̂(3, 1), · · · , k̂(N, 1)
)T

. (51)

Correspondingly, the slow time vector ∆t is constructed as

∆t = (0, ∆T, 2∆T, · · · , (N − 1)∆T)T. (52)

If the high-order translational motion is compensated ideally, the relationship as (53) shows
holds.

{(∆ti, ∆ki)|i = 1, 2, 3, · · · , N } ⊆ {(x, y)|y = vx, x ∈ R}, (53)

where ∆ti and ∆ki are the ith element in ∆t and ∆k, respectively. These point pairs (∆ti, ∆ki)
lie on a line passing through the origin, with its slope exactly representing the velocity v. In
other words, the velocity estimation v̂ can be derived from the slope of this line. Based on
∆k and ∆t, the slope vector γ is written as

γ =

(
k̂(2, 1)

∆T
,

k̂(3, 1)
2∆T

, · · · ,
k̂(N, 1)

(N − 1)∆T

)T

. (54)

Under ideal conditions, all elements in γ are very similar. Therefore, the estimation
of the line’s slope can be obtained simply by computing the average of the slope vectors.
However, the observed slope values always fluctuate seriously around the true value due
to the influence of noise and clutter. To address this issue, the slope histogram is introduced
to select more meaningful data points during estimation.

Assuming there are L levels in the histogram, the range of each bin is then

∆ =
max(γ)−min(γ)

L
, (55)

where max(X) and min(X) represent the maximum and minimum of X, respectively. As a
result, L bins [min(γ), min(γ) + ∆), [min(γ) + ∆, min(γ) + 2∆), . . ., [min(γ) + (L− 1)∆,
min(γ) + L∆] emerge. The slope histogram Hγ can then be established by allocating all the
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elements in γ into these L bins. Finally, the bin with the highest frequency of data points is
utilized for velocity estimation, as shown in

v̂ =
∑ γ

(
Ipick

)
length

(
Ipick

) , (56)

where Ipick and length
(

Ipick

)
represent the indexes and number of the picked data points,

respectively. The proposed method raises the amount of accuracy and robustness by screen-
ing out those data points that are unacceptable. For a specific and detailed demonstration,
Algorithm 1 gives a complete pseudocode of ACCA.

Algorithm 1: Auto-Cross-Correlation Algorithm (ACCA)

Input: The discrete range profiles: {rn(k)|n = 0, 1, 2, · · · , N − 1; k = 0, 1, 2, · · · , K− 1}.
Output: The estimation of the first-order translational motion parameter: v̂.
1: Use DFT to transform the signal to frequency domain.

R̂n(u)← DFT{rn(k)} ;
2: For Iterate over the slow time indexes n← 0, 1, . . . , N − 1 ;
3: Calculate the CCF ŜCC(u)←

R̂0(u)R̂∗n(u)
|R̂0(u)R̂∗n(u)|

;

4: Calculate the ACCF SACC(ξ)← 1
C(ξ)∑

u
ŜCC(u)Ŝ∗CC(u− ξ) ;

5: Select Q data points in the middle of ACCF to construct sQ,

sQ ←
(
SACC(ξ1), SACC(ξ2), SACC(ξ3), · · · , SACC

(
ξQ
))T ;

6: Compute the phase vector ψ← Phase
{

sQ
}

;

7: Construct vector w←
(
w1, w2, · · · , wQ

)T ;

8: Estimate the displacement k̂(n + 1, 1)←
(
wTw

)−1wTψ ;
9: End For
10: Construct the displacement vector ∆k←

(
k̂(1, 1), k̂(2, 1), · · · , k̂(N, 1)

)T
;

11: Construct the slow time vector ∆t← (0, ∆T, · · · , (N − 1)∆T)T ;

12: Calculate the slope vector γ =
(

k̂(2,1)
∆T , k̂(3,1)

2∆T , · · · , k̂(N,1)
(N−1)∆T

)T
;

13: Establish the slope histogram Hγ;
14: Detect the bin with the most points and save the picked indexes

Ipick ← Find_Max _Bin
(
Hγ
)

;

15: Estimate the first-order translational motion parameter v̂← ∑ γ(Ipick)
length(Ipick)

;

Once the velocity estimation has been obtained, the first-order translation compensa-
tion function is subsequently constructed, denoted as

ΦFirst−Order( fr, tm) = exp
{

j4π
fr + fc

c
vtm

}
. (57)

Then, the remaining first-order translational motion can be fully compensated by applying
the compensation function to the signal (33), which is free of high-order motion parameters.
The compensation process is illustrated as

STMC( fr, tm) = Sv( fr, tm)×ΦFirst−Order( fr, tm)

=
P
∑

p=1
σ′p exp

{
−j4π

fr + fc

c
[
R0 + yp + xpωtm

]} , (58)

where STMC( fr, tm) is the signal after translational motion compensation. From (58), all
the translational motion parameters are eliminated thoroughly. It gives a guarantee of a
well-focused ISAR image following compensation, as (14) shows.
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2.2.3. Translational Motion Compensation and ISAR Imaging Based on the
Proposed Method

Ultimately, it is observed that all translational motion parameters are accurately
estimated, thereby negating the adverse effects caused by the target’s motion, including
both the envelope and phase. Figure 4 illustrates the comprehensive procedures of the
proposed method as detailed in Section 3, aimed at enhancing understanding. As evident,
the entire process is divided into two primary modules: high-order and first-order motion
compensations. The high-order motion compensation initiates the process, utilizing the
PD-LVD operation to generate estimates of acceleration and jerk, which are crucial for
constructing the high-order compensation function. After the first compensation, the
high-order motion’s dreadful influence is eliminated, resulting in a linear phase. Then the
first-order motion compensation is on the stage. It employs ACCA to estimate the velocity,
which plays an important role in the first-order compensation function. After the second
compensation, all negative effects of translational motion are fully compensated, yielding a
well-focused ISAR image that can be generated using FT and IFT.
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Figure 4. Procedures of the proposed translational motion compensation method based on PD-LVD
and ACCA.

3. Results

In this section, extensive experiments are conducted on a measured dataset from a
vessel to verify and evaluate the performance of the proposed method for ISAR imaging.
The employed vessel data is captured via an X-band ISAR system, with additional parame-
ters detailed in Table 1. It transmits chirp signals, and the received signals are de-chirped
following I/Q sampling. To validate the robustness, the measured data is employed to
generate synthetic data at varying SNRs.

Table 1. ISAR system parameters for the employed vessel data.

Parameters Values

Carrier frequency 9.6 GHz
Signal bandwidth 500 MHz

Pulse repetition frequency 125 Hz
Rang samples 792

Azimuth samples 615
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To begin, Figure 5 presents the ideal depiction of the illuminated vessel as a reference
image. As can be observed, the vessel belongs to a freighter approximately 100 m in length,
with the bow positioned at the top of the pattern.

Figure 5. Ideal ISAR imaging result of the vessel.

To illustrate the efficacy of the proposed approach, third-order translational motion
is introduced into the dataset with an input SNR set to 5 dB. More specifically, the vessel
is regarded as having a translational motion with v = 5.0 m/s, α = 3.0 m/s2, and
β = 0.7 m/s3, yielding a nonlinear range migration and phase error, as Figure 6a shows.
Figure 6b gives the ISAR imaging result based on Figure 6a. Apparently, due to significant
range migration, the imaging process has failed, and the result is absolutely unacceptable.
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result.

It becomes obvious that the nonlinear bending emerges due to the target’s non-
stationary motion. Subsequently, the data incorporating translational motion is processed
using the PD-LVD method to estimate and compensate for the high-order motion, and the
results for each step are illustrated in Figure 7. Figure 7a depicts the outcome post-PD,
revealing that the energy from all scatterers is concentrated within two range cells (396#
to 398# range cells). To adjust the misalignment, KT is necessary, and Figure 7b illustrates
how KT causes the energy to focus on a single range cell (398# range cell). According
to the proposed PD-LVD method, the 398# range cell is then extracted as the input for
the subsequent LVD process. Figure 7c gives the results of LVD. Apparently, the energy
converges to a peak due to the twice coherent integration process. From the results the
estimations of acceleration and jerk are 3.0047 m/s2 and 0.6965 m/s3, which coincide ex-
actly with the presets. With the aid of estimations, the high-order compensation function is
successfully constructed. As depicted in Figure 7d, the high-order compensation effectively
eliminates nonlinear bending in the range profiles, leading to linear migration, where only
the first-order motion parameter (velocity) introduces negative effects.
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Figure 7. Results of each step for the proposed PD-LVD method. (a) Range profiles after PD. (b) Range
profiles after PD and KT. (c) Results of LVD and high-order parameters estimation. (d) Range profiles
after high-order motion compensation.

ACCA is performed to compensate for the first-order parameters, and Figure 8 presents
the results during the processing. Figure 8a shows the displacement estimation results for
each range profile relative to the first one. The estimated results suggest a consistent up-
ward trend with a linear characteristic. However, due to the glitter effect and the presence
of noise, clutter, and other interference factors, the estimation results fluctuate drastically,
complicating the acquisition of target velocity information through displacement estima-
tion values. To ensure accuracy, the slope histogram is generated from the displacement
curve, as depicted in Figure 8b. The fact that 72 points fall into the bin whose boundaries
are 0.1293 and 0.1402 is plain to see. Based on the proposed algorithm, the mean of these
72 samples is calculated to be 0.1333. When converted to velocity units, it corresponds to
4.9951 m/s, which is consistent with the predefined velocity value. Following the first-
order compensation function utilizing the estimated velocity to further correct the range
profiles, the outcomes are illustrated in Figure 8c. The range profiles appear flat, indicating
successful cancellation of all negative effects of the translational motion. The ISAR imag-
ing result following translational motion compensation through the proposed method is
shown in Figure 8d, aligning consistently with Figure 5. A sequence of experiments has
demonstrated the method’s effective capability in achieving translational compensation for
maneuvering targets.
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Figure 8. Results of each step for the proposed ACCAbased firstorder motion compensation method.
(a) Displacement curve for each pulse relative to the first one estimated by ACCA. (b) Slope histogram
for the curve in (a). (c) Range profiles after highorder and first-order motion compensations. (d) ISAR
imaging result of the proposed method.

To validate the remarkable robustness of the proposed approach based on PD-LVD
and ACCA, extensive experiments are delivered under different SNRs of 0,−5, and−10 dB.
Moreover, the results are exhibited for comparison with the MCRA+PGA method and the
IQEM-PSO method in Figure 9. The first row of Figure 9 provides the ideal ISAR images
under different SNRs as references. The second row shows the imaging results of the
MCRA+PGA method under different SNRs. It can be concluded that the image quality
of this method is significantly poor, with performance deteriorating sharply as the SNR
decreases from Figure 9d–f. As depicted in the figures, the results of the MCRA+PGA
method show pronounced defocusing at 0 dB and inadequate compensation under the
conditions of −5 dB and −10 dB. This suggests that achieving satisfactory results with this
method for translational motion compensation in low SNR environments is challenging due
to the destruction of the coherent characteristics of adjacent pulse. Instead, the IQEM-PSO
method demonstrates superior performance compared to the MCRA+PGA method, as
Figure 9g–i shows. It can achieve passable compensation under various SNR conditions,
albeit in a manner where the defocusing intensifies as the SNR decreases. Particularly, the
image obtained via this approach merely presents an approximate representation of the ship
at −10 dB, as depicted in Figure 9i, given that the IQEM-PSO algorithm has a propensity
to converge towards locally optimal solutions in low SNR environments. In contrast, the
results generated from the proposed method are well-focused and similar to ideal results at
any SNR condition, as demonstrated in Figure 9j–l. Owing to the 2D coherent integration
and the application of ACCF, the proposed method can accurately estimate and compensate
for translational parameters and output a clear ISAR image even if SNR = −10 dB. The
experimental results reveal that the proposed method demonstrates good stability in low
SNR environments and outperforms alternative methods for image quality.
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IQEM-PSO method. (j–l) ISAR images generated by the proposed method.

To further assess the efficacy of the proposed method, the repeated experiment is
conducted with different motion parameters, which are v = 0.5 m/s, α = −0.2 m/s2,
and β = 0.1 m/s3. The misaligned range profiles with translational motion are given in
Figure 10a. It appears to be aligned when observed visually due to the small values of the set
parameters. However, the negative effects of phase errors for ISAR imaging are detrimental,
and Figure 10b convincingly illustrates this perspective. Due to the translational motion
of the target, there is a serious smearing effect in the imaging result, and the energy
of the scatterers is poorly concentrated. Generally, such imaging results are deemed
unacceptable. Applying the proposed method to process the data yields the following
estimations: v̂ = 0.4997 m/s, α̂ = −0.2003 m/s2, and β̂ = 0.0998 m/s3. The range
profiles following motion compensation are depicted in Figure 10c. Benefiting from accurate
estimation results, compensation processing ensures that both the envelope and phase are
appropriately corrected, resulting in a well-focused ISAR image, as illustrated in Figure 10d.
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In comparison to the original image, the structural details of the vessel are significantly
clearer, and there is a marked enhancement in image quality. This improvement will
facilitate subsequent image interpretation tasks.
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Finally, to validate the universality of the proposed method, a dataset of a measured
vessel with unknown actual motion parameters was utilized for analysis. Figure 11a,b
illustrate the original range profiles and ISAR images of the data, respectively. Figure 11a
exhibits not only range migration but also a noticeable level of noise. As a consequence,
Figure 11b displays blurring and energy leakage, resulting in a low-quality ISAR im-
age. Using the proposed method, the estimated motion parameters are v̂ = 0.3101 m/s,
α̂ = −0.6328 m/s2, and β̂ = −0.4219 m/s3. Based on the estimations, the precise phase
compensation function is formulated, and Figure 11c demonstrates the compensated range
profiles. Owing to the strong robustness, almost all the motion effects are eliminated, and
the range profiles become straight lines. Figure 11d presents the final imaging result treated
by the proposed method. Compared to Figure 11b, there is a notable enhancement in
both the degree of focus and the reduction of energy leakage. This result underscores the
effectiveness and reliability of the proposed method.
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4. Discussion

To quantitatively compare the performance of different methods, image entropy is
utilized as an objective criterion for evaluating image quality. Generally, the smaller the
entropy at the same SNR, the better the image quality. The image entropy E of an ISAR
image I(m, n) is defined as

E =
M

∑
m=1

N

∑
n=1

|I(m, n)|2
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n=1
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∑

n=1
|I(m, n)|2

|I(m, n)|2
, (59)

where M and N are the numbers of samples for fast and slow time domains, respectively.
After calculating the image entropy of all the ISAR images in Figure 9, the results are
summarized in Figure 12.

As you can see, the entropy of the images obtained by the proposed images is the
least, yielding the best image quality. The results of the MCRA+PGA method are the worst
due to the anti-noise performance being the poorest. Once the SNR is not adequate, the
MCRA method will break down. The entropy of the IQEM-PSO method surpasses that
of the MCRA+PGA method due to its moderate noise tolerance. Nonetheless, it remains
constrained by the issue of local optimal solutions.
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To further substantiate the superiority of the proposed method, a comprehensive
analysis of the algorithm’s time complexity and SNR gain will be presented in the following.

The time complexity of ACCA is theoretically evaluated and compared with that of
MCRA and IQEM-PSO. According to [20], the time complexity of MCRA is

CMCRA = O(4NK log K + NK log N + 2NK). (60)

As for IQEM-PSO method, its time complexity can be expressed as [33]

CIQEM−PSO = O

(
Pfinal IparticalemaxNK(log N + log K) + NK log K +

Pfinal

∑
P=1

NP2

)
, (61)

where Pfinal is the final estimated polynomial order, Ipartical is the number of particles, and
emax is the maximum number of iterations. Owing to the search procedure inherent in this
method, its computational burden exhibits a high sensitivity to the number of particles and
iterations.

The time complexity of ACCA can be inferred from the pseudocode presented in
Algorithm 1. ACCA consists of the following procedures: N times K-point FFT, N cross-
correlation operations (signal length is K), N auto-correlation operations (signal length is
2K − 1), NK comparisons, N calculate phase operations for a Q-point vector, N assignments
for a Q-point vector, N times LS, and L comparisons. Finally, the total computation load is
written as

CACCA = O(2NK log K + N(2K− 1) log(2K− 1) + NK + 3NQ + L). (62)

When K is relatively large, N(2K− 1) log(2K− 1) and 2NK log K become similar in value.
Furthermore, Q is smaller than K; for instance, Q could be K/4. Additionally, L is signifi-
cantly smaller than both N and K. Thus, CACCA can be approximated as

CACCA ≈ O
(

4NK log K +
7
4

NK
)

. (63)

Based on the above analysis, it can be inferred that the computational burden of ACCA
is the least, particularly when considering the interpolation requirements for MCRA in
practical scenarios. The computational burden of IEQM-PSO is the heaviest due to its multi-
dimensional search procedure, which hampers its suitability for real-time applications.
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A detailed analysis of the SNR gain was subsequently conducted. Assuming the

energy of the noise is En, the input SNR can be written as SNRin =
P
∑

p=1
σ2

p/En. As we

all know, during range compression, the signal amplitude transforms to
√

BTσp, where
BT = B × Tp represents the time–bandwidth product. Based on this information, the

output SNR after range compression is SNRRC =
P
∑

p=1

(√
BTσp

)2
/En = BT SNRin. After

the application of PD and KT, the energy is coherently concentrated within a single range

cell. The energy contained within this range cell is
P
∑

p=1

(
BTσ2

p

)2
, while the noise energy

present in the same range cell is represented as E2
n/K. Therefore, the output SNR after

PD-KT is SNRPD−KT =
P
∑

p=1

(
BTσ2

p

)2
/E2

n/K = K SNR2
RC. Finally, LVD is utilized to

achieve coherent integration, thereby concentrating the energy into a prominent peak, and
the output SNR after LVD is SNRPD−KT−LVD = N SNRPD−KT . Hence, the relationship
between SNRin and SNRout can be elucidated as SNRout = NKBT2SNR2

in, and the decibel
(dB) representation is as follows:

SNRout = 2SNRin + 10 log N + 10 log K + 20 log BT. (64)

For the IQEM-PSO method, which utilizes 2D-coherent integration of range and
azimuth compressions, the relationship between the input SNR and output SNR can be
expressed as SNR′out = NKSNRin. The dB representation, similarly, is written as

SNR′out = SNRin + 10 log N + 10 log K, (65)

where SNR′out means the output SNR with IQEM-PSO method.
Based on (64) and (65), it is evident that the proposed method significantly enhances the

output SNR. It incorporates two coherent integrations, concentrating the entire energy into
a prominent peak, thereby facilitating exceptional noise immunity. Overall, the proposed
method demonstrates exceptional resilience to noise and holds considerable promise for
producing high-quality ISAR images in practice.

5. Conclusions

This paper focuses on the translational motion compensation for a non-stationary
moving target during ISAR imaging. Although extensive methods have been proposed
to address the issue, they typically struggle to perform well in scenarios with low SNR.
With this background, a robust method based on PD-LVD and ACCA is developed in
this paper. With the assistance of the third-order motion model of the target, the PD-LVD
technique can focus all target energy onto a strong point, significantly enhancing the SNR
gain. With the help of the definition of ACCF, the ACCA method is developed to estimate
the first-order polynomial coefficient. The proposed ACCA method exhibits superior noise
tolerance compared to traditional approaches and is capable of achieving a sub-resolution
solution without the need for exhaustive searching, thereby ensuring both robustness and
efficiency. Finally, the experimental results demonstrate that the proposed method achieves
outstanding imaging performance with superior image quality compared to state-of-the-art
approaches.
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Appendix A

This appendix establishes the mathematical formulation of the cross-terms and demon-
strates that the energy of the auto-terms surpasses that of the cross-terms in (25).

For conciseness, it is assumed that there are two components, S1 and S2, in the received
signals shown in (A1), meaning that two scatterers are illuminated and captured by the
ISAR system.

S( fr, tm) = σ′1 exp
{
−j4π

fr + fc

c

(
R0 + y1 + vtm +

1
2

αt2
m +

1
6

βt3
m + x1ωtm

)}
︸ ︷︷ ︸

S1

+σ′2 exp
[
−j4π

fr + fc

c

(
R0 + y2 + vtm +

1
2

αt2
m +

1
6

βt3
m + x2ωtm

)]
︸ ︷︷ ︸

S2

. (A1)

After conducting the PD operation, the cross-terms can be expressed as

SPDcross−term( fr, tm; τ)
= S1( fr, tm + τ)S∗2( fr, tm − τ) + S2( fr, tm + τ)S∗1( fr, tm − τ)

= σ′1σ′2
∗ exp

{
−j4π

fr+ fc
c

[
(y1 − y2) + 2τv + (x1 + x2)ωτ + 1

3 βτ3

+(2ατ + (x1 − x2)ω)tm + βτt2
m

]}
+σ′2σ′1

∗ exp
{
−j4π

fr+ fc
c

[
(y2 − y1) + 2τv + (x2 + x1)ωτ + 1

3 βτ3

+(2ατ + (x2 − x1)ω)tm + βτt2
m

]} . (A2)

During the KT which followed, the scaling transform (21) was substituted into (A2),
yielding

SPD−KTcross−term( fr, tn; τ)

= σ′1σ′2
∗ exp

{
−j4π

fr+ fc
c

[
(y1 − y2) + 2τv + (x1 + x2)ωτ + 1

3 βτ3

+(2ατ + (x1 − x2)ω)
fc

fr+ fc
tn + βτ

(
fc

fr+ fc
tn

)2

]}

+ σ′2σ′1
∗ exp

{
−j4π

fr+ fc
c

[
(y2 − y1) + 2τv + (x2 + x1)ωτ + 1

3 βτ3

+(2ατ + (x2 − x1)ω)
fc

fr+ fc
tn + βτ

(
fc

fr+ fc
tn

)2

]} . (A3)

By employing the Taylor series expansion, (A3) can be approximated as

SPD−KTcross−term( fr, tm; τ)

≈ σ′1σ′2
∗ exp

{
−j4π

fr+ fc
c

[
(y1 − y2) + 2τv + (x1 + x2)ωτ + 1

3 βτ3
]}

× exp
{
−j4π

fc
c [(2ατ + (x1 − x2)ω)tn]

}
× exp

{
−j4π

fc− fr
c
(

βτt2
n
)}

+σ′2σ′1
∗ exp

{
−j4π

fr+ fc
c

[
(y2 − y1) + 2τv + (x2 + x1)ωτ + 1

3 βτ3
]}

× exp
{
−j4π

fc
c [(2ατ + (x2 − x1)ω)tn]

}
× exp

{
−j4π

fc− fr
c
(

βτt2
n
)}

. (A4)
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Performing the IFT concerning fr, the fast-time domain signal expression of (A4) is
written as

sPD−KTcross−term
(
t̂, tn; τ

)
= σ′1σ′2

∗sinc

B

t̂−
2
(
(y1−y2)+2τv+(x1+x2)τω+

βτ3
3 −βτt2

n

)
c


× exp

{
−j4π

fc
c

[
(y1 − y2) + 2vτ + (x1 + x2)ωτ + 1

3 βτ3
]}

× exp
{
−j4π

fc
c [(2ατ + (x1 − x2)ω)tn]

}
× exp

{
−j4π

fc
c
(

βτt2
n
)}

+ σ′2σ′1
∗sinc

B

t̂−
2
(
(y2−y1)+2τv+(x2+x1)τω+

βτ3
3 −βτt2

n

)
c


× exp

{
−j4π

fc
c

[
(y2 − y1) + 2vτ + (x2 + x1)ωτ + 1

3 βτ3
]}

× exp
{
−j4π

fc
c [(2ατ + (x2 − x1)ω)tn]

}
× exp

{
−j4π

fc
c
(

βτt2
n
)}

. (A5)

As the illustration mentioned in Section 2.2.1, the monomials (x1 + x2)τω and βτt2
n

are negligible. As a consequence, the energy of the cross-terms concentrates in the
range cells

(
(y1 − y2) + 2τv + βτ3/3

)
and

(
(y2 − y1) + 2τv + βτ3/3

)
, and their ampli-

tudes are
∣∣σ′1σ′2

∗∣∣ and
∣∣σ′2σ′1

∗∣∣, respectively. While the two attributes of the cross-terms are(
2τv + βτ3/3

)
and

∣∣σ′1∣∣2 + |σ′2|2, respectively. The subsequent analysis will quantitatively
examine the relationship between their amplitudes.

Supposing that σ′1 = A1 exp{jφ1}, σ′2 = A2 exp{jφ2}, where A1, A2 are two positive
real numbers, then it can be concluded that

∣∣σ′1σ′2
∗∣∣ = A1 A2∣∣σ′2σ′1
∗∣∣ = A2 A1∣∣σ′1∣∣2 + |σ′2|2 = A2

1 + A2
2

. (A6)

Considering the basic inequality A2
1 + A2

2 ≥ 2A1 A2, where the equals sign makes
sense only if A1 = A2, the following unequal relationship works:

A2
1 + A2

2 > A1 A2. (A7)

It is obvious that the amplitude of the auto-terms is greater than that of the cross-
terms from (A6) and (A7), meaning that the range cell corresponding to auto-terms in the
fast-time domain has the maximum energy. Therefore, the pure auto-terms signal can be
obtained just by extracting the range cell exhibiting the highest energy, and thus enabling
the enhancement of available SNR gain.

Appendix B

This appendix derives the expectation and variance of ACCF SACC(ξ) in detail. As-
suming that the phase noise in CCF is independent and identically distributed in Gaussian,
whose mean and variance are ρ and σ2, respectively, the mathematical expression can be
written as {

E{exp{jηS(u)}} = ρ
Var{exp{jηS(u)}} = σ2 , (A8)

where E{X} and Var{X} represent the expectation and variance of X, respectively.
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Zhu proves that under the condition where noise in the time domain follows a zero-
mean Gaussian distribution, the probability density function (PDF) of phase noise in the
frequency domain will exhibit symmetry about zero [42], making (A9) hold the following:

E{exp{jηS(u)}} = E{cos ηS(u)}. (A9)

When we draw upon (A9) to calculate the expectation of the accumulated term
ŜCC(u)Ŝ∗CC(u− ξ) in ACCF, the result is shown as

E
{

Ŝ(u)Ŝ∗(u− ξ)
}

= E
{

Ŝ(u)
}

E
{

Ŝ∗(u− ξ)
}

= E{S(u) exp{jηS(u)}}E{S∗(u− ξ) exp{−jηS(u− ξ)}}
= S(u)S∗(u− ξ) · E{exp{jηS(u)}}E{exp{−jηS(u− ξ)}}
= S(ξ) · E{cos ηS(u)}E{cos ηS(u− ξ)}

. (A10)

Therefore, the expectation of ACCF is

E{SACC(ξ)} = E
{

1
C(ξ)∑

u
Ŝ(u)Ŝ∗(u− ξ)

}
=

1
C(ξ)∑

u
E
{

Ŝ(u)Ŝ∗(u− ξ)
}

=
S(ξ)
C(ξ)∑

u
E{cos ηS(u)}E{cos ηS(u− ξ)}

, (A11)

where C(ξ), E{cos ηS(u)} and E{cos ηS(u− ξ)} are all real numbers, thus the phase of
E{SACC(ξ)} is the same as S(ξ).

From the definition (43), it is not difficult to discern that the noise present in the
ACCF is ∑

u
exp{jηS(u)− jηS(u− ξ)}/C(ξ). The accumulated phase term ηACC(u, ξ) =

ηS(u)− ηS(u− ξ) is given attention first, and its variance is calculated as

Var{exp{jηACC(u, ξ)}} = E
{
[exp{jηACC(u, ξ)}]2

}
− {E[exp{jηACC(u, ξ)}]}2

= E
{
[exp{jηS(u)}]2

}
· E
{
[exp{−jηS(u− ξ)}]2

}
−[E{exp{jηS(u)}} · E{exp{−jηS(u− ξ)}}]2

=
{

Var{exp{jηS(u)}}+ [E{exp{jηS(u)}}]2
}

·
{

Var{exp{−jηS(u− ξ)}}+ [E{exp{−jηS(u− ξ)}}]2
}

−ρ4

=
(
σ2 + ρ2) · (σ2 + ρ2)− ρ4

= σ4 + 2σ2ρ2

. (A12)

Moreover, the variance of the noise is written as

Var


∑
u

exp{jηACC(u, ξ)}

C(ξ)

 =
1

C2(ξ)
Var
{

∑
u

exp{jηACC(u, ξ)}
}

=
1

C2(ξ)
∑
u

Var{exp{jηACC(u, ξ)}}

=
1

C2(ξ)
∑
u

(
σ4 + 2σ2ρ2)

=
σ4 + 2σ2ρ2

C(ξ)

(A13)

According to (A13), the variance of phase noise transitions from σ2 to σ4 + 2σ2ρ2/C(ξ),
or it will be σ4/C(ξ) when the mean is zero. Therefore, if C(ξ) is greater than σ2, the noise
level of ACCF will always be lower than that of CCF. Fortunately, the number of sum
terms C(ξ) is up to 104, which guarantees it is always the larger one, making a superior
estimation performance with ACCF in practice.
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