Multi-Domain Joint Synthetic Aperture Radar Ship Detection Method Integrating Complex Information with Deep Learning
Abstract
:1. Introduction
- (1)
- This article proposes a multi-domain joint SAR ship detection method combining complex information and deep learning, which exploits the characteristics of ships in the eigen-subspace domain and time-frequency domain within SAR SLC data, combined with the advantages of deep learning, to significantly improve detection efficiency.
- (2)
- To meet the training requirements of deep learning, we constructed a dataset that contains 640 amplitude images of SLC SAR imagery in the time-frequency domain, which was divided into training and test sets in the ratio of 8:2.
- (3)
- Taking advantage of the dataset, a lightweight ship detector was designed. The detector deletes the detection neck, which is widely adopted in single-stage detectors for fusing the multi-scale features, and achieves a better balance between computational complexity and accuracy.
2. Proposed Method
2.1. Assessing the Existence of Ships
2.2. Detecting the Positions of Ships
2.2.1. STFT
2.2.2. TFSID
2.2.3. LSDet
3. Experiments
3.1. Experimental Settings
3.2. Datasets
3.3. Evaluation Indicators
3.4. Experimental Comparison and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Su, H.; Gao, L.; Wang, T. Deep learning for SAR ship detection: Past, present and future. Remote Sens. 2022, 14, 2712. [Google Scholar] [CrossRef]
- Liu, T.; Yang, Z.; Gao, G.; Marino, A.; Chen, S.W. Simultaneous diagonalization of Hermitian matrices and its application in PolSAR ship detection. IEEE Tran. Geosci. Remote Sens. 2023, 61, 5220818. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, L.; Shen, B.; Liu, T. PolSAR Ship Detection Based on Azimuth Sublook Polarimetric Covariance Matrix. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 8506–8518. [Google Scholar] [CrossRef]
- Goldstein, G. False-alarm regulation in log-normal and Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. 1973, AES-9, 84–92. [Google Scholar] [CrossRef]
- Crisp, D.J. The State-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery; Citeseer: Princeton, NJ, USA, 2004. [Google Scholar]
- Kuttikkad, S.; Chellappa, R. Non-Gaussian CFAR techniques for target detection in high resolution SAR images. In Proceedings of the 1st International Conference on Image Processing, Austin, TX, USA, 13–16 November 1994; Volume 1, pp. 910–914. [Google Scholar]
- Qin, X.; Zhou, S.; Zou, H.; Gao, G. A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2012, 10, 806–810. [Google Scholar]
- Tao, D.; Anfinsen, S.N.; Brekke, C. Robust CFAR detector based on truncated statistics in multiple-target situations. IEEE Trans. Geosci. Remote Sens. 2015, 54, 117–134. [Google Scholar] [CrossRef]
- Ai, J.; Yang, X.; Song, J.; Dong, Z.; Jia, L.; Zhou, F. An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery. IEEE J. Ocean. Eng. 2017, 43, 267–279. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, X.; Xu, X.; Zeng, T.; Zhang, T.; Shi, J. CFAR-guided Convolution Neural Network for Large Scale Scene SAR Ship Detection. In Proceedings of the 2023 IEEE Radar Conference (RadarConf23), San Antonio, TX, USA, 1–5 May 2023; pp. 1–5. [Google Scholar]
- Zeng, T.; Zhang, T.; Shao, Z.; Xu, X.; Zhang, W.; Shi, J.; Jun, W.; Zhang, X. CFAR-DP-FW: A CFAR-guided Dual-Polarization Fusion Framework for Large Scene SAR Ship Detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2024, 17, 7242–7259. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the 2014 IEEE International Conference on Computer Vision (ICCV), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750. [Google Scholar]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 213–229. [Google Scholar]
- Wang, Z.; Du, L.; Mao, J.; Liu, B.; Yang, D. SAR target detection based on SSD with data augmentation and transfer learning. IEEE Geosci. Remote Sens. Lett. 2018, 16, 150–154. [Google Scholar] [CrossRef]
- Yang, R.; Pan, Z.; Jia, X.; Zhang, L.; Deng, Y. A novel CNN-based detector for ship detection based on rotatable bounding box in SAR images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 1938–1958. [Google Scholar] [CrossRef]
- Sun, Z.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. BiFA-YOLO: A novel YOLO-based method for arbitrary-oriented ship detection in high-resolution SAR images. Remote Sens. 2021, 13, 4209. [Google Scholar] [CrossRef]
- Yang, Y.; Ju, Y.; Zhou, Z. A super lightweight and efficient SAR image ship detector. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4006805. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Xia, Y.; Xiao, H. DBW-YOLO: A High-Precision SAR Ship Detection Method for Complex Environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7029–7039. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, M.; Wu, L.; Yu, D.; Li, J.; Fan, F.; Zhang, L.; Liu, Y. Lightweight SAR Ship Detection Network Based on Transformer and Feature Enhancement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4845–4858. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H.; Ma, F.; Pan, Z.; Zhang, F. A sidelobe-aware small ship detection network for synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5205516. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, G.; Ma, F.; Zhou, Y.; Zhang, F. SAR Ship Detection Based on Explainable Evidence Learning under Intra-class Imbalance. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5207715. [Google Scholar]
- Wu, W.; Li, X.; Guo, H.; Ferro-Famil, L.; Zhang, L. Noncircularity parameters and their potential applications in UHR MMW SAR data sets. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1547–1551. [Google Scholar] [CrossRef]
- El-Darymli, K.; Mcguire, P.; Gill, E.W.; Power, D.; Moloney, C. Characterization and statistical modeling of phase in single-channel synthetic aperture radar imagery. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2071–2092. [Google Scholar] [CrossRef]
- Leng, X.; Ji, K.; Zhou, S.; Xing, X. Ship detection based on complex signal kurtosis in single-channel SAR imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6447–6461. [Google Scholar] [CrossRef]
- Lv, Z.; Lu, J.; Wang, Q.; Guo, Z.; Li, N. ESP-LRSMD: A Two-Step Detector for Ship Detection Using SLC SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5233516. [Google Scholar] [CrossRef]
- Rao, B.D.; Hari, K. Weighted subspace methods and spatial smoothing: Analysis and comparison. IEEE Trans. Signal Process. 1993, 41, 788–803. [Google Scholar] [CrossRef]
- Zhuang, X.; Cui, X.; Lu, M.; Feng, Z. Low-complexity method for DOA estimation based on ESPRIT. J. Syst. Eng. Electron. 2010, 21, 729–733. [Google Scholar] [CrossRef]
- Gabor, D. Theory of communication. Part 1: The analysis of information. J. IEEE 1946, 93, 429–441. [Google Scholar] [CrossRef]
- Sunkara, R.; Luo, T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Grenoble, France, 19–23 September 2022; Springer: Cham, Switzerland, 2022; pp. 443–459. [Google Scholar]
- Zhang, R. Making convolutional networks shift-invariant again. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; PMLR: Birmingham, UK, 2019; pp. 7324–7334. [Google Scholar]
- Yu, W.; Zhou, P.; Yan, S.; Wang, X. Inceptionnext: When inception meets convnext. arXiv 2023, arXiv:2303.16900. [Google Scholar]
- Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR ship detection dataset (SSDD): Official release and comprehensive data analysis. Remote Sens. 2021, 13, 3690. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 10012–10022. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. arXiv 2019, arXiv:1904.01355. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Guo, Y.; Chen, S.; Zhan, R.; Wang, W.; Zhang, J. LMSD-YOLO: A lightweight YOLO algorithm for multi-scale SAR ship detection. Remote. Sens. 2022, 14, 4801. [Google Scholar] [CrossRef]
- Tian, C.; Liu, D.; Xue, F.; Lv, Z.; Wu, X. Faster and Lighter: A Novel Ship Detector for SAR Images. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4002005. [Google Scholar] [CrossRef]
ESIDConv | Without Neck | AP50 | Parameter | FLOPs | FPS |
---|---|---|---|---|---|
× | × | 99.5 | 1.7 M | 4.1 G | 126.4 |
× | ✓ | 99.5 | 1.1 M | 2.9 G | 156.3 |
✓ | × | 99.5 | 1.0 M | 2.7 G | 161.2 |
✓ | ✓ | 99.5 | 0.3 M | 1.2 G | 215.9 |
Method | AP50 | AP75 | Parameter | FLOPs | FPS |
---|---|---|---|---|---|
Swin-T | 98.1 | 63.4 | 48 M | 267 G | 11.9 |
FCOS | 98.8 | 71.2 | 86 M | 745 G | 56.6 |
Mask-RCNN | 99.1 | 67.4 | 86 M | 197 G | 23.5 |
retinaNet | 98.5 | 63.4 | 9 M | 26.8 G | 30.5 |
YOLOv5n | 99.5 | 72.6 | 1.7 M | 4.1 G | 126.4 |
YOLOv7-tiny | 99.3 | 77.9 | 6 M | 13 G | 128.5 |
LSDet (ours) | 99.5 | 57.9 | 0.3 M | 1.2 G | 215.9 |
Method | AP50 | AP75 | Parameter | FLOPs | FPS |
---|---|---|---|---|---|
Swin-T | 94.6 | 68.3 | 48 M | 267 G | 10.1 |
Mask-RCNN | 91.3 | 63.4 | 86 M | 197 G | 17 |
FCOS | 93.2 | 67.8 | 32 M | 73 G | 47 |
YOLOv5n | 97.2 | 75.1 | 1.7 M | 4.1 G | 104 |
LMSD-YOLO * | 98.0 | - | 3.5 M | 6.6 G | 68 |
LFer-Net * | 98.2 | 80.4 | 0.6 M | 1.9 G | 144 |
LSDet (ours) | 96.3 | 66.2 | 0.3 M | 1.2 G | 186.3 |
Method | P | R | Times |
---|---|---|---|
Complete YOLOv5n | 98.2 | 95.6 | 8.32 s |
Ours method | 100 | 98.7 | 5.47 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, C.; Lv, Z.; Xue, F.; Wu, X.; Liu, D. Multi-Domain Joint Synthetic Aperture Radar Ship Detection Method Integrating Complex Information with Deep Learning. Remote Sens. 2024, 16, 3555. https://doi.org/10.3390/rs16193555
Tian C, Lv Z, Xue F, Wu X, Liu D. Multi-Domain Joint Synthetic Aperture Radar Ship Detection Method Integrating Complex Information with Deep Learning. Remote Sensing. 2024; 16(19):3555. https://doi.org/10.3390/rs16193555
Chicago/Turabian StyleTian, Chaoyang, Zongsen Lv, Fengli Xue, Xiayi Wu, and Dacheng Liu. 2024. "Multi-Domain Joint Synthetic Aperture Radar Ship Detection Method Integrating Complex Information with Deep Learning" Remote Sensing 16, no. 19: 3555. https://doi.org/10.3390/rs16193555
APA StyleTian, C., Lv, Z., Xue, F., Wu, X., & Liu, D. (2024). Multi-Domain Joint Synthetic Aperture Radar Ship Detection Method Integrating Complex Information with Deep Learning. Remote Sensing, 16(19), 3555. https://doi.org/10.3390/rs16193555