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Abstract: Remotely sensed nighttime light data have become vital for electrification mapping in
data-scarce regions. However, uncertainty persists regarding the veracity of these electrification
maps. This study investigates how characteristics of electrified areas influence their detectability
using nighttime lights. Utilizing a dataset comprising the locations, installation date, and electricity
purchase history of thousands of electric meters and transformers from utilities in Rwanda and
Kenya, we present a systematic error assessment of electrification maps produced with nighttime
lights. Descriptive analysis is employed to offer empirical evidence that the likelihood of successfully
identifying an electrified nighttime light pixel increases as characteristics including the time since
electrification, the number of meters within a pixel, and the total annual electricity purchase of
meters in a pixel increase. The performance of models trained on various temporal aggregations of
nighttime light data (annual, quarterly, monthly, and daily) was compared, and it was determined
that aggregation at the monthly level yielded the best results. Additionally, we investigate the
transferability of electrification models across locations. Our findings reveal that models trained
on data from Rwanda demonstrate strong transferability to Kenya, and vice versa, as indicated by
balanced accuracies differing by less than 5% when additional data from the test location are included
in the training set. Also, models developed with data from the centralized grid in East Africa were
found to be useful for detecting areas electrified with off-grid systems in West Africa. This research
provides valuable insight into the characterization of sources of nighttime lights and their utility for
mapping electrification.

Keywords: nighttime lights; electrification mapping; misclassification assessment; generalizability;
energy access

1. Introduction

Access to electricity is an important catalyst for development, showing strong correla-
tions with various economic and development indicators. Economic benefits such as the
increased income of households and small and medium scale enterprises (SMEs), reduced
unemployment rates in rural communities, and a broader range of economic opportuni-
ties have all been attributed to the economic stimulation abilities of electrification [1–3].
Furthermore, access to electricity has also been found to provide several important social
benefits such as facilitating gender equality and women empowerment [4,5], improving
education [5,6], reducing indoor air pollution [7,8], among others.

Harnessing the potential of electrification has emerged as a crucial objective for numer-
ous developing countries and development finance institutions, as evidenced by the recent
publication of electrification plans by several nations [9,10]. As the drive for achieving
universal access to electricity intensifies, the necessity of accurately mapping the extent of
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electrification has become increasingly important. This mapping serves primarily to track
electrification progress. For instance, despite the significant investment in this sector, elec-
trification access tracking has revealed that the world is not on course to achieve universal
access to affordable, reliable, sustainable, and modern energy by 2030, as outlined in the
Sustainable Development Goal 7 (SDG7) [11]. Other reasons why electrification mapping
is important is its role in identifying treated and control areas for assessing the impact
of electrification [12,13], and developing national electrification plans [14–16]. Nightlight
imagery lends itself well to these activities due to its high temporal resolution (nightly
cadence), global coverage, and extensive historical record (from 1992 to date).

The conventional approach to determining electrification rates and mapping the extent
of electrification has relied on grid data from governments as in Ratledge et al. [12], and
periodic surveys such as the Demographic and Health Surveys (DHS) [17], Living Standards
Measurement Surveys (LSMS) [18], Multi-Indicator Cluster Surveys (MICS) [19], and World
Health Survey (WHS) [20]. However, multitemporal electricity grid asset location data are
either unavailable or difficult to obtain from governments, while surveys can be expensive
and time-consuming. In recent times, nightlight emissions have emerged as a cost-effective
alternative for mapping electrification.

Although originally designed to detect clouds from moonlight for weather applica-
tions [21], these remotely sensed data has been shown to be remarkably versatile and
have been successfully employed in various applications, including assessing trends in
socioeconomic indicators [22–24], mapping and assessing the impact of conflicts and disas-
ters [25–28], delimiting urban boundaries [29,30], and estimating population [31], among
others. In the context of electrification, nighttime light (NTL) has been used to estimate
electrification rates [32,33], detect rural electrification [34], predict the path of the grid [35],
and estimate electricity consumption levels [36–38].

Mapping electrification with NTL fundamentally involves the classification of NTL
pixels as electrified or unelectrified on the basis of their radiance. However, the use of NTL
for mapping electrification is complicated by the fact that the data source is affected by
clouds, atmospheric effects (e.g., effects of aerosols, water vapor, and ozone), and is sensitive
to other sources of light that are not due to electric lighting such as biomass burning, stray-
lights, gas flares, among others [39]. Some approaches have been developed in the literature
to address these challenges including (1) setting a radiance threshold above which an NTL
pixel is considered electrified [33,35,36], (2) developing supervised learning models to
classify NTL pixels containing the locations of power systems assets such as transformers
as electrified while those without these assets are classified as unelectrified [40], and
(3) estimating the statistical confidence that a settlement is electrified by computing the
number of nights that the settlement is brighter than the background [41].

There are several limitations to the approaches listed above. For the first approach, it
is challenging to determine the appropriate threshold to use. For instance, various numbers
have been used in the literature, and there does not seem to be an agreement among studies.
Ru et al. [33] used a 0 µW · cm−2 · sr−1 radiance as a threshold, while other studies have
used thresholds ranging from 0.1 µW · cm−2 · sr−1 to 0.35 µW · cm−2 · sr−1 [35,36]. In
the second approach, while machine learning has been used to automatically determine
the appropriate thresholds that separate electrified from unelectrified areas, there is still
uncertainty regarding the best temporal aggregation technique to use to process the NTL
images. For instance, annual [33], monthly [36], and daily [40,41] aggregations have been
used, yet no study has compared their performance.

While studies using NTL to track electrification often assess the performance of their
models with metrics such as the Area Under the Curve of the Receiver Operating Character-
istic (AUC-ROC) and the F1 score, an aspect that has not been sufficiently addressed in the
literature is the systematic assessment of the misclassifications that can be expected from
these electrification maps. For instance, Correa et al. [40] reported that the AUC-ROC for
machine learning techniques such as Random Forest, MLP, and XGBoost was around 0.77
for the electrification mapping task. However, it remains unclear how decisions like the
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temporal aggregation technique and the characteristics of electrified pixels such as average
electricity consumption and time since electrification affect their detection.

Systematic errors refer to consistent deviations of a measurement from its true value
in a particular direction [42]. We apply this concept to evaluate how both image processing
techniques and the conditions at the location to be mapped influence the accuracy of elec-
trification access mapping with NTL. Some important questions that remain unanswered
and that a systematic error assessment can address include:

1. Which temporal aggregation technique of NTL is best for electrification mapping?
2. How do characteristics of an electrified NTL pixel such as the number of electrified

structures, and the average electricity consumption of electrified structures in the
pixel impact its likelihood of being correctly classified as electrified?

3. How do electrification maps developed from ground-truth data from one location
generalize to another location?

This assessment not only sheds light on the detection limit of this technique but can
also improve confidence in the electrification maps produced with this approach while
helping to identify potential sources of errors. This problem was previously approached in
two studies [34,43] that assessed the feasibility of using NTL to detect rural electrification
in Senegal, Mali, and Vietnam, and it was found that the correlation of NTL with electricity
consumption is low and that every additional 70 streetlights or 270 electrified structures
resulted in only a point increase in NTL radiance measurements. This finding suggests that
NTL may not be suitable for detecting electrification in sparsely populated areas. However,
the NTL images that were used in this study were from the Operational Linescan System
onboard the U.S. Air Force Defense Meteorological Satellite Program (DMSP-OLS) [44].

In this study, we systematically assess errors in machine learning models for elec-
trification mapping using NTL data from the Visible Infrared Imaging Radiometer Suite
Day/Night Band (VIIRS-DNB) onboard the Suomi National Polar Orbiting Partnership
(NPP), which has better spatial resolution, radiometric quantization, calibration, and ge-
olocation accuracy compared to the DMSP-OLS [45]. We explore the impact of various
model development decisions on model performance, including comparing the impact of
the identification of electrified pixels with transformer and meter locations and examining
the impact of temporal aggregation methods ranging from daily to annual scales. Our
analysis also evaluates how characteristics of electrified pixels such as average annual
electricity consumption and years since electrification affect classification accuracy. Lastly,
we assess the transferability of electrification mapping models across Rwanda and Kenya
and their effectiveness in detecting communities electrified by off-grid systems. Although
the primary focus of the study is on on-grid electrification, which is still the main model
of electricity in sub-Saharan Africa (SSA) [46], we also discuss the challenges in mapping
areas powered by off-grid systems.

2. Data and Methods

This section begins with a brief overview of the study areas before detailing the
datasets utilized in this research. It concludes by describing the models used for the
systematic error assessment. Figure 1 gives an overview of the data processing and analyses
performed. In summary, NTL data at various temporal aggregations were collected and
combined with the location of electricity assets and uninhabited areas identified from a
land use land cover product to create the training data. These data were used to train a
random forest model to detect the electrification status of a NTL pixel for each temporal
aggregation method. The inference of the model was combined with the characteristics of
electrified pixels to analyze factors that increase misclassifications and assess the model’s
generalization to unseen locations.
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Figure 1. Overview of the steps used to assess the errors in nighttime lights-based electrification
mapping models.

2.1. Study Areas

The focus of this study is Rwanda and Kenya, both located in East Africa. Rwanda lies
approximately two degrees south of the equator, bordered by Uganda, Tanzania, Burundi,
and the Democratic Republic of Congo. Administratively, Rwanda is divided into four
provinces which are further subdivided into 30 districts. Kenya is at the equator and is
bordered by Ethiopia to the north, Somalia to the east, Tanzania to the south, Uganda to
the west, and South Sudan to the northwest. Under its 2010 constitution, Kenya is divided
into 47 counties.

Kenya and Rwanda both experience a significant disparity in electricity access between
urban and rural areas. As of 2022, both countries have an urban electricity access rate of
98.0%. However, rural access rates are significantly different, with Kenya and Rwanda having
rural access rates of 65.6% and 38.2%, respectively [47]. This urban-rural divide highlights
the ongoing challenges in expanding electrification to less developed areas in SSA.

2.2. Nighttime Light Data

One of the main sources of NTL composites used in research is the Earth Observation
Group (EOG), which provides monthly and annual NTL composites at 15 arc-seconds
resolution, approximately 500 m at the Equator [48]. Monthly composites are generated
from daily VIIRS-DNB data by averaging filtered nightly data to remove influences from
sunlit, moonlit, stray light, lightning, and cloudy pixels [39,49]. These are further processed
into annual composites, which are considered cleaner as they minimize outliers and back-
ground noise by taking the median of monthly data, effectively reducing anomalies like
biomass burning and other ephemeral NTL sources [49]. However, concerns remain that
these composites might omit dimly lit areas, such as rural communities in developing
regions [30,50]. Studies have reported that radiance from biomass burning could exceed
2 nW/cm2/sr [30], while the radiance from electrified areas in developing regions can vary
from 1 to 10 nW/cm2/sr [50].

In this study, we will compare the performance of annual composites, quarterly
composites (with each quarterly composite obtained by averaging over three monthly com-
posites), monthly composites, and daily images for detecting electrified pixels in nightlight
imagery. Recognizing the advantages of representing time series using descriptors of the
data distribution, autocorrelation properties, stationarity, and entropy rather than the raw
data itself [51], the model trained on daily composites utilized a range of features including
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the mean, variance, kurtosis, skewness, median, standard deviation, standard error of the
mean, first quartile, third quartile, interquartile range, maximum, and minimum of the
daily NTL images.

We also explored an option where instead of manually extracting features from the
daily images with the statistical moments listed above, we investigated automatically
extracting the features with the Time Series FeatuRe Extraction on basis of Scalable Hy-
pothesis tests “TSFRESH” time series feature extraction Python package [52]. This package
implements 63 time series characterization methods resulting in the exploration of about
800 features. Only 428 statistically significant features obtained with this method were
considered in the model.

2.3. Datasets of the Locations and Characteristics of Electrified Pixels

Three datasets containing information on electricity meters were provided by the
Rwanda Energy Group. The first dataset includes the serial numbers and corresponding
installation dates for about 777,000 electricity meters. The second dataset provides the serial
numbers and locations of approximately 672,000 electricity meters. Lastly, the third dataset
includes the serial numbers and electricity purchase records for about 789,000 electricity
meters, spanning the years 2011 to 2020.

Merging the first two datasets based on the serial number of the meters provided
us with a combined dataset with the location and installation date for 430,000 electricity
meters. The spatial distribution of the first dataset (with serial number and installation
date) and the merged datasets (with serial number, installation date, and location) are
detailed in Figure A1 in the appendix. Next, we merged these data with the electricity
purchase records data using the serial number of the meters as a unique identifier to obtain
a dataset containing the location, installation date, and electricity purchase information for
about 430,000 electricity meters. It should be noted that we were able to obtain electric-
ity consumption records for every meter with location and installation date information
and that the approximately 430,000 electricity meters were distributed across all 30 dis-
tricts in Rwanda. See Table A1 in the appendix for the distribution of electricity meters
across districts.

Additionally, the Rwanda Energy Group supplied data on about 8000 transformers,
detailing their locations, installation dates, and both primary and secondary voltage levels.
By analyzing this dataset, we identified roughly 1900 transformers as step-down trans-
formers, selecting only those with a primary voltage higher than their secondary voltage.
Only these step-down transformers were used to identify electrified pixels, as they serve
as reliable markers of electricity access and consumption within an area. In contrast, the
presence of step-up transformers does not necessarily indicate the presence or use of elec-
tricity, rendering them less relevant for this study’s focus on mapping electrification. Also,
the location and installation date of about 57,000 step-down transformers in Kenya were
obtained from Kenya Power and Lighting Company (KPLC). The voltage levels for the
step-down transformers used in the countries are 11/0.4 kV.

2.4. Curating the Training Data

In this section, we discuss our approach to identifying the electrification status of
NTL pixels. Electrified pixels in this study refer to pixels that contain built-up structures
with access to electricity, while unelectrified pixels are those that either do not contain any
built-up structure or contain built-up structures without access to electricity.

2.4.1. Identifying Electrified Pixels

Electrified pixels were identified as pixels that contain assets of electricity infrastruc-
ture components, such as transformers and meters. The spatial distribution of the trans-
former locations in both countries is depicted in Figure 2. The approximately 430,000 elec-
tricity meters and 1900 transformer locations in Rwanda correspond to approximately
18,100 and 1200 unique NTL pixels, respectively, while the approximately 57,000 trans-
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former locations in Kenya correspond to 46,800 unique NTL pixels. These datasets enabled
us to accurately identify electrified NTL pixels in both countries.

Location of transformers in Rwanda and Kenya

Figure 2. Map showing the location of transformers in Rwanda (left) and Kenya (right).

2.4.2. Unelectrified Location Data

In a previous study, unelectrified pixels were identified by assuming that pixels lacking
electricity assets, such as transformers, were unelectrified [40]. However, due to incomplete
transformer and meter data, and the absence of information on off-grid electricity assets
like minigrids and captive power projects, our approach deviates from this. We adopt
the methodology proposed by Min et al. [41], where unelectrified pixels were taken to be
those in uninhabited areas or areas devoid of buildings. A similar approach was used to
determine background noise levels in Falchetta et al. [36].

Land Use Land Cover (LULC) products and Human Settlement Layers are two remote
sensing products commonly used to detect uninhabited areas. To implement the approach
described above, it is crucial to accurately classify non-residential built-up areas as built-up
to prevent the misidentification of electrified pixels as unelectrified. For instance, non-
residential built-up areas such as roads often have streetlights which are detectable in NTL
images, as noted by Min and Gaba [43].

We assessed the best remote sensing product for identifying uninhabited areas by
evaluating the capability of two commonly used products: Global Human Settlement
Layer (GHSL) [53,54] and ESRI Land Use Land Cover (ESRI-LULC) [55], to detect roads in
Rwanda. The latest version of GHSL was produced for the epoch 2018 at a 10 m resolution
from Landsat and Sentinel 2 images. We make use of the version of this product containing
both residential and non-residential built-up surfaces. ESRI-LULC is produced annually
from 2017 to 2022 from Sentinel 2 composites at a 10 m resolution and categorizes global
land surfaces as one of 10 classes including built-up, trees, and water. We used the product
produced for the year 2018 to align with the epoch of GHSL. The shapefile containing
details on all national and district roads in Rwanda was assessed by the Rwanda Transport
Development Agency.
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Next, we assess how the roads were classified in the GHSL and ESRI-LULC products.
Note, that within the ESRI-LULC product, the ‘built-up’ class (class 7) is used to signify
areas of settlement, whereas all other classes are categorized as non-settlement zones.
Table 1 shows that the ESRI-LULC product is significantly more accurate in detecting roads
than the GHSL product. Consequently, we proceed with the ESRI-LULC product in this
study. Unelectrified NTL pixels as defined as those containing trees (forests) or water
bodies, as identified within the 2020 version of the ESRI-LULC product. See Figure A2 in
the appendix for a map of the LULC product.

Table 1. Detection of road areas by LULC products.

Road Classification ESRI LULC GHSL

Settlement 65% 34%

Non-Settlement 35% 66%

Due to the significant spatial resolution mismatch between the NTL images (≈500 m)
and the LULC product (10 m), we ensured that the geographic area covered by each
unelectrified NTL pixel was entirely covered by either the water or forest class in the
LULC product. In Figure 3, we provide an illustration of the selection of electrified and
unelectrified NTL pixels based on the description above. Lastly, Figure 4 shows the spatial
distribution of the electrified and unelectrified pixels in Rwanda. As expected, we observe
that the majority of the unelectrified locations are clustered around the national parks [56]
and lakes [57], especially around Lake Kivu and Nyungwe National Park in the west of
the country.

Figure 3. An illustration of the selection of electrified and unelectrified NTL pixels.

2.4.3. Obtaining the Characteristics of Electrified Pixels

The electrification date of each electrified pixel was determined by extracting the
earliest installation dates among the meters located in each NTL pixel. Additionally, we
recorded the count of meters contained within each pixel. We also calculated the annual
electricity purchase for each meter by summing the electricity purchase records for each
year. For meters with a purchase history spanning multiple years, we computed the
average annual electricity consumption (taken to be reasonably estimated by the electricity
purchase) over those years. Finally, for each electrified pixel, we determined the total
annual electricity consumption by summing the average annual electricity consumption
from all the meters contained within that pixel.
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Location of electrified and unelectrified NTL pixels

Figure 4. Map showing the location of electrified and unelectrified pixels in Rwanda. We observe
that most of the locations selected as unelectrified are concentrated in Lakes and National Parks.

2.5. Training Machine Learning Model

The NTL pixels were classified into electrified and unelectrified classes using Random
Forest, a versatile machine-learning algorithm that has been applied to a variety of remote
sensing tasks. A random forest classifier is an ensemble of decision tree classification models
in which each tree is created from a subset of the training data through bootstrapping [58].
A fraction of the subset is used to build the trees while the remaining, referred to as out-
of-bag samples, are used for cross-validation to monitor how well the tree is learning. To
make a classification with random forest, each decision tree predicts a class and the most
common prediction is taken as the prediction for a given input feature.

Random forest has been effective for remote sensing classification and regression prob-
lems such as land cover classification [59–61], land surface temperature estimation [62–64],
and tree cover mapping [65]. Random forest was chosen as the preferred machine learning
model for this study based on its proven performance in previous research related to electri-
fication mapping with NTL [40]. Random forest models are particularly advantageous due
to their ability to mitigate overfitting, as each tree is trained on different subsets of the train-
ing data, their robustness to multicollinearity, high data dimensionality, noise, and outliers,
as well as their internal estimates that enable the measure of variable importance [66,67].

Two sets of training data were created for the experiments conducted, each consisting
of a set of features (radiance values of the NTL pixels) and a ground truth classification of
the pixel (electrified or unelectrified).

1. First Set: This dataset was used to investigate the impact of temporal aggregation
techniques. It includes:

• Annual Composites: One annual radiance feature for each NTL pixel.
• Quarterly Composites: Four features, one for each quarter.
• Monthly Composites: Twelve features, one for each month.
• Daily NTL Images: Statistical moments such as mean and median, and 428 addi-

tional features derived from the “TSFRESH” package.
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For this set, all electrified pixels were identified using meter locations to ensure a fair
comparison across different temporal aggregations.

2. Second Set: This dataset was created using annual, quarterly, and monthly composites,
but with two versions for each temporal aggregation technique: one identifying
electrified locations using meters and the other using transformers.

In total, ten random forest models were developed—four for the first set of data and
six for the second set.

After creating the training datasets, we tuned the hyperparameters of the random for-
est models during the training process. We used grid search with five-fold cross-validation
to determine the best combination of hyperparameters. The following hyperparameters
were tuned: number of decision trees (varied from 200 to 2000), maximum tree depth (10 to
100 in increments of 10), number of features to consider when looking for the best split at
each node, minimum number of samples required to split a node, and minimum number
of samples required at each leaf node. After identifying the optimal hyperparameters, we
retrained the model and evaluated its performance using 10-fold cross-validation. This
approach provided an unbiased estimate of the model’s generalization capability. NTL
data from the year 2020 were used here because it is the latest electricity meter installation
year in our dataset.

Performance Metrics

We evaluated the performance of the models using 10 metrics namely accuracy, bal-
anced accuracy, precision, recall (or sensitivity), specificity, Area Under the Curve of the
Receiver Operating Characteristic (AUC-ROC), Matthews Correlation Coefficient (MCC),
and three variants of the Fβ score. The appendix contains the expression for all the metrics.
Balanced accuracy is preferred to vanilla accuracy because it is less sensitive to data imbal-
ance and is defined in Equation (1) where TP, FN, TN, and FP are the true positives, false
negatives, true negatives, and false positives, respectively. The Fβ score allows us to assign
different weights to precision and recall, as shown in Equation (2) where the β parameter
determines the weight of recall in the score.

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
, (1)

Fβ =
1 + β2

β2

Recall +
1

Precision

, Recall =
TP

TP + FN
, Precision =

TP
TP + FP

(2)

2.6. Systematic Error Assessment and Generalization

The first part of the systematic error assessment involved comparing the performance
of models trained on various temporal aggregation techniques (annual, quarterly, monthly
and daily) and models trained on different sources of ground-truth data (electricity meters
and transformers). Next, we systematically assessed the errors in the models by using
descriptive statistics to explore the characteristics of the correctly classified and misclassified
pixels of each fold of the cross-validation. This analysis was conducted on the model trained
on meter locations in Rwanda since it was the only dataset with sufficient information
useful for characterizing the NTL pixel. The impact of characteristics such as time elapsed
since electrification, number of electricity meters in a pixel, and average annual electricity
consumption in a pixel on the performance of the electrification mapping model were
investigated. Lastly, we explored two types of generalizations: (1) generalization of models
trained on one country to another, and (2) generalization of data trained on a type of
ground-truth data to another.

3. Results

In this section, we start by presenting the performance of the electrification models
trained on different NTL composites and on meter and transformer locations in Rwanda be-



Remote Sens. 2024, 16, 3561 10 of 33

fore investigating the impact of pixel characteristics. After this, we assess the generalization
capabilities of the models.

3.1. Comparison of Temporal Aggregation Techniques

Researchers aiming to map electrification with NTL often have to decide on the
temporal aggregation technique or the source of ground-truth data to use in their study.
While annual composites may be easier to manipulate, there is a concern that as you move
from daily to annual composites, dimly lit pixels and pixels that are not consistently lit
throughout the year may become harder to detect. This section shows the result of our
work investigating the impact of the temporal aggregation technique on the performance
of the electrification mapping model.

Figure 5 shows the performance of the model trained on meter locations in Rwanda
for various temporal aggregation techniques. Each boxplot illustrates the distribution of
the metrics across the folds of the cross-validations. Here, the β in Fβ was set to 1 since the
number of electrified and unelectrified pixels in the training dataset was about the same.
Our analysis initially revealed a consistent trend: as the temporal resolution increased from
annual to monthly composites, we observed higher scores across all performance metrics.
This aligns with our expectations since the finer temporal resolution of monthly composites
allows for better detection of dimly lit or sparsely populated areas. The appendix shows
that the trend continues for the remaining six metrics.

Figure 5. Boxplots showing the distributions of the performance of the electrification models devel-
oped from annual, quarterly, monthly, and daily nightlight composites with 10-fold cross-validation.
Notice that monthly composites (highlighted in green) outperform all other composites across the
four metrics.

The additional processing steps involved in generating quarterly and annual compos-
ites from monthly data may cause some loss of information, thus impacting the model’s
performance to a certain extent. For instance, events such as bush burning, which occur at a
monthly scale and may affect the electrification model, can be detected with monthly data
but may be harder to identify once averaged into quarterly or annual composites. However,
we observed a deviation from this trend when considering daily inputs. We attribute this
departure to the inherent noise present in the daily-level readings, even after applying
necessary corrections with potential sources of this noise including scattered moonlight,
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wildfires, fishing boats, and vehicles, among others. This trend remains consistent across
the techniques used for processing daily images, whether through manual extraction of
features or automated feature extraction using “TSFRESH”.

3.2. Comparison of Performance with Meter and Transformer Locations

Another decision to be made when developing NTL for mapping electrification is
determining the electricity asset to use to identify electrified locations. A previous study
used the location of transformers to identify electrified NTL pixels in Kenya [68]. In this
section, we take advantage of our dataset that contains the location of both transformers
and meters in Rwanda to determine which of these electricity assets is best for identifying
electrified locations in an NTL imagery.

Figure 6 presents a comparison of the model’s performance when identifying electri-
fied pixels based on transformer locations versus meter locations. Because of the difference
in the number of pixels identified as electrified with meters and transformer locations, in
this section, we use performance metrics that are less sensitive to data imbalance such
as balanced accuracy, Area Under the Curve of the Receiver Operating Characteristic
curve (AUC ROC), and Fβ scores thereby enabling a more comprehensive evaluation of the
model’s performance. The appendix contains the results of the other six metrics.

Figure 6. Boxplots comparing the 10-fold cross-validated performance of models trained on meter
locations with those trained on transformer locations. Note, that using meter locations to identify
electrified pixels led to improved models irrespective of the composites used.

We observe from Figure 6 that utilizing meter locations appears to give a better
performance than transformer locations across the balanced accuracy, precision, recall and
F1 score metrics. A likely reason for this is that the dataset based on transformer locations
contains fewer instances of electrified pixels, resulting in a limited amount of information
for the model to learn from.

3.3. Impact of Time Lapse Since Electrification

There are several reasons why newly electrified pixels may be difficult to detect with
NTL. One is that there may be a time lag between when a potential electricity user gets
connected and when they are able to utilize electricity. For instance, a case study in Sri
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Lanka reports a lag of 5 to 7 years between the provision of electricity access and the
formation of new businesses [69]. Also, the number of connected households or businesses
and the average electricity demand in a newly connected community tends to increase
over time as people become aware of the benefits that electricity access can provide [70].
Lastly, as the economic conditions of newly electrified areas improve due to the economic
stimulating capabilities of electrification, the use of household lightbulbs and streetlights
that can influence NTL sensors can be expected to increase gradually over time.

In Figure 7, we express the number of misclassified electrified pixels in a particular
year as a percentage of the total number of pixels in the test dataset that became electrified
during that specific year (we only present results obtained from the model trained on
monthly composites to improve the readability of the figures, since it has been shown to
give the best performance). This error analysis corroborates our hypothesis that newly
electrified pixels are more difficult to detect with NTL. We observed a decline in the
likelihood of misclassification as the number of years since electrification increased.

Figure 7. Time series boxplots showing the percentage of misclassified pixels as a function of the year
the pixels were electrified. The secondary y-axis shows the total number of pixels electrified in each
year while each boxplot shows the distribution of the 10-fold cross-validation result.

3.4. Impact of Number of Meters

Here, we delve into the relationship between the number of meters within a pixel and
its likelihood of being accurately classified as electrified. Our analysis reveals an interesting
pattern in the distribution of meters in the full test data and the data containing only
misclassified electrified pixels. In Figure 8, we observe a more right-skewed distribution
of meters in the test data compared to the error data (misclassified pixels) indicating that
pixels with fewer meters are more likely to be misclassified. This is also depicted in Figure 9
where we show that the percentage of correctly classified electrified pixels increases as the
number of meters in a pixel increases. It is worth highlighting that no electrified pixel with
more than 140 m was misclassified as unelectrified in this study.
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Figure 8. Distribution of the counts of meters in the test and error data. The x-axis is in log scale due
to the wide range of meters in the pixels. Notice that the percentage of meters in the first three bins is
significantly less in the test data than in the error data.

Figure 9. Bar chart showing error rates as a function of the number of meters in a pixel. The secondary
y-axis shows the corresponding number of electrified pixels for each meter count bin, while the error
bars show the 95% confidence interval (assuming t-distribution) of the mean of the cross-validated
error rates. Note, that bins with fewer pixels may show higher variance in error rates due to smaller
sample sizes, which reduces the reliability of the averages being reported.

3.5. Impact of Electricity Consumption

In this section, we examine the relationship between the electricity consumption
within a pixel and its detectability. The electricity consumption in a pixel is calculated
as the sum of the average annual electricity consumption across all meters within that
pixel. In line with the findings observed with the number of meters in a pixel, our analysis
reveals a comparable pattern when considering the annual electricity purchases of pixels.
Figure 10 demonstrates that pixels with higher annual electricity purchases exhibit a lower
likelihood of misclassification. Interestingly, we observe a steady increase in accuracy up to
the 120–140 kWh consumption bin, after which it plateaus. This plateau may suggest that
beyond a certain threshold, further increases in electricity consumption no longer correlate
strongly with outdoor lighting, which is primarily captured by NTL imagery [34]. It is likely
that after the initial few kWh, electricity is increasingly used for indoor activities rather
than outdoor lighting, leading to a diminishing correlation between electricity consumption
and NTL radiance. However, it is important to note that there are fewer pixels consuming
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more than 120 kWh per year, resulting in higher variance in error rates for these higher
consumption bins due to the smaller sample size.

Figure 10. Bar chart showing the error rates (primary y-axis) as a function of the total average annual
electricity consumption of meters in a pixel. The secondary y-axis shows the corresponding number
of electrified pixels for each electricity consumption bin while the error bars show the 95% confidence
interval (assuming t-distribution) of the mean of the cross-validated error rates.

3.6. Feature Importance

Next, we rank these characteristics to see how important they are to the likelihood of
correctly classifying a pixel. To do this, for each fold, we subset the test data to contain only
electrified examples. Then, we label each example as ‘correct’ or ‘incorrect’ depending on
whether it was correctly classified or not. After this, we trained a random forest model based
on the assigned label with the characteristics of the examples such as year of electrification,
number of meters in the pixel, and the sum of the average annual electricity purchased by
meters in a pixel serving as features.

Next, we assess the importance of each of the features with the Mean Decrease in
Impurity (MDI) and the Drop-Column feature importance techniques. MDI technique
measures the importance of features by evaluating how it reduces impurity during tree
splits. The impurity reduction is calculated for each split for each feature and then averaged
over all trees in the random forest model [71]. The Drop-Column technique involves first
establishing a baseline performance with all the features and subsequently excluding a
feature, retraining the model, and then recalculating the performance of the model. The
importance of a feature is determined by the difference between the baseline score and
the score obtained when that feature was excluded [72]. Both methods identified the total
average annual electricity purchased of all meters in each pixel as the most important of
the features that determine the correct classification of an electrified pixel. The result of the
MDI technique is shown in Figure 11.
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Figure 11. Ranking of the importance of the characteristics of electrified pixels for correct classification
with the mean decrease in impurity technique. The sum of the average annual electricity purchased
by meters in a pixel was found to be the most important of the three characteristics examined that
determine the correct classification of a pixel.

3.7. Generalization Assessment
3.7.1. Generalization to Unseen Grid Connected Areas

Given the scarcity of ground-truth data on electrification status in sub-Saharan Africa,
we took advantage of our unique dataset that includes data from Kenya and Rwanda and
explored the transferability of electrification models trained on data collected from one
country to another country. Electrified locations were only identified with transformer
locations in both countries to allow a fair comparison. Our approach involves initially
training a model using the complete dataset from one country (Country A), followed by
evaluating the model’s performance on another country (Country B). In each iteration,
we progressively added a larger portion of the data from Country B to Country A and
subsequently trained a model on the expanded dataset. Then, we assessed the model’s
performance using only the remaining data from Country B to avoid data leakage. The
addition of data from country B to country A was made in increments of 10%. Since
a complete year’s worth of NTL data have been available on the VIIRS-DNB system
since 2013, we also explored the impact of using data from more than one year for the
classification. That is, we compared the performance of models trained on data from only
2020 with that of models trained on data from 2013 to 2020. The results of these analyses
are presented in Figure 12.

Our first observation was that the baseline performance of the models (that is, when
the model is tested and trained on data from the same country) varies significantly between
countries. Additionally, models developed with data spanning 8 years outperformed
those developed with data from only one year. Specifically, the models achieved balanced
accuracies of 98% and 84% in Kenya and Rwanda, respectively, when trained on NTL data
from 2013 to 2020. Conversely, they achieved accuracies of 94% and 72% in Kenya and
Rwanda, respectively, when trained solely on NTL data from 2020.

The differences in performance between countries may be due to variations in data
composition and country-specific characteristics. For instance, in the Kenya dataset, the
most recent transformer installation dates back to 2017, whereas in Rwanda, the latest
installation was conducted in 2020. This disparity can impact the model’s performance,
as earlier results in this paper have shown that the time elapsed since electrification can
influence the accuracy of classifications. Another reason for this could be the correlation
between electricity consumption and installation date.

Fobi et al. [70] showed that newly connected electricity users consume less electricity
than older customers. Furthermore, the difference between the average radiance of electri-
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fied and unelectrified pixels appears to be higher in Kenya than in Rwanda, likely due to
the fact that the average annual electricity consumption in Kenya is more than double that
of Rwanda [73]. The impact of these site-specific characteristics is that it is easier for the
model to correctly identify the electrification status of NTL pixels in Kenya than in Rwanda.

Secondly, we observe that the performance of a model trained solely on data from
one country experiences only a slight degradation when tested on data from another
country. For instance, a model trained on Kenyan data achieves a balanced accuracy of
approximately 80% when tested on Rwandan data, while a model trained and tested
exclusively on Rwandan data achieves an 84% balanced accuracy. Similarly, a model
trained on Rwandan data achieves a balanced accuracy of approximately 95% when tested
on Kenyan data, while a model trained and tested solely on Kenyan data achieves a 98%
accuracy. This observation not only suggests that models trained on data from one country
may generalize reasonably well to others but also shows that the performance of the model
will depend strongly on the separability of electrified and unelectrified pixels in the country
of interest with the separability of the pixels being easier in Kenya than in Rwanda due to
the several factors discussed above.

Additionally, we noted that incorporating additional data from the test location into
the training data does not lead to significant improvements in the models’ performance
scores. This remains consistent regardless of the NTL data used for model training, whether
based on one year or multiple years’ worth of data and regardless of the performance
metric used, as detailed in the appendix. This finding suggests that location-specific data
may not be necessary when developing electrification mapping models based on NTL.

Figure 12. Transferability of models trained on data from one country to the other. The scatter plot
shows the results of the 10-fold cross-validation. The x-axis details how much data from the country
to be generalized to was added to the initial data to form the training data. The text boxes present
balanced accuracies when the models are trained and tested on data from the same location for both
models trained with 2020 NTL data only and 2013 to 2020 NTL data. Notice that using NTL data
from 2013 to 2020 increased the balanced accuracy when generalizing to unseen locations by at least
5% over what was achieved with only 2020 NTL data. Also, the balanced accuracy was about 16%
higher when the models were tested on Kenya’s data compared to Rwanda’s data.
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3.7.2. Generalization to Unseen Off-Grid Connected Areas

We also investigated the applicability of a model trained on data collected from grid-
connected assets in one country for detecting off-grid electricity assets in other countries. We
leveraged the West African mini-grids location dataset, as provided by the ECOWAS Center
for Renewable Energy and Energy Efficiency (ECREEE) [74]. This database contains details
such as the location, system configuration, and system capacity of 392 minigrids in West
Africa, the spatial distribution of which is shown in Figure 13. Only 341 of these minigrids
were operational as of 2020. We trained a random forest model using the combination
of the datasets used in the previous section. This comprises electrified 2020 NTL pixels
identified with transformer locations in Rwanda and Kenya and unelectrified 2020 NTL
pixels identified from forest and water bodies in the countries.

Location of minigrids in the ECREEE dataset

Figure 13. Map showing the location of the 392 minigrids contained in the ECREEE dataset.

Subsequently, we assessed the model’s performance in identifying operational mini-
grids within the ECREEE data. Since the dataset on which the model is to be tested only
contains the location of minigrids (that is, electrified locations), we needed to obtain the
locations of unelectrified pixels to enable us to calculate more than the detection rate (error
of omission). We obtained unelectrified locations using the approach described earlier,
where unelectrified NTL pixels were identified from the 2020 ESRI-LULC product. Since
the minigrids cut across 15 countries, we randomly selected 341 NTL pixels (to align with
the number of minigrids) containing only water in an area that is in the middle of the
geographical extent of the minigrids in the ECREEE dataset.

Additionally, since the ECREEE database also includes details of the distribution
grid in West Africa and the locations of communities that are currently unelectrified and
expected to be electrified with mini-grids by 2030, we explored an alternative method to
identify unelectrified NTL pixels. This method involves identifying pixels that contain
these communities to be electrified but do not include the distribution network. Table A2
in the appendix provides details on the number of installed and operational mini-grids
in each ECOWAS member state and the area from which we identified the unelectrified
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pixels. Figure 14 shows the result of the assessment for both techniques of identifying
unelectrified areas.

Figure 14. Chart showing the performance metrics when using a model trained on transformer
locations in Rwanda and Kenya to detect minigrids in West Africa.

The model had balanced accuracy between 75% and 63%, depending on how un-
electrified locations are identified, and a sensitivity of 67%. This implies that 227 of the
341 minigrids were successfully detected. These balanced accuracies are lower than what
was obtained when detecting transformers and meters in Rwanda (see Figure 6), which
may be due to the fact that the average illumination levels of on-grid electricity assets
(transformers and meters) are significantly higher than those of off-grid electricity assets
(minigrids), as presented in Figure 15.

Figure 15. Boxplot showing the distribution of the radiances from 2020 NTLs pixels containing
transformer locations and minigrids. The illumination levels of the minigrid locations are much lower
than what was observed in the transformer locations. Note: The right-skewed radiance distribution
pulls the mean outside the interquartile ranges, and outliers have been removed from the boxplot for
improved visualization.

The observed variation in specificity in Figure 14 suggests that identifying unelectrified
areas using LULC products resulted in fewer false positives compared to the approach
of determining electrification status based on the presence of a distribution network in
NTL pixels. This discrepancy is likely attributable to potential incompleteness or gaps in
the distribution network data, which were utilized to identify unelectrified areas by their
absence within NTL pixels. It may also stem from the possibility that areas designated
for electrification by 2030 (also used to identify unelectrified areas) may already have
alternative sources of electricity, such as diesel generators, thereby potentially confounding
the electrification model’s predictions.
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Given that the ECREEE dataset includes details on the capacity and configuration of
the minigrids, we investigated how the capacity of a minigrid can impact its detectability
with NTL. We standardized the generating capacities of mini-grids, which incorporate
diverse sources with varying capacities, by calculating both the maximum and cumu-
lative generating source capacities in kilowatts (kW). This normalization was achieved
by assuming a conservative power factor of 0.8 when converting generating assets rated
in kilovolt-amperes (kVA) to their kW equivalents, reflecting a scenario where loads are
predominantly inductive. For example, in the case of a minigrid equipped with a 5 kWp
photovoltaic system and a 10 kVA diesel generator, the maximum system size would be
8 kW (0.8 × 10 kVA), and the cumulative capacity would be 13 kW (5 kW + 8 kW). Our
findings revealed that the capacity of the generating source significantly influenced the
likelihood of successfully detecting the minigrids. In particular, the average maximum
and cumulative generating source capacity of undetected mini-grids was 39 and 46 kW,
respectively, while that of the detected mini-grids was notably higher at 72 and 105 kW,
respectively. It should be noted that the findings were robust and not sensitive to variations
in the assumed power factor.

4. Discussion

In this section, we discuss the practical applications of the methods developed and
implemented for mapping electrification. We also highlight several caveats that must be
considered when interpreting these maps.

4.1. Applications of the Proposed Method of Mapping Electrification

This study implements a method for mapping electrification, specifically applicable to
regions with limited data. Mapping electrification in these regions is important to a range
of stakeholders, including governments and international development organizations.
Traditional methods of obtaining this information have typically involved surveys, which
can be resource-intensive, and the collection of data directly from governmental sources,
which can be challenging. In contrast, our proposed approach uses freely available NTL
data. The method achieves an F1 score as high as 89% (using monthly NTL composites) and
a balanced accuracy of about 87%, demonstrating its effectiveness in monitoring electricity
infrastructure expansion. Considering recent calls to address inconsistencies in reported
electrification statistics in SSA [75], the methods proposed in this study can be used to
validate electrification estimates and supplement incomplete data.

Beyond obtaining electrification information for a particular year, developing mul-
titemporal electrification maps to determine exactly when a community got access to
electricity is perhaps even more difficult. However, this information is important for re-
searchers as they attempt to assess the impact of electrification, which requires identifying
treated and control units. The proposed approach can facilitate the development of this
map since NTL is available for the entire globe at a relatively high cadence even after
temporal compositing. This is particularly important with ex-post impact assessments
where the assessment is being conducted years after an intervention has been deployed.

To demonstrate the utility of the proposed methods for impact assessments, Figure 16
presents a multitemporal electrification map of Rwanda, developed using NTL data span-
ning from 2014 to 2023 processed with the methods described above. The map illustrates
the expansion of electricity infrastructure, initially concentrated in Kigali in 2014, extend-
ing to the greater Kigali area by 2020. Additionally, it captures the development of road
infrastructure with their associated streetlights, particularly the expansion of new roads in
the southwestern part of the country around 2020.
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Figure 16. Multitemporal electrification map showing the expansion of electricity access in Rwanda.
Note, that the classifications for each year were processed such that once an area is identified as
electrified, it is considered electrified in all subsequent years.

4.2. Implications of Findings from Systematic Error Assessment

The findings of this study have significant implications for the application of NTL data
in electrification mapping. By elucidating the relationships between model performance
and the characteristics of NTL pixels, this study contributes to a deeper understanding of
the key factors that influence the successful detection of electrified and unelectrified areas
using NTL data.

A key implication of the findings of this paper is that caution should be exercised when
utilizing NTL data to map electrification. Several studies have employed NTL to monitor
progress in SDG7 [32,76]. In particular, in [32], the authors compared the differences
between electrification rates derived from NTL data in certain countries to rates obtained
by the International Energy Agency (IEA). The IEA estimates were based on administrative
data acquired from the Energy Ministries of each respective country [77]. Discrepancies in
electrification rate estimates were identified for some of these countries, notably Thailand,
China, and Cuba.

Our research sheds light on potential reasons for these disparities, such as population
density in specific locations, electricity consumption levels, and the aggregation method
of NTL data, among others. Consequently, we advocate for a cautious interpretation of
electrification maps derived from NTL data, taking into account their limitations and
suitable applications. Furthermore, this study provides empirical evidence that using
NTL for mapping electrification may not be effective for newly electrified areas with few
meters since time elapsed since electrification and the number of meters in a pixel are two
key characteristics that have been shown to impact the likelihood of correctly classifying
an NTL pixel. Our assessment of the model performance in detecting off-grid systems,
which was less effective than when detecting on-grid systems, supports the notion that this
approach may miss some off-grid systems.

Lastly, the generalization assessment conducted in this study indicates minimal
changes in model performance when additional location-specific data are added to the
training dataset. This implies that location-specific data may not be necessary for devel-
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oping electrification maps using the proposed method. Although the study focuses on
Kenya and Rwanda, this approach, and our observations and conclusions based on the
performance of the model, should be applicable to other developing countries in need of
accurate electrification maps, given that NTL data are globally available and can be refined
to exclude non-electrification light sources.

4.3. Limitations and Future Work

One notable limitation of the electricity assets datasets is their lack of comprehensive-
ness in that they do not include all the electricity meters and transformers in Rwanda and
Kenya. Consequently, NTL pixels devoid of meters or transformers cannot definitively be
classified as areas without electricity access. We approached this challenge by obtaining
the location of unelectrified pixels from a LULC data product. This method for detecting
unelectrified NTL pixels is limited to only a certain type of unelectrified NTL pixels, that
is, those that do not contain any built-up structure, excluding those that contain built-up
structures but do not have access to electricity.

Moreover, although the accuracy of the ESRI 2020 LULC used in this study was
reported by its producer to be about 85% [55], its accuracy has been assessed in specific
locations such as Syria, Morroco, and Vietnam to range from 73% to 84% [78–80]. However,
compared to other 10 m LULC datasets such as Dynamic World and World Cover, the
ESRI-LULC product was found to have the highest accuracy (75%) when tested on ground-
truth data with global extent [81]. We account for the potential misclassifications in the
LULC product by manually examining with Google Maps pixels identified as unelectrified
with the LULC product but that have high radiance and excluding those that contain
built-up areas.

Furthermore, as highlighted in Section 4.2, this approach for mapping electrification
may miss out on recently deployed off-grid systems with few connections and limited
electricity consumption, which are factors that we have shown can impact the detectability
of an electrified location. We propose that future work explore alternative sources of data
to detect these off-grid systems. For instance, solar photovoltaic arrays, commonly used in
off-grid electrification in SSA, have been shown to be detectable with high-resolution aerial
imagery [82]. Combining NTL (for on-grid systems) with daytime images (for off-grid
systems) could improve the accuracy of the electricity maps.

Another set of limitations involves factors that can impact outdoor lighting. For in-
stance, the year of interest for our study, 2020, coincided with the COVID-19 pandemic,
during which economic activities significantly declined in many areas of the world, leading
to decreased external lighting [83]. This may have made it more difficult to detect elec-
trified areas. On the other hand, spurious light sources such as vehicle headlights could
cause non-electrified locations to be incorrectly identified as electrified. While we believe
that averaging performed when creating monthly and annual composites may mitigate
some of these issues, it is still important to acknowledge them as potential sources of
misclassifications.

Lastly, the VIIRS-DNB instrument was not originally designed for mapping electrifi-
cation, which necessitates the consideration of several caveats when it is applied for this
purpose. The interpretation of radiance values requires attention to the spectral character-
istics of light sources since different spectral compositions can produce varying radiance
values, even with similar power outputs. Also, the instrument’s spectral sensitivity, ranging
from about 500 nm to about 900 nm, is unlikely to include blue light emissions (380 nm to
500 nm) common in light-emitting diode (LED) lamps, potentially resulting in inaccuracies
when detecting urban lighting with NTL and biasing the mapping of illuminated areas.
With the ongoing shift from traditional lighting technologies such as High-Pressure Sodium
(HPS) and fluorescent lamps to LEDs [84], these inaccuracies can be expected to increase.
Future work will evaluate the impact of these shifts in lighting technology on electrification
mapping with NTL imagery.
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5. Conclusions

In this study, we conducted a comprehensive systematic error assessment of nighttime
light-derived machine learning-based electrification models. Our findings reveal several
key factors that influence the model’s performance. These factors include the time elapsed
since electrification, the density of electricity assets (such as meters and transformers) within
nighttime light pixels, and the electricity purchase history associated with the meters in
those pixels. We demonstrated that when developing this model, the locations of electricity
meters are more effective than transformer locations in accurately identifying electrified
pixels within nighttime imagery, particularly in regions with low electricity adoption rates
like sub-Saharan Africa. We also show that the aggregation of nighttime light data at the
monthly level appears to be the optimal aggregation technique for electrification mapping.
Our results also indicate that the model exhibits high transferability to unseen areas and that
the model has a decent performance in detecting both off-grid and on-grid communities.
We validated this by testing the model trained on data from Kenya on Rwanda, and vice
versa, and testing the model trained with on-grid data on off-grid data.

Overall, this research provides valuable insights into the performance and factors
influencing the accuracy of nighttime light-derived machine learning electrification models.
These findings have important implications for improving electrification assessments and
planning efforts, particularly in regions with limited access to reliable electricity data. Based
on the performance of the developed models, we identify two innovative applications for
nighttime light-derived electrification maps: first, for identifying treated and control units
when assessing the impact of electrification interventions, and second, for filling gaps in
national-level electrification statistics.
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Appendix A. Supplementary Data

In this section, we describe the ground-truth data used in our study. This includes the
spatial distribution of the dataset with only location information, as well as the datasets
containing both location and installation dates. We also show the geographical coverage
of the forest and water classes within the Land Use Land Cover (LULC) product that was
used to identify unelectrified locations.

https://payneinstitute.mines.edu/eog-2/viirs/
https://data.jrc.ec.europa.eu/dataset/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea
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Appendix A.1. Distribution of Electricity Meter Data

Table A1 presents the counts of electricity meters, categorized by those with location
information and those with both location and installation date information, across each
of Rwanda’s districts. Subsequently, we successfully acquired corresponding electricity
purchase data for the roughly 430,000 m with both location and installation date information.
Figure A1 displays the spatial distribution of these datasets, revealing coverage across all
30 districts in Rwanda. This ensures that the merging process is unlikely to introduce any
bias into the electrification access modeling.

Table A1. Table showing the number of electricity meters in each of the 30 districts in Rwanda.

# District Number of Meters with
Location Data

Number of Meters with Location and
Installation Date Data

1 Bugesera 23,403 22,360
2 Burera 14,187 4854
3 Gakenke 13,361 3646
4 Gasabo 79,043 77,637
5 Gatsibo 17,667 7343
6 Gicumbi 17,481 14,393
7 Gisagara 9005 1958
8 Huye 17,498 15,947
9 Kamonyi 15,516 14,717

10 Karongi 12,496 11,023
11 Kayonza 18,716 4378
12 Kicukiro 50,965 50,209
13 Kirehe 17,969 30
14 Muhanga 16,971 16,231
15 Musanze 27,343 26,274
16 Ngoma 16,282 39
17 Ngororero 12,333 78
18 Nyabihu 13,109 337
19 Nyagatare 27,703 22,777
20 Nyamagabe 9656 33
21 Nyamasheke 19,931 5442
22 Nyanza 12,089 100
23 Nyarugenge 38,602 38,158
24 Nyaruguru 9408 43
25 Rubavu 32,867 29,891
26 Ruhango 18,895 303
27 Rulindo 12,782 12,213
28 Rusizi 28,461 25,347
29 Rutsiro 10,827 3806
30 Rwamagana 21,856 21,069

Total 636,422 430,636
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Spatial distribution of the datasets

Figure A1. Map presenting the location of meters in the dataset with only location information (red)
and in the dataset with both location and installation date information (blue). Both datasets cover all
30 districts in Rwanda as shown in Table A1.

Appendix A.2. Identification of Unelectrified Locations

Figure A2 shows the ESRI 2020 Land Use Land Cover (LULC) product used to identify
the unelectrified location in Rwanda. To create this map, we downloaded the two LULC
tiles (35M and 36M) covering Rwanda from the Living Atlas database [85]. Subsequently,
we merged and cropped these tiles to match Rwanda’s geographical extent. The forest and
the water classes from this LULC product were used to identify unelectrified locations.
Similarly, Figure A3 shows the region of West Africa used for identifying unelectrified NTL
pixels, which was then used to supplement ECREEE’s minigrid location dataset with the
aim of assessing the electrification access mapping model’s performance in detecting areas
electrified with off-grid systems. The LULC tile shown in the figure is the 30P tile from
the Living Atlas database which was visually determined to be the most center tile in the
geographical area covered by the minigrids.
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ESRI LULC product (2020)

Figure A2. The ESRI 2020 land use land cover (LULC) map. Note, that most of the water bodies and
forest in Rwanda are in the western and south-western parts of the country indicating that most of
the unelectrified locations selected for the study will be concentrated in this area.

Countries included in the ECREEE data

Figure A3. This map shows the 15 countries with minigrids in the ECREEE minigrid data. We
overlay the ESRI 2020 LULC tile over the countries to show the area from which we identified the
unelectrified NTL pixels.
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Appendix A.3. Location of Minigrids

Table A2 below provides the count of the installed and operational minigrids in each
ECOWAS member state. We observe that although 15 countries are represented in the
dataset, the non-operational minigrids are only located in Liberia and Sierra Leone.

Table A2. Table showing the number of minigrids in each ECOWAS member state.

# Country Installed Minigrids Operational Minigrids

1 Benin 7 7
2 Burkina Faso 5 5
3 Cabo Verde 8 8
4 Cote d’Ivoire 7 7
5 Gambia 1 1
6 Ghana 5 5
7 Guinea 3 3
8 Guinea Bissau 2 2
9 Liberia 15 14

10 Mali 77 77
11 Niger 13 13
12 Nigeria 18 18
13 Senegal 173 173
14 Sierra Leone 54 4
15 Togo 4 4

Total 392 341

Appendix B. Supplementary Methods

In this section, we present the metrics calculated for each of the electrification mapping
models developed in this study. A comprehensive set of 10 metrics were used to evaluate the
performance of the models. The equations below express how the metrics were calculated
where TP, FN, TN, FP, AUC-ROC, and MCC are the True Positives, False Negatives, True
Negatives, False Positives, Area Under Curve—Receiver Operating Characteristic, and
Matthews Correlation Coefficient, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(A1)

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(A2)

Sensitivity =
TP

TP + FN
(A3)

Specificity =
TN

TN + FP
(A4)

Precision =
TP

TP + FP
(A5)

Fβ =
1 + β2

β2

Sensitivity or Recall +
1

Precision

, β = 0.5, 2 (A6)

AUC-ROC =
∫ 1

0
ROC(t) dt (A7)

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(A8)

Balanced accuracy and MCC were employed to address the challenge of data imbal-
ance, which can impact traditional accuracy measures [86,87].
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Appendix C. Supplementary Results

Appendix C.1. Comparison of Temporal Aggregation Techniques

Figure A4 below shows how the 10 performance metrics vary between the annual,
quarterly, monthly, and daily temporal aggregation techniques. The monthly aggregation
technique gave the best performance on all metrics.

Figure A4. Boxplots showing the distributions of the 10-fold cross-validation for each of the 10 metrics
used to assess the performance of the electrification models developed from annual, quarterly,
monthly, and daily nightlight composites. Notice that monthly composites (highlighted in green)
outperform all other composites across all metrics. Also, Specificity and MCC had the lowest values
hence a different y-axis range was used to plot them.

Appendix C.2. Comparison of Performance with Meter and Transformer Locations

Figure A5 below compares the performance of the electrification mapping model
when employing meter locations versus transformer locations to identify electrified NTL
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pixels across all 10 metrics. Identifying electrified NTL pixels with meter location gave the
best performance across all metrics except Specificity.

Figure A5. Boxplots showing the distributions of the 10-fold cross-validation for each of the 10 metrics
used to assess the performance of the electrification models developed from transformer locations and
meter locations. Using meter locations to identify electrified NTL pixels gave the best performance
across most metrics.

Appendix C.3. Generalization to Unseen Grid-Connected Areas

In this section, we provide the result of the generalization of the model trained on
one country to the other. Figure A6 shows the accuracy, balanced accuracy, sensitivity,
specificity, and precision while Figure A7 shows the F1, F0.5, F2, AUC-ROC and MCC. We
observe that the models’ performance scores do not show significant improvement when
additional data from the test location are incorporated into the training data.
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Figure A6. Accuracy, balanced accuracy, sensitivity, specificity, and precision of the model trained on
data from one and country and tested on another.
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Figure A7. F1, F0.5, F2, AUC-ROC and MCC of the model trained on data from one and country and
tested on another.
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