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Abstract: Landslides pose significant threats to life and property, particularly in mountainous regions.
To address this, this study develops a landslide susceptibility model integrating Earth Observation
(EO) data, historical data, and Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR)
ground movement results. The model categorizes areas into four susceptibility classes (from Class
1 to Class 4) using a multi-class classification approach. Results indicate that the Xtreme Gradient
Boosting (XGB) model effectively predicts landslide susceptibility with area under the curve (AUC)
values ranging from 0.93 to 0.97, with high accuracy of 0.89 and a balanced performance across
different susceptibility classes. The integration of MT-InSAR data enhances the model’s ability to
capture dynamic ground movement and improves landslide mapping. The landslide susceptibility
map generated by the XGB model indicates high susceptibility along the Pacific coast. The optimal
model was validated against 272 historical landslide occurrences, with predictions distributed as
follows: 68 occurrences (25%) in Class 1, 142 occurrences (52%) in Class 2, 58 occurrences (21.5%) in
Class 3, and 4 occurrences (1.5%) in Class 4. This study highlights the importance of considering
temporal changes in environmental conditions such as precipitation, distance to streams, and changes
in vegetation for accurate landslide susceptibility assessment.
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1. Introduction

Landslides are major natural disasters globally, primarily driven by gravitational
forces along with factors such as earthquakes, precipitation, and human activities [1].
Landslides are caused by external factors that increase shear stress (e.g., unloading the
slope toe, loading the slope crest, shocks and vibrations, changes in the water regime, and
geometrical changes) and internal factors that decrease shearing resistance (e.g., weathering,
progressive failure, and seepage erosion) [2]. Each year, landslides, whether triggered by
human activities or natural events, cause significant economic damage and loss of life [3]. In
particular, the frequent occurrence of landslides along roads and cut slopes in mountainous
regions poses a substantial threat to residents in these areas [4]. Between 1998 and 2017,
an estimated 4.8 million people were affected, and over 18,000 deaths occurred due to
landslides, with low-income populations being the most affected [5]. It is believed that
recognizing and addressing the issue before landslide events occur could prevent at least
90% of the losses, highlighting the importance of preventive measures [6].

In this scenario, continuous monitoring of landslide-prone areas is crucial. Monitoring
includes tracking both short-term rapid deformations and long-term slow-moving defor-
mations on the slopes. Traditional landslide susceptibility mapping is a time-consuming
and complex process that involves extensive field data collection and analysis. Regularly
conducting field-based activities to monitor changes and signs of recent landslides, espe-
cially those triggered by events like rainfall, is impractical, particularly when mapping
large areas [5].
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Over the past two decades, advanced techniques have emerged for detecting defor-
mation, such as leveling, global positioning systems (GPS), and geotechnical methods.
However, these approaches often have significant drawbacks, including high costs, time-
consuming procedures, and limited coverage, offering continuous monitoring for only a
small portion of landslide-prone areas [7].

In this context, landslide susceptibility mapping (LSM) using Earth Observation (EO)
data is gaining popularity. These methods offer several advantages over conventional
techniques, including low cost, repeatable and efficient procedures, data-driven scalability,
and wider coverage with a good revisit cycle from remote sensing satellites. The direct
use of satellite remote sensing imagery and its derivatives is widely employed in creating
landslide susceptibility maps (LSM) over extensive areas.

For example, factors such as slope, aspect, curvature, roughness, and stream net-
work, derived from digital elevation models (DEM), are widely used in landslide sus-
ceptibility mapping. In general, slope-derived factors are crucial indicators of landslide
occurrence. According to Popescu [2], the diverse range of slope movements indicates
various conditions leading to slope instability and the processes driving such movements.
Kirschbaum et al. [8] combined remote sensing derivatives with in situ data and used six
parameters—slope, soil type, soil texture, elevation, land cover, and drainage density—to
determine the contribution of each variable class to landslide susceptibility estimation.
A few studies [9–12] have explored the relationship between slope angle and aspect in
landslide susceptibility, concluding that a slope angle between 20◦ and 40◦ implies the
highest susceptibility to landslides. Combining the aforementioned factors with other
remote sensing-derived layers such as land cover, precipitation, road networks, and vege-
tation indices can enhance the accuracy of landslide susceptibility maps. Evans et al. [13]
identified key preliminary landslide pre-conditioning factors, including geology, topog-
raphy, vegetation cover, tectonic activity, and quaternary history. They also recognized
rainfall, loading/unloading, water level changes, and earthquakes as significant causal
factors contributing to landslide occurrences.

In recent years, Interferometric Synthetic Aperture Radar (InSAR) has become widely
utilized for mapping geohazards on large scales, such as landslides [14,15], sinkholes [16],
earthquake deformations [17,18], etc. The increased availability of Synthetic Aperture
Radar (SAR) imagery and advancements in various techniques have significantly enhanced
the popularity of InSAR data in landslide mapping. Multi-Temporal InSAR (MT-InSAR)
methods, such as Persistent Scatter Interferometry (PSI) [19] and Small Baseline Subset
(SBAS) [20,21], are commonly employed for landslide mapping and monitoring [22–28].
These technological advancements using InSAR techniques aid in developing landslide
inventory data, characterizing landslides, and quantifying their impacts [22].

The current assessment of landslide susceptibility typically relies on models built using
static factors [29–31], neglecting dynamic features such as ground deformation [27]. This
omission can lead to inaccuracies in identifying certain landslide-prone areas. Integrating
MT-InSAR results into machine learning (ML)-based landslide susceptibility models holds
great promise. By incorporating ground movement data derived from MT-InSAR methods,
these models can account for the dynamic behavior of landslides [25–28]. ML models are
known for their excellent performance and efficient modeling process in capturing the
relationship between various factors and landslides, making them widely used in landslide
susceptibility mapping. Recently, ML models such as logistic regression [28,32], support
vector machines [27,32], random forests [25,27,28,32], naive Bayes [25], and Xtreme gradient
boosting [25,28,32] have been widely applied in LSM. Comparative analysis of ML-based
LSM and MT-InSAR deformation results shows that areas with higher deformation points
correspond to higher susceptibility levels, while areas with lower susceptibility points are
more stable [33].

Handwerger et al. [34] use a novel InSAR detection technique that applies both local
and regional filters to reduce background noise and highlight specific deformations, like
landslides. The results from this study have identified hundreds of slow-moving landslides
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in California, with particularly high concentrations along the Big Sur coast, the central San
Andreas Fault, and the Eel River area—all known for frequent landslides. By comparing the
displacement time series of numerous landslides with local precipitation data, the authors
observed a direct correlation between cumulative rainfall and landslide movement. Kang
et al. [35] analyzed Sentinel-1 ascending and descending InSAR datasets from 2014 to 2016
and identified many landslides along the Highway 50 corridor in California moving at
rates of less than 10 cm/year. Notably, peak landslide deformation often occurs in the
dry season (May to October) due to a delay in precipitation infiltration. Cohen-Waeber
et al. observed that active slope deformation across the Lawrence Berkeley National
Laboratory (LBNL) site and the San Francisco East Bay hills (Berkeley Hills) results from
various static and dynamic conditions [36,37]. A review [36] of three separate InSAR time
series analyses of the Berkeley Hills—using ERS-1/2 data from 1992 to 2001 [38], data
from 2001 to 2006 [39], and data from 2009 to 2011 [40]—shows remarkable consistency.
These independent studies found that precipitation-related displacement did not occur
immediately, but with lag times of up to 1 to 3 months. In another study, Cohen-Waeber
et al. [41] utilized TerraSAR-X satellite images from 2009 to 2014 and a proprietary MT-
InSAR algorithm to generate a highly detailed time series of ground deformation for
the San Francisco East Bay Hills. The independent and principal component analyses of
this time series uncover four distinct spatial and temporal deformation patterns in the
area around the Blakemont landslide in California. Two of these components identify
continuous landslide movement and deformation driven by precipitation-related pore
pressure changes, influenced by annual seasonal cycles and multiyear drought conditions.
The remaining two components, representing more widespread seasonal deformation,
distinguish between precipitation-induced soil swelling and annual variations potentially
linked to groundwater level fluctuations and thermal expansion of structures.

The findings highlight the effectiveness of MT-InSAR in detecting slow landslide
movements in challenging terrains. While MT-InSAR technology has been used in var-
ious studies to identify landslides, its application in large-scale LSM across extensive
areas in California has been relatively underexplored. Additionally, existing ML-based
LSM often incorporates MT-InSAR velocity estimates as input weights but has not exten-
sively investigated the direct integration of ground movement results with other landslide
causative factors in the ML model. Our current research aims to address these gaps by
focusing on (1) large-scale landslide susceptibility mapping using MT-InSAR and (2) the
direct integration of MT-InSAR data alongside other landslide-causative parameters in
ML models.

Therefore, the present study aims to develop and evaluate a landslide susceptibility
model that integrates conventional EO data derivatives (e.g., slope, aspect, and NDVI),
historical data (e.g., rainfall and geology), and MT-InSAR ground movement results. The
objective is to create a multi-class classification model utilizing these diverse datasets to
categorize geographical areas into four distinct susceptibility levels: no susceptibility at
this scale and with the available information, low susceptibility, medium susceptibility, and
high susceptibility.

2. Study Area

The study area presented in this paper is located in the state of California, as depicted
in Figure 1. Situated on the west coast of the United States, California features a diverse
geography that includes rich valleys, coastal areas, deserts, and mountain ranges. With its
large population and significant economic impact, California is one of the most prominent
states in the country. The study area is characterized by complex topography, seismic
activities, and seasonal weather patterns, making it prone to landslides. The combination
of steep slopes, heavy rainfall, and seismic events increases the risk of slope instability and
potential landslides [24].
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Figure 1. Study area map of the San Francisco region, featuring a United States Geological Survey 
(USGS) 3D Elevation Program (3DEP) Digital Elevation Model as the background. Historical land-
slide locations are denoted with red triangles (with 272 landslides falling within the study area AOI), 
and the extent of the Sentinel–-1 Synthetic Aperture Radar (SAR) image is outlined with a black 
polygon. 

The geology of the study area (Figure 2) includes sedimentary rocks such as sand-
stones, limestone, and shales, found in the coastal ranges and central valleys. Volcanic 
rocks like andesite and basalt are present in the northern part of the state. The San Andreas 
Fault, a major geological feature, consists of fractured and deformed rocks, contributing 
to frequent seismic activity in the region [42]. 

Figure 1. Study area map of the San Francisco region, featuring a United States Geological Survey
(USGS) 3D Elevation Program (3DEP) Digital Elevation Model as the background. Historical landslide
locations are denoted with red triangles (with 272 landslides falling within the study area AOI), and
the extent of the Sentinel—1 Synthetic Aperture Radar (SAR) image is outlined with a black polygon.

According to the landslide inventory catalog [25], the San Francisco area experiences
frequent landslides. For these reasons, San Francisco has been selected as the study area for
the landslide susceptibility analysis.

The geology of the study area (Figure 2) includes sedimentary rocks such as sandstones,
limestone, and shales, found in the coastal ranges and central valleys. Volcanic rocks like
andesite and basalt are present in the northern part of the state. The San Andreas Fault, a
major geological feature, consists of fractured and deformed rocks, contributing to frequent
seismic activity in the region [42].
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Figure 2. The geological profile of the study area was obtained from the USGS website [43], based on
a 1:250,000 scale digitized map. Major faults overlaid on the map are retrieved from the California
State Geoportal (https://gis.data.ca.gov/, accessed on 11 August 2023).

3. Data Collection and Preparation

The dataset comprised nine Geographic Information System (GIS) layers derived from
DEM and historical geospatial data as predictor variables. The MT-InSAR results along with
slope values are used to classify the target variable into four different classes as described
in Section 4. The selected features for our models included both numeric and categorical
variables such as slope, aspect, distance from a stream, annual precipitation, vegetation,
curvature, flow direction, soil type, and geology. Each feature type required specific
handling to ensure accurate analysis and model integration. These features underwent
data processing, data cleaning to remove records with missing values, and significant
data transformations, such as categorization and dummy variable encoding, to facilitate
their effective utilization by the machine learning models. Each factor is described in the
following sections:

3.1. GIS Layers

The GIS layers used as an input to the model include slope, aspect, curvature, flow
direction, distance to a stream, rainfall, vegetation index, soil type, and geology (Figure 3).

https://gis.data.ca.gov/
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The first five GIS layers are developed from the USGS 3DEP 10 m spatial resolution DEM
using ArcGIS software v10.5. Rainfall, soil type, and geology layers are developed from
historical geospatial data, whereas the vegetation index (NDVI) is created by processing
Sentinel-2 images in Google Earth Engine. Incorporating historical data on rainfall, soil,
and geological conditions is crucial for precise assessments, as it provides valuable insights
into the factors contributing to slope failures. Understanding the variability of these factors
and their influence on landslide occurrences enhances the ability to predict susceptibility
more effectively. Out of these historical parameters, rainfall is a primary trigger: intense or
prolonged precipitation increases soil moisture and ultimately decreases soil shear strength,
leading to slope failures [44]. Soil composition also impacts landslide susceptibility, with
coarse-grained soils like gravel being more prone to failure compared to fine-grained soils
such as silt and clay [45]. Geological factors further influence susceptibility, with variations
in lithology, structural features, and tectonic history playing crucial roles in slope stability.
Detailed geological maps that include lithological and structural characteristics are essential
for accurate landslide susceptibility assessments [46].

3.1.1. Slope

Slope-derived factors provide the primary information about landslides. The diverse
range of slope movements reflects the various conditions leading to slope instability and
the underlying processes driving these movements [2]. Within a DEM, slope is calculated
by measuring the rate of elevation change over a short distance. To analyze slope character-
istics within the study area, we processed the 10 m resolution USGS 3DEP DEM in a GIS
environment. Based on their degree of steepness, these slope values were classified into
five distinct classes: 0–5◦ for low slopes, 5–20◦ for moderate slopes, 20–35◦ for steep slopes,
35–50◦ for very steep slopes, and ≥50◦ for extremely steep slopes.

3.1.2. Aspect

Aspect refers to the orientation of a slope, measured clockwise from 0 to 360◦, where
0◦ is north-facing, 90◦ is east-facing, 180◦ is south-facing, and 270◦ is west-facing. This
classification scheme indicates how terrain features are oriented in relation to external
environmental influences.

3.1.3. Curvature

The concavity or convexity of a terrain is determined by the curvature of the surface.
Curvature values are calculated from the DEM. These values are then classified as follows:
values less than −0.001 are classified as concave, values between −0.001 and 0.001 are
classified as linear, and values greater than 0.001 are classified as convex. Concave terrain
features may accumulate water and debris, increasing the likelihood of landslides, while
convex terrain features facilitate surface runoff, reducing the likelihood of saturation-
induced landslides.

3.1.4. Flow Direction

Flow direction is calculated from the DEM using an algorithm that determines the
steepest descent from one cell to the next, representing the path of surface runoff. The
flow direction values are then classified based on cardinal and intercardinal directions
using the thresholds: 1, 2, 4, 8, 16, 32, 64, and 128. This classification scheme provides
insights into the predominant flow patterns of surface water runoff across the study area.
Analyzing the flow direction classes allows us to understand the hydrological processes
shaping the landscape.
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Figure 3. Different landslide causative factors used as input to the machine learning model. (A) slope,
(B) aspect, (C) curvature, (D) flow direction, (E) distance from a stream, (F) rainfall, (G) vegetation,
(H) soil type, and (I) geology.

3.1.5. Distance to a Stream

A catchment area is a hydrological unit determined by the direction of flow and
stream order, which classifies streams based on their tributary numbers. Flow accumulation
analysis identifies potential stream networks by calculating the water accumulation through
each cell in the raster grid. These values are classified into two categories: from 0 to 3000
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for low accumulation areas and over 3000 for high accumulation areas. A binary raster is
created for catchment zones with values of 3000 or greater, and a stream network delineation
algorithm generates stream order from these zones. The resulting stream network raster is
converted to vector format. Finally, Euclidean distance analysis determines the distance
from each cell to the nearest stream, providing insights into watercourse proximity.

3.1.6. Rainfall

Precipitation data were collected for the period 2019 to 2022 from the Community
Collaborative Rain, Hail, and Snow Network (https://www.cocorahs.org, accessed on
13 September 2023). To obtain the spatial distribution of rainfall, a spline polynomial
interpolation method was employed. This method fits a minimum curvature surface
through the input data points, making it particularly suitable for spatially interpolating
rainfall data. The highest recorded value was 4833.37 mm, and the lowest was 596.90 mm.
To determine the overall precipitation regime within the study area, the total precipitation
data for each station were averaged.

3.1.7. Vegetation

Sentinel-2 images with less than 5% cloud coverage, overlapping with the InSAR
analysis period, were used for vegetation analysis. The Normalized Difference Vegetation
Index (NDVI) was calculated using Google Earth Engine. NDVI values were classified into
four distinct categories based on vegetation density: none, low, moderate, and high.

3.1.8. Soil Type

As soil type directly influences the hydrological and mechanical properties of a terrain,
it determines landslide susceptibility. Various soil types were considered in this study,
including fine loamy, loamy skeletal, coarse loamy, fine clayey skeletal, clayey over loamy,
sandy skeletal, very fine, sandy, and ashy skeletal. Soil classification affects water retention
capacity, permeability, and structural stability, affecting landslide susceptibility. Clayey
soils, for instance, have low permeability and high water retention, which can increase
pore pressure and reduce slope stability, while sandy soils have better drainage, which
may help prevent landslides. Under certain conditions, loamy soils can offer moderate
stability but are still susceptible to erosion and movement. Mapping these soil types across
the study area can provide valuable insights into regions where soil composition may
exacerbate landslides.

3.1.9. Geology

The geological profile of the study area was obtained from the USGS website [43],
based on a 1:250,000 scale digitized map depicting the principal geotectonic zones, for-
mations, clusters, and sequences. In the San Francisco area, sedimentary deposits are
dominated by Franciscan/Mesozoic rock, prominently shaping the city’s surface. Tertiary
deposits are less common and are scattered throughout San Francisco, particularly along
the coastline. Quaternary deposits are primarily found inland, especially on the middle to
eastern side of the region. Surrounding San Francisco Bay, bay mud deposits are prevalent.

This region’s geological map highlights various formations, each contributing to the
complexity of the landscape and susceptibility to landslides. These formations include
igneous and metamorphic rocks, undifferentiated metamorphic rocks, igneous intrusive
and volcanic rocks, melange, schist, serpentinite, and various sedimentary formations.

3.2. MT-InSAR Data

Seventy-nine ascending passes of Sentinel-1 single look complex (SLC) images, span-
ning from 3 January 2019 to 31 October 2021, were utilized for MT-InSAR analysis. Our
study employed a comparative approach, using the SBAS technique in one half of the
study area and PSI in the other, to assess their impact on landslide susceptibility map-
ping. The aim was to evaluate how these MT-InSAR techniques influenced the multi-class

https://www.cocorahs.org
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classification model developed for this study, focusing on their respective deformation
measurements. The processing was carried out using the ENVI SARscape software v5.7.

4. Methodology
4.1. MT-InSAR

Sentinel-1 SLC images are processed using PSI and SBAS techniques. Initially, connec-
tion graphs are formed by linking each image with a reference image for the PSI technique.
Interferograms are generated for each connection, and the topographic phase is compen-
sated using a Shuttle Radar Topographic Mission (SRTM) 30 m DEM. These interferograms
are then inverted to retrieve displacement rates and finally geocoded.

A similar approach is applied for SBAS, where interferograms are formed with a
temporal baseline limited to 90 days. There is no limitation on the perpendicular baseline
since the Sentinel-1 constellation operates within a close orbital tube. The topographic phase
is compensated using a SRTM 30 m DEM. The differential interferograms are then phase-
filtered to improve the signal-to-noise ratio. The Minimum Cost Flow (MCF) algorithm
is employed for phase unwrapping. The unwrapped interferograms are then inverted
to retrieve displacement rates. The methodology followed for landslide susceptibility
mapping is illustrated in Figure 4.
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4.2. Classification Criteria

The classification criteria for landslide susceptibility used in our analysis are based on
rigorous scientific principles that establish a clear correlation between ground movement
velocity and the likelihood of landslide occurrence [33]. Recognizing the variability in
landslide occurrence across different terrains and conditions, we divided the study area into
four distinct susceptibility classes. These classifications are based on the absolute velocity of



Remote Sens. 2024, 16, 3574 10 of 22

ground movement derived using MT-InSAR methods, providing a precise, velocity-based
measure to gauge potential landslide activity.

The categorization ranges from Class 1, indicating areas with virtually “no suscepti-
bility at this scale and with the available information”, to Class 4, indicating regions with
“high susceptibility”. Importantly, historical landslide events, regardless of their recorded
velocity, are automatically classified as Class 4. This decision is based on the premise that
areas with a history of landslides, regardless of their current ground movement velocity,
possess inherent geological or hydrological characteristics that predispose them to future
landslide events. The classification criteria are shown in Table 1.

Table 1. Landslide susceptibility classification criteria based on absolute velocity, slope, and historical
landslide events.

Class Criteria Susceptibility

1 Absolute velocity interval: from 0 to 2 mm/year AND
Slope interval: (0, 5]◦

No susceptibility at this scale, and with the
available information

2 Absolute velocity interval: from 2 to 5 mm/year AND
Slope interval: (5, 90]◦ Low susceptibility

3 Absolute velocity interval: (5, 15] mm/year AND
Slope interval: (5, 90]◦ Moderate susceptibility

4

Absolute velocity interval:(>15) mm/year AND
Slope interval: (5, 90]◦ OR

Historical landslide event AND
Slope interval: (5, 90]◦

High susceptibility

This comprehensive and methodologically sound approach ensures that the landslide
susceptibility map we have developed is informed not only by empirical data but also by a
deep understanding of the landscape’s inherent susceptibility to landslides.

The thresholds were set to give the clearest picture of landslide susceptibility. Most
observations fell into Class 1, showing minimal susceptibility. Class 4, indicating the highest
susceptibility and including active and known landslides, made up only a small part of
the dataset. This left an intermediate set of data, identifying locations that could pose a
landslide threat. After the classification, Classes 2 and 3 show about the same number of
data points.

A recent study [47] used the Jenks natural breaks classification method. This statistical
method helps identify optimal breakpoints in data by minimizing variance within classes
and maximizing it between them. This study established thresholds at 14.88 mm/year,
9.14 mm/year, 5.39 mm/year, and 2.46 mm/year, which are similar to the rounded values
we determined manually, further supporting our threshold values.

Moretto [23] characterized the MT-InSAR velocities into three clusters with velocities
>5 mm/yr, between 5 and 3 mm/yr, and below 3 mm/yr. The authors considered the
points below 3 mm/yr as stable points. The results presented by the authors coincided with
the non-linear downslope movements, linear movements, and stable areas, respectively. In
addition, the authors highlight acceleration corresponding to the first cluster and forecast
the time-to-failure window of the landslide. This observation will further support our
classification criteria of the MT-InSAR results. These velocity thresholds are compared with
the thresholds used in this study in Table 2.
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Table 2. Landslide susceptibility/deformation classification criteria of this study compared with
previous literature.

Study Velocity Classification Susceptibility

This study

0–2 mm/y No susceptibility at this scale, and
with the available information

2–5 mm/y Low susceptibility

5–15 mm/y Moderate susceptibility

>15 mm/y High susceptibility

Yao et al. [47]

<2.46 mm/y Very low susceptibility

5.39 mm/y to 2.46 mm/y Low susceptibility

9.14 mm/y to 5.39 mm/y Moderate susceptibility

14.88 mm/y to 9.14 mm/y High susceptibility

>14.88 mm/yr Very high susceptibility

Moretto et al. [23]

<3 mm/y Stable

3–5 mm/y Moderate deformation

>5 mm/y High deformation

We classify areas with a slope of 5◦ or less as Class 1, mainly covering relatively flat
urban zones. The choice of 5◦ as the threshold is based on geomorphological studies
suggesting that flatter terrains, typically under 5◦, exhibit minimal gravitational pull that
could lead to landslides. While a study using GRASS GIS for multi-scale geomorphometric
analysis [48] suggests a 6◦ threshold to delineate relatively flat surfaces based on visual
evaluations and field mapping, we opted for a slightly lower threshold to adopt a con-
servative approach to susceptibility mapping. This ensures the inclusion of potentially
susceptible areas, enhancing our model’s sensitivity to regions where landslide occurrence
might be less obvious but still present.

After establishing our classification criteria based on absolute ground movement ve-
locity and historical landslide events, our methodology includes a detailed examination of
environmental and geological factors as outlined in Section 3. For each location identified
through MT-InSAR data or historical records, these factors are carefully analyzed to de-
termine their relationship with the assigned susceptibility class. This approach allows for
a comprehensive correlation study, aiming to identify significant predictors of landslide
susceptibility in a given area.

4.3. Ensemble Learning Models

Ensemble learning is a dynamic machine learning approach that has demonstrated
clear advantages across various fields, including remote sensing. In machine learning,
an ensemble refers to a system built from multiple individual models, whose outputs
are combined to produce a single result for a given problem. One key benefit of using
an ensemble of multiple models is that it generally offers better generalization capability
compared to any single model on its own [49].

4.3.1. Random Forest (RF)

Random forests are supervised learning algorithms that employ an ensemble approach.
They construct a multitude of decision trees, each trained on a bootstrap sample of the
data and using a random subset of features for splitting. This random selection process
reduces the correlation between trees, leading to improved generalization performance. The
final prediction is determined by aggregating the predictions from all trees, often through
majority voting or averaging [50]. This ensemble approach helps to mitigate the risk of
overfitting and enhances the model’s robustness to noise and outliers. Random forests
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typically exhibit superior classification accuracy and generalization performance compared
to individual decision trees [51]. One of the significant advantages of random forests is
their relative insensitivity to hyperparameter tuning. The algorithm’s inherent randomness
and ensemble nature often yield good results with minimal parameter adjustments, making
it a popular choice for various machine learning tasks.

4.3.2. Extreme Gradient Boosting (XGB)

Extreme Gradient Boosting is a supervised learning algorithm that, like decision trees,
can be used for both classification and regression tasks. It is a scalable and effective version
of gradient boosting [52]. The core idea behind boosting is to improve performance by
combining the outputs of multiple weak learners [53], which individually have low accu-
racy, to create a strong classifier with enhanced performance. XGB excels in handling large
datasets by building and running boosted trees in parallel, which speeds up the algorithm.
One of its main advantages is its ability to optimize memory usage and leverage hardware
capabilities, resulting in faster execution and better performance compared to many other
machine learning algorithms [54]. Additionally, XGB incorporates L1 and L2 regularization
techniques to refine the learning weights and reduce the risk of overfitting [55].

4.4. Model Parameter Tuning

Hyperparameters in machine learning algorithms vary from model to model and
need to be carefully tuned before training [56]. In this study, despite the strengths of
the RF and XGB models used, hyperparameter tuning was performed to enhance their
performance. Specifically for RF with oversampling, several parameters were adjusted prior
to training. The “class_weight” parameter was set to “balanced” rather than the default
“none”. Additionally, both “min_samples_leaf” and “min_samples_split” were set to 5. For
XGB, the “objective” parameter was configured to “multi:softmax”, and “num_class” was
set to 4 to match the four-class outcome of the current problem. All other parameters were
kept at their default values for each model.

4.5. Model Training

We adopted a systematic approach to model development, beginning with data parti-
tioning. A 10% data sample was used to manage computational load without compromising
the model’s predictive capability. We employed ADASYN (Adaptive Synthetic Sampling)
oversampling to address class imbalance, enhancing the model’s ability to predict minority
classes accurately. Resampling techniques, including oversampling and under-sampling,
are commonly employed to address class imbalances in datasets. Under-sampling risks
discarding valuable data that is crucial for model performance [56]. The ADASYN over-
sampling technique generates synthetic samples for the minority class based on the density
distribution of existing instances, with the goal of enhancing model classification accu-
racy [51]. In order to evaluate the models, we used the hold-out approach, splitting the
data 70% for training and 30% for testing.

To identify the most effective method for classifying landslide susceptibility, we
experimented with various machine learning techniques, including RF and XGB. Our
evaluation process involved experimenting with different combinations of features, using
both the original dataset and an oversampled dataset to address data imbalance.

4.6. Model Validation

We used ROC (receiver operating characteristic) curves and a confusion matrix to
quantitatively evaluate the accuracy and performance of the models. The model’s accuracy
is assessed through the AUC (area under the ROC curve). AUC values range from 0.5 to
1, with higher values closer to 1 indicating better model accuracy, while values near 0.5
suggest the model lacks predictive capability.

The confusion matrix categorizes binary classification results into four classes: true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). From the
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parameters derived from the confusion matrix, four model performance evaluation metrics
are calculated. The metrics are accuracy, precision, recall, and F1 score.

5. Results and Discussion
5.1. MT-InSAR Results

Surface deformation in the San Francisco Bay Area is primarily attributed to slow-
moving geological processes such as interseismic strain accumulation, shallow fault creep,
and aquifer deformation [42]. MT-InSAR results reveal a complex pattern of ground
movement as shown in Figure 5. The western Santa Clara Valley is subsiding at a rate of
−12 to −18 mm/year, while the eastern side exhibits a slower rate of −2 to +12 mm/year.
A clear transition between these zones occurs northwest of the Silver Creek Fault (SCF).
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The area along the Pacific coast and around San Francisco Bay is generally stable,
with deformation rates generally ranging between −2 and +2 mm/year. However, specific
regions, particularly those underlain by artificial landfills and mud deposits, exhibit more
significant subsidence, reaching rates of −15 to −20 mm/year. Areas northwest of Treasure
Island, San Francisco International Airport (SFO), and Foster City are subsiding at rates
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of −2 to −6 mm/year. North of SFO, closer to the coast, subsidence rates increase to
−6 to −12 mm/year. Our measured surface motion rates are consistent with previously
documented deformation features [42,57,58]. Figure 6 presents displacement time series at
several locations, including Treasure Island (TI), San Francisco International Airport (SFO),
Foster City (FC), and within Santa Clara Valley (SCV).
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The high deformation rates observed in the MT-InSAR results may indicate areas of
significant deformation on the slope that could potentially lead to landslides in the future.
Figure 7 depicts deformation time series at several of these locations (represented with
letters from A to G in Figure 5), showing subsidence rates ranging from −10 mm/year
to −80 mm/year. An area corresponding to the high deformation is shown in Figure 8,
which also highlights the presence of three historical landslides adjacent to the Green
Valley Fault. Notably, this high deformation zone is located near historical landslide sites,
underscoring the importance of continuous monitoring in these areas to detect and address
potential landslides.

5.2. Model Accuracy Verification

The AUC value from the ROC curve provides an insightful interpretation of predictive
accuracy. Figure 9 shows AUC values for each class (from Class 1 to Class 4) for the RF
and XGB models with both original and oversampled data. The AUC values are between
0.92 and 0.98 in all cases, with slight variations between the original and oversampled
data. The interpretations from the ROC curve suggest that both models with original
and oversampled data are performing well. This result emphasizes the importance of
addressing class imbalances before inputting data into machine learning models.

However, metrics such as accuracy, recall, precision, and F1 score derived from the
confusion matrix reveal additional details about model performance. In addition, we
also use training speed as a metric to evaluate model performance. The training speed is
represented as 1/ln(t), where t is time required to train the model. Models with higher
accuracy, an F1 score, and a balance between recall and precision are typically regarded as
good models [27]. Figure 10 portrays the accuracy, recall, precision, F1 score, and training
speed for RF and XGB models. The figure clearly indicates that models with original data
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do not show a balance between recall and precision, whereas models using oversampled
data perform better. Both RF and XGB models with oversampled data show similar values
across all four metrics. However, the training speed for the RF model with oversampled
data is 16.73 min, which is much higher than the training speed for the XGB model with
oversampled dataset (1.54 min). Even though the training speed for the XGB model with
original data (0.53 min) is lower than XGB with oversampled data, the balance between
recall and precision values is not promising. Therefore, the XGB model with oversampled
data for landslide susceptibility mapping has been selected in this study as it demonstrated
better performance.
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5.3. Landslide Susceptibility Mapping

Landslide susceptibility maps identify areas that are prone to landslides, categorizing
them by susceptibility level. These maps are invaluable for government and private
agencies in land-use planning, infrastructure development, and disaster management. By
pinpointing high-susceptable zones, authorities can implement preventive measures such
as reforestation, drainage systems, and early warning systems. During disasters, these
maps aid in rescue efforts, resource allocation, and evacuation planning, minimizing loss
of life and property damage.

Factors such as slope, vegetation, and proximity to streams contribute to landslide
susceptibility, collectively accounting for 79%. A tree map showing the importance of
factors used in this study is shown in Figure 11. Among these, slope is the primary factor,
accounting for 37% of landslide susceptibility. Slope has been identified as a crucial factor
in landslide susceptibility in numerous mapping studies [2,9–11], particularly affecting
susceptibility at steeper angles. Vegetation accounts for approximately 22% of landslide
susceptibility. Low to moderate susceptibility is observed in areas with high vegetation
cover, indicated by high NDVI values. Proximity to streams contributes to 20% of landslide
susceptibility, as these areas often experience soil saturation, frequent flooding, and soil
erosion, which increase the risk of landslides. Geology, rainfall, and soil type together
contribute about 16%. Variations in rainfall intensity and patterns can notably affect the
timing and characteristics of landslides [59,60]. For example, a time lag between rainfall
events and landslides has been observed in the Berkeley Hills of California [35,36,41]. It
was observed that both low and high precipitation events equally contributed to landslide
susceptibility in the study area. Loamy and clayey soils were found to have a greater
impact on susceptibility in this study. Landslide susceptibility is primarily distributed in
areas with sedimentary, clastic geology. In contrast, factors such as aspect, flow direction,
and curvature had minimal influence.
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The LSM is classified into four classes ranging from Class 1 to Class 4, denoting no
susceptibility at this scale and, with the available information, high susceptibility. The
landslide susceptibility map generated by the XGB model is shown in Figure 12 indicates
high susceptibility along the Pacific coast. The SCV area is predicted as Class 1, as the slope
values are between 0◦ and 5◦. The map’s predictions align well with historical landslide
locations, demonstrating the model’s effectiveness in predicting landslides. The optimal
model was validated against 272 historical landslide occurrences in the area of interest,
with predictions distributed as follows: 68 occurrences (25%) in Class 1, 142 occurrences
(52%) in Class 2, 58 occurrences (21.5%) in Class 3, and 4 occurrences (1.5%) in Class 4.
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Figure 12. Landslide susceptibility map of the San Francisco area derived using the XGB model. The
map classifies landslides into four categories, ranging from no susceptibility to high susceptibility.
The historical landslide locations are overlaid on the susceptibility map.

This outcome highlights a crucial aspect of landslide prediction models—the dynamic
nature of environmental conditions. It is vital to recognize that the factors leading to
past landslide events may have significantly changed, making areas previously prone to
landslides more stable today. Vegetation growth, changes in land use, and erosion control
measures can greatly alter the landscape, enhancing stability and reducing landslide
susceptibility. Therefore, areas that experienced landslides in the past may not necessarily
present the same level of susceptibility today. Additionally, the historical accuracy of
landslide occurrences might vary, with some events potentially misclassified or affected by
data collection limitations at the time.

This context provides a logical framework for understanding the validation results.
While the optimal model’s performance against historical data might initially suggest
limitations, it also underscores the importance of considering temporal changes in envi-
ronmental conditions such as precipitation, distance to streams, changes in vegetation,
and the evolving nature of landslide behavior. This perspective encourages continuous
model refinement and highlights the need for integrating up-to-date environmental data to
enhance predictive accuracy. Future iterations of the model will benefit from incorporating
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recent changes in the parameters that influence landslide susceptibility, thereby improving
its relevance and reliability in current and future assessments.

6. Conclusions

This study successfully developed and evaluated a landslide susceptibility model for
the San Francisco Bay Area. The model integrates conventional Earth Observation (EO)
data derivatives (slope, aspect, NDVI, etc.), historical geospatial data (rainfall, geology,
etc.), and MT-InSAR ground movement results. It leverages the strengths of these diverse
data sources to create a multi-class classification model, categorizing geographical areas
into four distinct susceptibility levels: no susceptibility at this scale and with the available
information, low susceptibility, medium susceptibility, and high susceptibility.

MT-InSAR analysis revealed complex patterns of ground movement in the San Fran-
cisco Bay Area, with subsidence rates ranging from −20 mm/year to +12 mm/year. These
findings align well with existing literature. Importantly, MT-InSAR identified subsidence
at historical landslide locations, highlighting its effectiveness in landslide mapping.

Machine learning models, particularly the XGB model with oversampled data, demon-
strated promising performance in landslide susceptibility mapping. The model achieved
high AUC values (≥0.93) across all susceptibility classes, indicating good predictive accu-
racy. Additionally, the confusion matrix metrics (accuracy, precision, recall, and F1 score)
showed a balanced performance for the XGB model with oversampled data, making it the
optimal model for this study. The training and predictive speed of the XGB model using
oversampled data are ten times higher compared to the RF model using the same data.

The generated landslide susceptibility map classified susceptibility levels across the
San Francisco Bay Area. The map identified high-susceptibility zones along the Pacific
coast, which aligns well with the distribution of historical landslides. This demonstrates
the model’s ability to predict potential landslide occurrences. The validation process using
historical landslide data revealed that a significant portion (52%) of past landslides fell into
Class 2 (low susceptibility) of the model’s classification. While this might initially appear
as a limitation, it can be attributed to the dynamic nature of the environment. Factors like
vegetation growth, land-use changes, and erosion control measures can alter the landscape
over time, potentially reducing susceptibility in areas previously susceptible to landslides.
Additionally, limitations in historical data accuracy might contribute to discrepancies.

Future research should explore incorporating additional dynamic factors, such as
real-time precipitation data and seismic activity, into the model. This could enhance the
model’s ability to capture the temporal variability of landslide susceptibility. Regularly
updating the model with the latest EO data and historical landslide occurrences will be
crucial for maintaining its accuracy and effectiveness over time. Overall, this study presents
a significant contribution to landslide susceptibility mapping by integrating MT-InSAR
data and machine learning techniques. The developed model provides valuable insights
for land-use planning and hazard mitigation strategies in the San Francisco Bay Area.
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