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Abstract: The Arabian Gulf, a semi-enclosed basin in the Middle East, connects to the Indian Ocean
through the Strait of Hormuz and is surrounded by seven arid countries. This study examines
the water cycle of the Gulf and its surrounding areas using data from the GRACE and GRACE
Follow-On missions, along with ERA5 atmospheric reanalysis data, from 05/2002 to 05/2017 and
from 07/2018 to 12/2023. Our findings reveal a persistent water deficit due to high evaporation rates,
averaging 370 ± 3 km3/year, greatly surpassing precipitation, which accounts for only 15% of the
evaporative loss. Continental runoff provides one-fifth of the needed water, while the remaining
deficit, approximately 274 ± 10 km3/year, is balanced by net inflow of saltwater from the Indian
Ocean. Seasonal variations show the lowest net inflow of 26 ± 49 km3/year in March and the highest
of 586 ± 53 km3/year in November, driven by net evaporation, continental input, and changes in the
Gulf’s water budget. This study highlights the complex hydrological dynamics influenced by climate
patterns and provides a baseline for future research in the region, which will be needed to quantify
the expected changes in the hydrological cycle due to climate change.

Keywords: Arabian Gulf; water transport components; Strait of Hormuz; runoff; net water inflow

1. Introduction

The Persian, or Arabian, Gulf is a semi-enclosed sea located in the Middle East, between
latitudes 24◦N and 31◦N and longitudes 48◦E and 56◦E, and bordered in counterclockwise
order starting from the east by Iran, Iraq, Kuwait, Saudi Arabia, Bahrain, Qatar, and the
United Arab Emirates (Figure 1). The Gulf is shallow, with average and maximum depths
of 50 m and 110 m, respectively, and covers an area of approximately 2.5 × 105 km2. It is
about 1000 km long and varies in width from 56 km at the Strait of Hormuz to a maximum of
340 km [1]. The Arabian Gulf is connected to the Gulf of Oman through the Strait of Hormuz,
and then to the Arabian Sea in the northern Indian Ocean (Figure 1).

The Strait of Hormuz is one of the most crowded waterways because it is the only
access point to some of the largest oil-producing countries in the world, such as Saudi
Arabia, Iran, the United Arab Emirates, and Iraq. These countries produce about 20% of
all the oil traded globally, which is exported by sea to other parts of the planet, generating
a lot of maritime traffic in the Strait of Hormuz. In fact, around 40% of the world’s oil
transported by ship passes through this narrow passage [2]. The high volume of shipping
and bottom trawling in the region makes in situ oceanographic data collections extremely
difficult, as instruments could be damaged by ships or fishing gear [2]. In this context,
remote sensing techniques are crucial to study the net transport of water through the Strait
of Hormuz.

The hydrological cycle, also known as the water cycle, is the continuous movement
of water between and within the atmosphere, the continents, and the oceans, which plays
a crucial role in the regulation of weather patterns and in determining the availability
of freshwater, which is essential for the life of humans and ecosystems. The continental
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region surrounding the Arabian Gulf is characterized by an arid climate and limited
water resources. While the underground water resources are substantial, their saline
concentration is extremely high, necessitating desalination for human activities. In fact,
rapid population growth, particularly in urban areas, is leading to an increase in water
demand and, therefore, desalination. During the desalinization process, salt and minerals
are removed from sea or brackish water through several processes. This disrupts the
natural water cycle by altering the balance of salt and freshwater in the environment. In
addition, the intake of sea/brackish water and the discharge of brine water during the
desalination process can also affect the local marine environment. The intake of large
amounts of seawater can trap and kill marine life, while the discharge of brine can raise the
salinity levels of nearby seawater and affect the ecosystem [3]. The Arabian Gulf countries
have a cumulative desalination capacity of around 11 × 106 m3/day, which is about 45%
of the global desalination activity [3]. Understanding the hydrological dynamics of the
Arabian Gulf is important due to the various environmental factors that impact it, especially
the exchanges with the open ocean.
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Figure 1. (1) Arabian Gulf (blue region) and continental region draining into the Gulf (gray region),
as defined by the Global Continental Runoff Routing Framework (Oki and Sud, 1998) [4]. Missing
points between them (cyan region) are suppressed in this study to reduce leakage signals in GRACE
data. An added subplot (2) shows the geographical location of the study region in the world.

In the sea, the Arabian Gulf receives freshwater from riverine inflow and precipitation
(P), but a larger water budget is lost via evaporation (E), producing a deficit of water that
must be restored by importing seawater from the Gulf of Oman. This loss of freshwater
makes the Arabian Gulf a hypersaline basin with an inverse estuarine circulation, where
less saline and warmer water from the Indian Ocean enters the Arabian Gulf near the
surface, and denser (colder and saltier) water moves in the opposite direction in the deeper
layers [5]. This density difference explains why the Arabian Gulf circulation is typically
modeled with two isopycnal levels. The salty water masses leaving the Arabian Gulf spread
out in the Gulf of Oman, and some pathways can reach the Atlantic Ocean [6] and the Bay
of Bengal [7]. The upper outflowing water mixes because of changes in temperature via
diffusive convection, and the deeper one mixes via salt fingering [8]. The Arabian Gulf’s
climatological conditions, circulation variability, and water exchange through the Strait of
Hormuz have been studied through modeling and in situ observational research over the
past few decades [9,10]. However, there has been a serious lack of in situ measurements in
the last 25 years, since most of the latest studies are based on measurement campaigns from
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the period 1996–1998 [11]. Remote sensing measurements can partially compensate for the
lack of in situ measurements. In this study, we will examine such remote measurements to
better understand the current hydrological cycle in the region.

Understanding the hydrological cycle is essential to effectively manage freshwater
resources and sustain human and natural life. It is important to monitor the water cycle to
obtain benchmarks to quantify the impact of climate change in the future, as it is expected
to affect the hydrological cycle, intensifying the latter at a global level [12–17]. Because each
region responds differently to changes in the hydrological cycle, it is critical to monitor
water cycles and their temporal evolution regionally. In this study, we investigate the
hydrological cycle of the Arabian Gulf and the continental catchments that drain into it. In
particular, in a first phase, we will study the P, E, and variation in continental water reserves
to infer the water contribution of the continents to the Arabian Gulf. We will then repeat
the analysis at sea to study the net water exchange between the Gulf and the Indian Ocean.
To do this, we will use the time-variable gravity observations performed by the Gravity
Recovery and Climate Experiment (GRACE) and GRACE Follow-On satellites, and P and
E from ERA5 atmospheric reanalysis data for the period 2002–2023. Section 2 describes
the methodology, which has been successfully applied at the ocean global scale [18], in the
Mediterranean–Black Sea system [19], and in the Baltic Sea [20]. Data are also detailed in
Section 2. Section 3 presents the average, seasonal, and non-seasonal signal of all the water
transport (WT) components. It also analyzes their connections to climate indices. Finally,
Section 4 discusses the results and presents the conclusions.

2. Methods and Data
2.1. Methods

The Arabian Gulf and the surrounding continental catchments region exchange fresh-
water with the atmosphere through P and E processes. Positive (negative) net precipitation,
P−E, increases (decreases) the water budget (W), producing variations in W, hereafter dW.
In the continents, when P exceeds E, the water not stored flows into the sea (R) through
three mechanisms: river runoff, surface runoff outside the course of rivers, and submarine
groundwater discharge. Then, the general hydrological budget equation can be written
as [21]:

dW = P − E − R, for land. (1)

In the ocean, the Arabian Gulf receives R from land and has a net water exchange
(N) with the Oman Sea through the Strait of Hormuz. Therefore, the hydrological budget
equation can be written as:

dW = P − E + R + N, for ocean. (2)

Positive and negative values of N indicate water inflow to and outflow from the Arabian
Gulf, respectively.

The ocean water flux, N, will be estimated in a two-step process following the approach
in [18]. First, knowing P, E, and dW in the continental catchment region draining to
the Arabian Gulf, the corresponding R can be estimated as a residual in Equation (1).
Second, knowing P, E, dW, and R (estimated in the previous step) in the Arabian Gulf, the
corresponding N can be estimated as a residual in Equation (2).

If P, E, and dW are available at a monthly frequency, then monthly time series of R
and N can be estimated. For each time series, the following harmonic regression model,
with a linear trend, and annual and semi-annual components will be considered:

Ct = p0 + p1.t + Aacos(ωa.t − φa) + Asacos(ωsa.t − φsa), (3)

where t represents time, Ct denotes the value of the target time series at a given time t,
(ω, A, φ) = (frequency, amplitude, phase), and the suffixes a and sa refer to annual and
semi-annual terms. Note that φa (in degrees) indicates the day of the year on which the
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annual maximum occurs, with one degree roughly corresponding to one day. Using the
cosine angle subtraction formula, the equation can be transformed into a linear regression
model with independent variables: cos(ωa · t), sin(ωa · t), cos(ωsa · t), and sin(ωsa · t) [20].

The standard deviations (SDs) and 95% confidence intervals (CIs) for the mean val-
ues, trends, and seasonal signals of the components, as well as correlations reported in
Sections 3.1–3.3, have been evaluated using the stationary bootstrap scheme in [22], with
the optimal block length selected according to [23], as well as the percentile method. Each
time series consists of 247 months, which can be viewed as a concatenation of 2 separate
but uniformly spaced time series—the first containing 181 observations from 05/2002 to
05/2017and the second containing 66 observations from July 2018 to December 2023—with
an 11-month gap between them (see Section 3). Given that the stationary bootstrap method
assumes uniform data spacing, the distributions and SDs for the estimators of relevant vari-
ables were examined by applying the bootstrap only to the initial series of 181 observations.
In all cases, the distribution of the estimator was approximately normal, and then the corre-
sponding 95% CI can be calculated as the estimate of the quantity of interest (computed
using the complete series of 247 observations) plus or minus 2 SD (estimated from the
bootstrap). For notational simplicity, most of the results are presented as “estimate ± SD”.
The approach to implementing the stationary bootstrap in this study closely mirrors that
employed in the research in [18,19], where more details are provided. For the correlation
between the annual/winter/autumn average of the non-seasonal signals of WT compo-
nents and climate indices in Section 3.4, the reported SDs were obtained using the ordinary
bootstrap after testing the null hypothesis that the relevant time series are realizations of
independent and identically distributed random variables. To this aim, the test based on
the sample autocorrelation function, the turning point test, the difference-sign test, and the
rank test were used [24]. In all cases, the number of bootstrap iterations was established
at 10,000.

For validation purposes, the analysis was rerun, incorporating an extra cosine term
into Equation (2) to accommodate the 161-day signal attributed to S2 aliasing in the GRACE
dataset; that is, the aliasing of the semidiurnal solar tide. The outcome of the analyses, both
with and without this supplemental cosine term, turned out to be indistinguishable.

2.2. Data

The continental catchment regions draining to the Arabian Gulf were identified ac-
cording to the global continental runoff pathway scheme, which is a 0.5-degree regular
grid [4].

Monthly P and E data were obtained from the ERA5 reanalysis [25,26]. This is a
system managed by the European Centre for Medium-Range Weather Forecasts (ECMWF)
that combines real-world observations into general atmospheric circulation models. The
dataset covers both land and sea. Original data are 0.25-degree regular grids, but they were
resampled to a 0.5◦ regular grid by simple averaging to match the spatial resolution of the
continental drainage basin data. The period covered is from 2002 to 2023.

The GRACE and GRACE Follow-On missions measure gravity anomalies with respect
to a dynamic geophysical model that accounts for solid and ocean tides, among other
factors. Assuming that such gravity anomalies are produced by mass changes on the
Earth’s surface, such as in the oceans, they can be interpreted as W anomalies [27]. Time
variations of W (that is, dW) can be estimated as the discrete central derivative of W. In
general, and unless otherwise stated, GRACE and GRACE Follow-On will be referred
to simply as GRACE. Among the various existing GRACE products, we used the RL06
GRACE mascon (mass concentration) v2 solution provided by the Center of Space Research
(CSR) at the University of Texas at Austin [28–30]. Data were monthly, and the time period
was from 05/2002 to 12/2023, with a shortfall of 11 months between 06/2017and 06/2018.
In addition, there were cases of missing data for 12 single months and 5 consecutive
2-month periods, which were dealt with by linear interpolation. Then, the studied period
was 05/2002–05/2017 and 07/2018–12/2023. Data were in regular 0.25-degree grids, but
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as with P and E data, the grids were averaged to 0.5-degree grids to match the spatial
resolution of the continental drainage basin data. The obtained spatial resolution was still
finer than the ~300 km (~3◦ near the Equator) resolution of GRACE.

The following standard corrections were applied to these GRACE and GRACE Follow-
On data: (1) The C20 coefficient was replaced with a solution derived from Satellite Laser
Ranging [31], and (2) for GRACE Follow-On data, the C30 coefficient was also replaced.
(3) As the mission was not sensitive to geo-center variations, an estimate of degree-1 Stokes
coefficients was added from modeled water-mass variations [32,33]. (4) Adjustments for
glacial isostatic adjustment (GIA) were performed following [34]. In addition to these,
we made further adjustments: (5) The bottom pressure product (GAD), responsible for
capturing non-tidal variations in both atmospheric and oceanic conditions, was reintro-
duced into the GRACE data. The ocean’s mean value was set to zero to ensure consistency
with subsequent correction. (6) The GRACE mission, after correcting for atmospheric mass
variations and some ocean dynamics, assumes that the total mass of the system (denoted
by the degree-0 Stokes coefficient, ∆C00) is constant. However, this was not true because of
the global exchange of water between the Earth’s surface and the atmosphere. To correct
this imbalance, the ∆C00 term from ERA5 P–E was added to dW from GRACE (see [18,19]
for further details). Errors in the estimate of the ∆C00 term propagated to dW, but they did
not affect the estimates of R and N from Equations (1) and (2), respectively, since the ∆C00
term vanished due to the residual estimate between dW and P−E.

Volume transport was calculated by multiplying the P−E values, expressed in mm/month,
by the surface area of a grid cell, which was given in m2. Conversely, the units for W in the
GRACE data were kg/m2, and for dW, units were (kg/m2)/month. As such, dW yielded
mass transport when it was multiplied by the surface area of a grid cell, also given in m2. In
order to make dW and P−E comparable, the units of dW were converted to volume transport
units assuming a water density of 1000 kg/m3 for freshwater and 1025 kg/m3 for ocean water.
Subsequently, all outcomes will be presented in terms of volume transport and will be denoted
in km3/year.

3. Results

The time series of all the water transport (WT) components in Equations (1) and (2)
are depicted in Figure 2. These WT components were estimated according to the regions
shown in Figure 1, except when they were compared with the results from Campos et al.
(2020) [35]. In this case, the regions were slightly modified (see Supplementary Figure S1)
to adjust better to the section at 26◦N, defined in Campos et al. (2020) [35], to report the
inflows/outflows to/from the Arabian Gulf.
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Figure 2. WT time series in the Arabian Gulf for both (a) continental drainage basins and (b) ocean
basins. P is precipitation, E is evaporation, dW is water budget variations, R is the water flux from
land to the sea, and N is the net water exchange between the Arabian Gulf and the Indian Ocean
through the Strait of Hormuz. Negative (positive) values of N correspond to Arabian Gulf outflows
(inflow). Thick lines depict the 12-month moving average. The labels in the y-axis of each time series
correspond to their mean, maximum, and minimum values.

3.1. Mean Values

On annual averages, the hydrological cycle of the region is as follows: The continental
drainage basins receive 362 ± 14 km3/year via P and lose 294 ± 5 km3/year via E. This
results in an excess of water that is not stored in the continent (dW is statistically indistin-
guishable from zero) and is discharged to the sea, causing a R = 73 ± 7 km3/year. In the
Arabian Gulf, the situation is exactly the opposite, as evaporation (E = 370 ± 3 km3/year)
is much higher than precipitation (P = 25 ± 3 km3/year), resulting in a water deficit of
345 ± 4 km3/year. Since the water budget in the Arabian Gulf does not change (dW is
again statically indistinguishable from zero), the deficit created by net evaporation must
be replenished. The contribution from the continents barely covers 25% of this deficit, so
274 ± 10 km3/year must be imported from the Indian Ocean through the Gulf of Oman.
This means that three-quarters of the freshwater deficit in the gulf is covered by saltwater,
resulting in high salt concentrations. All mean values are summarized in Table 1, and a
schematic representation of the mean water cycle in the Arabian Gulf can be seen in Figure 3.
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Table 1. Mean, annual, and semi-annual signals of water transport components in Figure 2, estimated
from Equation (3). Units are km3/year for mean values and amplitudes, and degrees for phases.
In each cell, the following are reported: (i) the point estimate (based on the original time series)
plus/minus the standard deviation (SD; estimated by bootstrap based on the reduced series; that
is, from 181 observations), and (ii) the 95% confidence interval (CI), computed as the point estimate
plus/minus 1.96 SD.

Mean ± SD,
km3/year

Annual
Amplitude ±
SD, km3/year

Annual Phase
± SD, Degrees

Semi-Annual
Amplitude ±
SD, km3/year

Semi-Annual
Phase ± SD,

Degrees
Annual Peak

Arabian Gulf
drainage basins

(1.1421 × 106 km2)

P 362 ± 14
(336, 389)

375 ± 20
(336, 414)

28 ± 3
(23, 34)

26 ± 16
(−5, 57)

100 ± 40
(22, 178) 28 January

E 294 ± 5
(284, 305)

143 ± 6
(130, 155)

103 ± 3
(98, 109)

57 ± 5
(47, 67)

62 ± 5
(52, 72) 14 April

P–E 68 ± 11
(46, 89)

365 ± 15
(334, 395)

6 ± 2
(2, 11)

40 ± 14
(12, 68)

38 ± 24
(−8, 85) 6 January

dW −5 ± 8
(−21, 10)

396 ± 16
(365, 427)

1 ± 2
(−4, 5)

26 ± 13
(1, 51)

65 ± 25
(17, 114) 1 January

R 73 ± 7
(59, 88)

48 ± 11
(26, 69)

135 ± 15
(105, 164)

65 ± 13
(39, 91)

49 ± 11
(28, 70) 17 May

Arabian Gulf Sea
(2.5112 × 105 km2)

P 25 ± 3
(20, 30)

36 ± 4
(29, 44)

5 ± 6
(−8, 17)

16 ± 4
(8, 23)

165 ± 17
(132, 197) 5 January

E 370 ± 3
(364, 377)

120 ± 5
(110, 129)

289 ± 2
(284, 293)

49 ± 5
(39, 58)

140 ± 5
(130, 151) 20 October

P–E −345 ± 4
(−353, −337)

116 ± 6
(105, 128)

91 ± 3
(86, 96)

35 ± 6
(23, 46)

129 ± 8
(113, 146) 2 April

dW 0 ± 1
(−2, 3)

82 ± 6
(71, 93)

310 ± 4
(303, 317)

22 ± 5
(13, 31)

114 ± 14
(87, 141) 10 November

N 274 ± 10
(255, 293)

230 ± 15
(200, 259)

292 ± 4
(285, 299)

95 ± 17
(63, 127)

84 ± 9
(65, 102) 23 October

3.2. Annual Climatology

The WT produced by the different flows does not occur uniformly throughout the
year but shows a marked seasonal variation. For each WT component, such an annual
climatology is estimated in two ways: (1) an average year is estimated by averaging the
signal of all Januarys, all Februarys, and so on (Figure 4), and (2) fitting a linear trend as well
as an annual and semi-annual components model, as described in Section 2. Annual and
semi-annual amplitudes and phases are reported, with their corresponding SD, in Table 1.

In the continental drainage basin of the Arabian Gulf, the annual cycle variability
of P−E mimics that of P, showing a high Pearson correlation between the two original
time series (0.93 ± 0.01; Figure 5a), which means that net precipitation is mainly driven
by precipitation. Both signals show a range of annual variability around ~719 km3/year,
which is nearly twice that of evaporation (~351 km3/year). Throughout the year, E is
higher than P in spring and summer, and lower in autumn and winter. P reaches its
annual maximum (minimum) in January (August) with a value of 748 ± 55 km3/year
(29 ± 2 km3/year), while E reaches its annual maximum (minimum) in April (September)
with a value of 507 ± 21 km3/year (156 ± 5 km3/year). This net precipitation pattern
reflects a wet season during the winter months and a dry season during the summer
months. The evaporation pattern shows higher values during the warmer months of the
year, consistent with higher temperatures. The annual cycle of P−E shows a period of net
precipitation during the wet season, with a maximum of 489 ± 48 km3/year in January, and
a period of net evaporation during the dry season, with a minimum of −270 ± 9 km3/year
in June. This annual variability modifies the continental water budget and drives the
annual variability of dW, whose original time series shows a high Pearson correlation with
P−E of 0.89 ± 0.01.
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The lowest range of annual variability is observed in R, of about 229 km3/year. From
all annual cycles, R is the furthest from a sinusoidal shape. Even so, it has an annual
maximum in the summer months, with a peak of 204 ± 19 km3/year in July. This evacuation
of water into the sea increases, in absolute terms, the minima values of dW in summer
(–403 ± 22 km3/year in June and –414 ± 18 km3/year in July) to such an extent that the
loss of water budget in July is evenly produced between P−E (–210 ± 8 km3/year) and R.
In December, dW reaches an annual maximum of 374 ± 35 km3/year. The minima values
of R are reached in October (–25 ± 24 km3/year) and November (–4 ± 36 km3/year). The
relationship between R and dW is driven by infiltration and runoff generation mechanisms.
Understanding such relationship is critical to developing effective water management
strategies. Note that the mean values are negative, but not significantly different from zero.
Negative values of R would have no physical meaning. We will return to these values in
the Discussion Section.

In the Arabian Gulf, the mean value and annual range of P are only 7% and 18%,
respectively, of the continental P. This represents a dramatic reduction. The annual maxi-
mum is reached in December and January, with values around 10% of continental P, while
the minimum is reached from May to October, when P is absent in the sea. In contrast,
the mean E is higher at sea than on land, with a similar annual range of 319 km3/year.
The annual cycle at sea is opposite to that of the continent, reaching a minimum in April
(215 ± 7 km3/year) and a maximum in November (533 ± 12 km3/year). The original time
series of E for land and sea show a high negative correlation, –0.66 ± 0.03.

The large values of E relative to P result in net evaporation during all months of the
year. The intra-annual variation of P−E is mainly produced by E, as indicated by the
high correlation (–0.89 ± 0.01, Figure 5a) between the original time series. Contrary to
what might appear to be the case, dW follows a reverse annual cycle to that of P−E. Net
evaporation is lowest in April (–202 ± 8 km3/year), but dW reaches its second largest
value in absolute value (among the negative values) that month (–80 ± 12 km3/year, and
–85 ± 11 km3/year in May). On the other hand, the highest P−E water loss occurs
in November (–465 ± 23 km3/year), when the increase in water mass budget peaks
(117 ± 11 km3/year). This opposite behavior is reflected in the negative correlation of
the original series of dW and P−E (−0.45 ± 0.04), and the positive one between dW and E
(0.57 ± 0.04). This is possible thanks to the inflow of water from the continent, but above all
thanks to the inflow of water from the Indian Ocean through the Strait of Hormuz. The orig-
inal time series of dW and N display a high positive correlation of 0.69± 0.03, which means
that the deficit of water produced by E (and then P−E) is overcompensated by N, which
ultimately drives the intra-annual variability of dW. It is important to note that the original
series of R and N have a high negative correlation, −0.77 ± 0.03. This means that when there
is a large contribution from R, N is reduced, as in March, when R = 155 ± 37 km3/year
and N is statistically null. When the contribution of R is minimal (statistically zero), the
contribution of N increases, as it happens in October (556± 29 km3/year) and November
(586 ± 53 km3/year), where N reaches its annual maximum values. This situation is similar
to the mean net WT from the Atlantic to the Mediterranean Sea through the Strait of Gibral-
tar [19]. In contrast to the Strait of Gibraltar net WT, which changes the sign in two months
(April and May), here, N always has the same sense. Note, however, that in some specific
months, there was a net WT from the Arabian Gulf to the Indian Ocean. For example, in
April 2006 N = −301 km3/year, in March 2014 N = −308 km3/year, and in March 2017
N = −466 km3/year.

In summary, P in the Arabian Gulf is higher in the winter months, while E is higher in
the late summer and autumn months. The P−E values are negative throughout the year,
indicating that E consistently exceeds P. The water budget increases the most in the autumn
months and decreases the most in the spring. The Indian Ocean transports water to the
Arabian Gulf every month of the year, with maximum transport in autumn.
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3.3. Non-Seasonal Signal of WT

The non-seasonal signals (Figure 6) are derived by subtracting the annual climatology
(Figure 4) from the original signals (Figure 2). This approach is more appropriate than
subtracting an approximation based on annual and semi-annual sinusoids, as in Equation
(3), because the annual mean signal is not always close to a sinusoidal shape (see, for
example, R in Figure 4). In general, all components show a larger non-seasonal variability
on land than in the ocean.

In the continental catchment region, the non-seasonal variability of P propagates to
P–E, dW, and R. The Pearson correlation coefficients between P and P–E, R, and dW are
0.97 ± 0.01, 0.59 ± 0.04, and 0.62 ± 0.05, respectively (Figure 5b). P also shows a high
correlation with E (0.68 ± 0.04), which could be due to the fact that above (below) average
amounts of P allow for more (less) water to evaporate. Although the correlations between
E and P–E, R, and dW are significant, they are lower than those with P, suggesting that
P is the main driver of non-seasonal variability on land. It is also noteworthy that the
correlation between R and P–E increases to 0.63 ± 0.04 when the seasonality is removed.

In general, the annual averages of P are close to the mean of the whole period, except for
three years: 06/2007–05/2008, 06/2018–05/2019, and 2021 (Figure 6a). In 06/2007–05/2008,
P presented a below-average value of 153 km3/year, which produced the following below-
average values: E = 53 km3/year, P–E = 101 km3/year, and dW = 82 km3/year. No anomalous
data were observed in R, which means that the below-average P was compensated by water
stored in the continent. A similar situation occurred in 2021, when a below-average value of
P= 149 km3/year resulted in below-average values in the other components (E = 68 km3/year,
P–E = 81 km3/year, and dW = 63 km3/year), except for R. In the period 06/2018–05/2019,
the situation was different for two reasons. On the one hand, P presented an above-average
anomaly of 283 km3/year, which also increased the other mean values: E = 71 km3/year,
P–E = 212 km3/year, and dW = 164 km3/year. On the other hand, the anomaly also affected
R, which had an above-average value of 48 km3/year.

In the sea, the situation is quite different. For example, although P is highly correlated
with P–E (0.64 ± 0.07), it is not significantly correlated with E or dW. This makes sense
because E in the sea does not depend on the availability of water at non-geological time
scales, which is largely dependent on P on land. Also unlike on land, in the sea, E is highly
correlated with P–E (–0.77 ± 0.04). Then, non-seasonal P–E is driven equally by P and E.
For R and N, the lack of seasonality does not reduce the correlation between them, but
slightly increases it up to –0.88 ± 0.02. On the other hand, the correlation between P–E and
N decreases slightly up to –0.53 ± 0.06. This means that the loss of water caused by P–E in
the sea is not replaced by R, but it is mainly compensated by water from the Indian Ocean,
on both seasonal and non-seasonal scales (Figure 7).

In the sea, the interannual variability of the WT components shows less variability
than that observed in the continent. The most notable anomaly occurred during the
period 06/2018–05/2019, when an above-average P (14 km3/year) and below-average E
(13 km3/year) resulted in an above-average P–E (27 km3/year). This, combined with an
above-average R (48 km3/year), reduced the Indian Ocean input to 57 km3/year. The
following section will delve deeper into the relationship between WT components and the
primary interannual signals.
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3.4. Climatic Teleconnections

The North Atlantic Oscillation (NAO) is a climate phenomenon characterized by
fluctuations in the atmospheric pressure difference between the Icelandic Low and the
Azores High, two semi-permanent pressure systems situated in the North Atlantic. The
NAO affects climatic variables, such as temperature, precipitation, and wind patterns,
across the North Atlantic and adjacent continental regions. Its influence even reaches into
and around the Arabian Gulf. As seen in Section 3.2, most of the annual precipitation is
produced during the winter months of December to March. This is because the subtropical
jet moves southwards in winter, bringing extratropical storms to the region. The latter are
more (less) common and intense during the positive (negative) NAO phase, which results in
stronger (weaker) moisture flux entering the region and more (less) precipitation, especially
between 30◦N and 40◦N latitudes [36]. The correlation between the annual average of
the non-seasonal signal of P over land and the NAO index (downloaded from [37]) is
0.55 ± 0.23. Since the non-seasonal signal of P is correlated with R and dW, there is
also a correlation of annual NAO with annual R and dW of 0.51 ± 0.21 and 0.47 ± 0.26,
respectively. In the ocean, annual P is also significantly correlated with annual NAO
(0.46 ± 0.2). Kumar et al. [38] found the opposite relationship between the NAO index
and P over the Arabian Peninsula; that is, that negative (positive) NAO is associated with
above-normal (below-normal) P. However, this finding does not contradict our results,
as most of the continental catchment of the Arabian Gulf lies between 30◦N and 40◦N
latitudes, and only a small portion is on the Arabian Peninsula.

El Niño-Southern Oscillation (ENSO) is a cyclical climate pattern characterized by
changes in the winds and sea surface temperatures (SST) in the tropical Pacific Ocean.
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The positive (negative) phase of ENSO, known as El Niño (La Niña), is characterized by a
weakening or reversal (strengthening) of the easterly winds, which displaces warm surface
waters into the central and eastern (western) Pacific. Among the different methods of char-
acterizing the ENSO phases, we chose the Oceanic Niño Index downloaded from [39],
which measures the sea surface temperature (SST) anomalies in the Niño 3.4 region
(5◦N–5◦S, 170◦W–120◦W). It is well known that positive ONI values are related to positive
ENSO phases. The ENSO modifies P patterns around the globe [40,41]. In the Arabian Gulf
and the surrounding continental area, El Niño events modify winter patterns and moisture
transport, increasing the winter P [42–44]. On land, we found a positive correlation between
non-seasonal winter (mean of December, January, February, and March) P land and ONI of
0.46 ± 0.19, and between winter E land and ONI of 0.52 ± 0.15. Additionally, we observed
a negative correlation between the winter ONI and E sea of −0.44 ± 0.17. Besides, there
were significant correlations between the ONI and the autumn means of continental E
(0.69 ± 0.11), P–E (0.63 ± 0.12), dW (0.5 ± 0.21), and P (0.68 ± 0.12). In the Arabian Gulf,
the correlations with ONI were lower (P, 0.43 ± 0.15) or statistically insignificant.

The Indian Ocean Dipole (IOD) is a coupled ocean–atmosphere phenomenon, similar
to ENSO, that is responsible for the SST gradient between the eastern and western equato-
rial Indian Ocean. The positive phase of the IOD modifies the Walker circulation over the
tropical Indian Ocean and, hence, the moisture transport, resulting in, among other impacts,
an increase in autumn P in coastal East Africa [45], a strengthening of the summer Indian
monsoon [46], and a decrease in P in Australia [47]. Although the positive phase of the IOD
increases in autumn and early winter in southern Iran [48], the Arabian Gulf and its conti-
nental catchment region are not among the most impacted IOD regions. The Indian Ocean
Dipole Mode Index (DMI, downloaded from [49]) is used to quantify the phases of the IOD.
The Pearson correlation coefficients between DMI and our WT components were weak or
nonexistent. However, if we take the autumn averages (September, October, November,
and December), significant correlations between the DMI and continental P (0.46 ± 0.14), E
(0.49 ± 0.16), and P–E (0.42 ± 0.15) were observed. Similarly, significant correlations were
observed between the DMI and oceanic P (0.51 ± 0.2) and P–E (0.49 ± 0.19).

Figure 8 shows a summary of all the correlations between the WT components and
the NAO, ENSO, and IOD. These three climate indices are not independent (uncorrelated)
events, and the relationship between them may be complicated. For example, the IOD is
neither completely independent of ENSO, since half of the IOD events are understood to
be an extension of ENSO, nor completely related, since the other half of the IOD events
are independent of ENSO [50,51]. On the other hand, the NAO is also connected to the
IOD [52], and the relationship between NAO and ENSO is highly complex [53,54]. A more
detailed study of WT interannual variability is left for a follow-up study.
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4. Discussion

In this study, we used GRACE and ERA5 data to investigate the hydrological cycle
of the Arabian Gulf and its surrounding continental catchment region. The methodology
employed has previously been successfully applied in the main ocean basins [18], the
Mediterranean and Black Seas [19], and the Baltic Sea [20]. However, the Arabian Gulf is
of a smaller size, approaching the resolution limit of this method, which is constrained
by the ~300 km spatial resolution of GRACE. This limitation mainly arises from those
grid points situated in proximity to the coastline, where signal leakage resulting from
topographic effects becomes a significant concern. This is the reason why the grid points in
the continental catchment region that are closer than 111 km to the coast (2 grid points in the
resampled regular grid) were deleted. For example, if those points were not eliminated, the
climatology of R would have significantly negative values in October (–107 ± 25 km3/year)
and November (–63 ± 45 km3/year). Those months with negative R represent a WT from
sea to land, which could be explained by the transport of desalinated water from the sea to
the continents. However, although the Arabian Gulf countries produce about 45% of the
global desalinated water, it accounts for only 4 km3/year [3], which is insufficient to explain
the negative values of R. Another potential explanation for these negative values could be
the infiltration of seawater into the continental underground water deposits, although there
are currently no measurements to support this hypothesis. It is our contention that these
negative values are an artifact, produced by a leakage signal from the sea in continental
points near the coast in GRACE measurements.

The results obtained here were analyzed on an average, seasonal, and non-seasonal
scale. In general, we found good agreement with previous results. For example, our
climatology of P for the continental catchment was similar to that obtained for the Arabian
Peninsula in [55], despite some differences in the study area and time period.

Chao et al. [56] reported two climatologies of E from the literature with annual minima
of ~180 km3/year in April and May, and maxima of ~700 km3/year in November and
December, which are consistent with our results. They developed a numerical model driven
by those values of E, plus the addition of climatological winds and net ocean heat gain.
Their model showed an inflow from the Gulf of Oman of 3784 km3/year that was offset by
an equal outflow. The model assumed a null net WT though the Strait of Hormuz. However,
subsequent in situ measurements showed that this was not the case. Between 12/1996 and
03/1998, the GOGP99 experiment collected hydrographic and moored acoustic Doppler
current profiler data, among others, near the Strait of Hormuz. Johns et al. [11] estimated a
net inflow of 631 ± 1625 km3/year. This was the result of a shallow inflow in the northern
part of the Strait of Hormuz of 7253 ± 1161 km3/year, and two outflows in the southern
part: a shallow one of 1892 ± 631 km3/year, and a deep one of 4730 ± 946 km3/year.
This net inflow is twice our estimate. Nevertheless, a study carried out by Pous et al. [9],
a year later, using the same data, showed that the net inflow was very sensitive to the
reference level and the average velocity assumed for the calculation of geostrophic currents.
Depending on the assumptions, they reported a net inflow of 1261 km3/year, which is twice
as much as the value reported by Johns et al. [11], and another net inflow of 315 km3/year,
which is similar to our annual estimate. In any case, the data used by Pous et al. [9]
covered 10-11/1999, and in these months, we observed the largest net flux, with values of
559 km3/year and 594 km3/year, respectively. We note that the comparison for a given
year is complex by year-to-year variations. For example, in 10-11/2010, we reported a net
flow of 765/803 km3/year, while in 2018, we found 448/106 km3/year.

In more recent years, numerical models have been able to estimate the net WT transport
as a residual between inflows and outflows. Hassanzadeh et al. [2] estimated a net inflow
into the Arabian Gulf of 946 km3/year using a 3D numerical model based on momentum,
volume, heat, and salt conservation. Xue and Elthahir [57] developed a coupled ocean–
atmosphere model for the region, named GARM (Gulf–Atmosphere Regional Model).
Among others, the model uses two atmospheric model outputs to set initial and boundary
conditions: ECHAM5 and ERA40. The simulated climatology of the WT in the Arabian Gulf
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for the period 1981–1990 is shown in Figure 9. Regardless of the expected discrepancies due
to differences in methodology, data, and time period, the mean values and climatologies
were generally in good agreement. Mean values for the simulation with ECHAM5 (those
from ERA40 were similar) showed the following values in km3/year: P = 19, E = 433, R = 49,
inflow = 7919, outflow = 7554, and N = 365 (positive, so net inflow). The climatologies
of P and E were more similar to our results than those of R and N. The R derived from
the model showed a more sinusoidal climatology with a single peak in April, unlike our
estimate, which showed three local maxima in January, March, and July. For N, both
estimates showed lower values at the beginning of the year and higher values in summer
and autumn. Although the differences in summer were clear, our estimate was much
smaller than that of the model. In a more recent study, Campos et al. [35] applied the
HYCOM numerical model to study the WT through the Strait of Hormuz. The model was
forced by surface air temperature, radiation fluxes, precipitation, vapor mixing ratio, and
winds from the NCEP-1 reanalysis product, and showed a net inflow through a section
at a latitude of 26◦N (see Figure 1) of 385 km3/year. Two years later, Campos et al. [58]
published a net inflow through the same section of 435 ± 126 km3/year following a similar
methodology but including ocean tides and rivers. If we estimate N at the same section
as Campos et al. [58] (Supplementary Figure S1), we obtain 280 km3/year. This value
is slightly higher than that reported in Table 1. In general, all N values reported in the
literature were higher than those reported in our study. Table 2 lists these values, and their
mean (excluding the values of Pous et al. [9], which showed excessive variability, and Chao
et al. [56], which assumed null net flow) was 517 ± 122 km3/year.
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The approach presented in this study has its strengths and drawbacks. On the one
hand, our method was not able to calculate horizontal inflows and outflows of seawater, as
other models do. On the other hand, previous models usually use statistical values for R,
while our method made an estimate for each month. Both analyses could be integrated if,
for example, the model fed in our values of R and used our estimate of N as a constraint.
This could improve the performance of the model by producing more realistic input and
output flows, or at least be compatible with more types of data, such as GRACE. In this
sense, this study not only adds new information to the understanding of the dynamics



Remote Sens. 2024, 16, 3577 16 of 19

of the Strait of Hormuz, but also serves as a unique tool to recalibrate and reinterpret
previous research.

Table 2. Net water transport (N) between the Arabian Sea and the Arabian Gulf, as estimated by
previous studies. Positive (negative) values of N indicate water inflow into (outflow from) the
Arabian Gulf.

Specifications Period Mean N ± SD, km3/year

Chao, 1992 [56] Numerical model. First 400 days 0
Johns et al., 2003 [11] Combination of hydrographic and ADCP data. 12/1996–03/1998 631

Pous et al., 2004 [9] ADCP measurement: each derives from different
assumptions. 10–11/1999 1216; 315; 3784

Hassanzadeh et al., 2012 [2] Theoretical model. Not specified 946

Xue and Eltahir, 2015 [57] Coupled ocean–atmosphere GARM model.
Atmospheric boundary: ECHAM5/ERA-40. 1981–1990 365/360

Campos et al., 2020 [35] HYCOM numerical model. No rivers, no tides. 1980–2015 385
Campos et al., 2022 [58] HYCOM numerical model. Rivers, tides. 01/2002–12/2006 435 ± 126

Literature summary
Mean ± SD of these values (excluding this study,

Chao 1992 [56], and the highest value of
Pous et al., 2004 [9]).

517 ± 122

This study GRACE and ERA5 atmospheric model. 05/2002–05/2017 and
07/2018–12/2023 274 ± 10

In addition to studying the averages of the hydrological cycle in the Arabian Gulf
over the last two decades, we also studied seasonal and non-seasonal variations. Seasonal
variations were very pronounced for all WT components and should be taken into account
when planning in situ measurement campaigns. On the other hand, interannual variations
were influenced by several climatic indices. This multifactorial dependence complicates
the understanding of the interannual variability and should be addressed in future work.

Finally, the description of the average hydrological cycle over the last two decades
provides a benchmark for future comparisons. This will be important for measuring
future variations in the hydrological cycle that are expected to occur as a result of the
ongoing accelerated climate change. The study of seasonal and non-seasonal variations
has also contributed to a better understanding of the dynamics of WT in the region. As
mentioned above, the interannual variability is influenced by several climatic indices.
In particular, the influence of the NAO, in combination with other large-scale climate
indices, such as ENSO and IOD, plays a crucial role in the regional hydro-climatology,
emphasizing the teleconnections of remote regions and their local manifestations. This
multifactorial dependence adds further complexity to our understanding of the interannual
variability of WT.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16193577/s1. Figure S1: Region used to estimate the net inflow of
seawater (N) for comparison with the results of Campos et al. (2020; 2022) [35,58]. The difference with
Figure 1 is in the Strait of Hormuz.
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