Spatial–Temporal Assessment of Eco-Environment Quality with a New Comprehensive Remote Sensing Ecological Index (CRSEI) Based on Quaternion Copula Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. Remote Sensing Ecological Indicators
2.3.2. RSEI Index Construction
2.3.3. CRSEI Index Construction Based on Quaternion Copula Function
2.3.4. Average Correlation Analysis and Sen’s Slope and Modified Mann-Kendall (Sen + MMK) Trend Analysis
3. Results
3.1. Comparative Analysis of RSEI and CRSEI
3.1.1. Comparative Analysis of Applicability
3.1.2. Comparative Analysis of Monitoring Accuracy
3.2. Temporal and Spatial Variations of CRSEI
3.2.1. Temporal Variation
3.2.2. Spatial Variation
4. Discussion
4.1. CRSEI Drivers Analysis
4.2. Strengths, Limitations, and Future Prospects
5. Conclusions
- (1)
- The average correlation coefficients of CRSEI and RSEI in Henan Province in the past 20 years both exceeded 0.8, indicating a strong correlation, and the average correlation of CRSEI in the past 17 years was higher than that of RSEI. The average correlation test of CRSEI outperformed that of RSEI. The maximum and minimum offsets of CRSEI relative to EI were smaller than those of RSEI. The average offset of RSEI was 123% higher than that of CRSEI. Therefore, CRSEI is more scientific and accurate than RSEI, making it suitable for EEQ assessment.
- (2)
- The EEQ of Henan Province declined from 2001 to 2010 and improved and rebounded significantly from 2011 to 2020, with the lowest median value in 2010. In all regions, the CRSEI value was larger in West and South Henan and the smallest in Central Henan. In addition, CRSEI value in West Henan was higher than in other areas during all seasons. The minimum value of CRSEI in Central Henan in 2010 was 0.4912, and the maximum value was 0.7753 in West Henan in 2010.
- (3)
- The EEQ in Henan Province showed deterioration from the central cities to the periphery and then improvement from the periphery to the center. From 2001 to 2010, the EEQ continued to deteriorate. In 2010, regions with poor EEQ level made up 68.3% of the total area, while only 2% were rated as excellent; From 2011 to 2020, Henan Province EEQ improved and became better, and by 2020, regions with excellent EEQ level constituted 74% of the total area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonnell, M.J.; MacGregor-Fors, I. The ecological future of cities. Science 2016, 352, 936–938. [Google Scholar] [CrossRef] [PubMed]
- Levin, S.A. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Ji, J.; Tang, Z.; Zhang, W.; Liu, W.; Jin, B.; Xi, X.; Wang, F.; Zhang, R.; Guo, B.; Xu, Z.; et al. Spatiotemporal and Multiscale Analysis of the Coupling Coordination Degree between Economic Development Equality and Eco-Environmental Quality in China from 2001 to 2020. Remote Sens. 2022, 14, 737. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Minacapilli, M.; Motisi, A.; Consoli, S.; Intrigliolo, D.S.; Vanella, D. Characterization of the main land processes occurring in Europe (2000–2018) through a MODIS NDVI seasonal parameter-based procedure. Sci. Total Environ. 2021, 799, 149346. [Google Scholar] [CrossRef]
- Fattori Junior, I.M.; dos Santos Vianna, M.; Marin, F.R. Assimilating leaf area index data into a sugarcane process-based crop model for improving yield estimation. Eur. J. Agron. 2022, 136, 126501. [Google Scholar] [CrossRef]
- Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements. Water 2022, 14, 734. [Google Scholar] [CrossRef]
- Kyparissis, A.; Levizou, E. Climatic Drivers of the Complex Phenology of the Mediterranean Semi-Deciduous Shrub Phlomis fruticosa Based on Satellite-Derived EVI. Plants 2022, 11, 584. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Mandal, J.; Patel, P.P.; Samanta, S. Examining the expansion of Urban Heat Island effect in the Kolkata Metropolitan Area and its vicinity using multi-temporal MODIS satellite data. Adv. Space Res. 2022, 69, 1960–1977. [Google Scholar] [CrossRef]
- Xiong, L.; Li, S.; Zou, B.; Peng, F.; Fang, X.; Xue, Y. Long Time-Series Urban Heat Island Monitoring and Driving Factors Analysis Using Remote Sensing and Geodetector. Front. Environ. Sci. 2022, 9, 828230. [Google Scholar] [CrossRef]
- Moghimi, M.M.; Zarei, A.R.; Mahmoudi, M.R. Seasonal drought forecasting in arid regions, using different time series models and RDI index. J. Water Clim. Chang. 2020, 11, 633–654. [Google Scholar] [CrossRef]
- Banimahd, S.A.; Khalili, D. Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones. Water Resour. Manag. 2013, 27, 3911–3928. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sens. Appl. Soc. Environ. 2021, 23, 100530. [Google Scholar] [CrossRef]
- Xiong, J.; Li, W.; Zhang, H.; Cheng, W.; Ye, C.; Zhao, Y. Selected Environmental Assessment Model and Spatial Analysis Method to Explain Correlations in Environmental and Socio-Economic Data with Possible Application for Explaining the State of the Ecosystem. Sustainability 2019, 11, 4781. [Google Scholar] [CrossRef]
- Das, S.; Pradhan, B.; Shit, P.K.; Alamri, A.M. Assessment of Wetland Ecosystem Health Using the Pressure–State–Response (PSR) Model: A Case Study of Mursidabad District of West Bengal (India). Sustainability 2020, 12, 5932. [Google Scholar] [CrossRef]
- Bai, X.; Tang, J. Ecological Security Assessment of Tianjin by PSR Model. Procedia Environ. Sci. 2010, 2, 881–887. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.; Chen, B.; Yang, C.; Qi, D.; Lan, G.; Fraedrich, K. Effects of land-use change on eco-environmental quality in Hainan Island, China. Ecol. Indic. 2020, 109, 105777. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Gao, P.; Kasimu, A.; Zhao, Y.; Lin, B.; Chai, J.; Ruzi, T.; Zhao, H. Evaluation of the Temporal and Spatial Changes of Ecological Quality in the Hami Oasis Based on RSEI. Sustainability 2020, 12, 7716. [Google Scholar] [CrossRef]
- Cao, J.; Wu, E.; Wu, S.; Fan, R.; Xu, L.; Ning, K.; Li, Y.; Lu, R.; Xu, X.; Zhang, J.; et al. Spatiotemporal Dynamics of Ecological Condition in Qinghai-Tibet Plateau Based on Remotely Sensed Ecological Index. Remote Sens. 2022, 14, 4234. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Zhou, C.; Li, Y. An ecological assessment process based on integrated remote sensing model: A case from Kaikukang-Walagan District, Greater Khingan Range, China. Ecol. Inform. 2022, 70, 101699. [Google Scholar] [CrossRef]
- Qin, G.; Wang, N.; Wu, Y.; Zhang, Z.; Meng, Z.; Zhang, Y. Spatiotemporal variations in eco-environmental quality and responses to drought and human activities in the middle reaches of the Yellow River basin, China from 1990 to 2022. Ecol. Inform. 2024, 81, 102641. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.; Hong, Z.; Wang, L.; Ou, G.; Lu, N.; Dai, Q. Integrating three-dimensional greenness into RSEI improved the scientificity of ecological environment quality assessment for forest. Ecol. Indic. 2023, 156, 111092. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar] [CrossRef]
- Ning, L.; Jiayao, W.; Fen, Q. The improvement of ecological environment index model RSEI. Arab. J. Geosci. 2020, 13, 403. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H. Spatiotemporal dynamic decoupling states of eco-environmental quality and land-use carbon emissions: A case study of Qingdao City, China. Ecol. Inform. 2023, 75, 101992. [Google Scholar] [CrossRef]
- Bhatti, M.I.; Do, H.Q. Recent development in copula and its applications to the energy, forestry and environmental sciences. Int. J. Hydrogen Energy 2019, 44, 19453–19473. [Google Scholar] [CrossRef]
- Chen, L.; Guo, S. Copulas and Its Application in Hydrology and Water Resources; Springer: Singapore, 2019; pp. 99–108. [Google Scholar]
- Wang, W.S.; Yang, H.B.; Huang, S.Z.; Wang, Z.M.; Liang, Q.H.; Chen, S.D. Trivariate copula functions for constructing a comprehensive atmosphere-land surface-hydrology drought index: A case study in the Yellow River basin. J. Hydrol. 2024, 642, 131784. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2022); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, J.; Zhang, S.; Li, R. China Multi-Period Land Use Remote Sensing Monitoring Data Set (CNLUCC). 2018. Available online: http://www.resdc.cn (accessed on 15 September 2024). [CrossRef]
- Wen, Q. Revision of Technical Specifications for Ecological Environment Condition Evaluation and its impact on the ecological evaluation process. Environ. Prot. Circ. Econ. 2016, 36, 69–71. [Google Scholar]
- Mishra, N.B.; Crews, K.A.; Neeti, N.; Meyer, T.; Young, K.R. MODIS derived vegetation greenness trends in African Savanna: Deconstructing and localizing the role of changing moisture availability, fire regime and anthropogenic impact. Remote Sens. Environ. 2015, 169, 192–204. [Google Scholar] [CrossRef]
- Lobser, S.E.; Cohen, W.B. MODIS tasselled cap: Land cover characteristics expressed through transformed MODIS data. Int. J. Remote Sens. 2007, 28, 5079–5101. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Li, S.; Chen, X. A new bare-soil index for rapid mapping developing areas using LANDSAT 8 data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-4, 139–144. [Google Scholar] [CrossRef]
- Gringorten, I.I. A plotting rule for extreme probability paper. J. Geophys. Res. 1963, 68, 813–814. [Google Scholar] [CrossRef]
- Abdi, H. The Kendall rank correlation coefficient. Encycl. Meas. Stat. 2007, 2, 508–510. [Google Scholar]
- Sklar, M. Fonctions de répartition à n dimensions et leurs marges. Ann. l’ISUP 1959, 8, 229–231. [Google Scholar]
- Genest, C.; Okhrin, O.; Bodnar, T. Copula modeling from Abe Sklar to the present day. J. Multivar. Anal. 2024, 201, 105278. [Google Scholar] [CrossRef]
- Lourme, A.; Maurer, F. Testing the Gaussian and Student’s t copulas in a risk management framework. Econ. Model. 2017, 67, 203–214. [Google Scholar] [CrossRef]
- Hartmann, H.; Buchanan, H. Trends in Extreme Precipitation Events in the Indus River Basin and Flooding in Pakistan. Atmos.-Ocean 2014, 52, 77–91. [Google Scholar] [CrossRef]
- Vazifehkhah, S.; Kahya, E. Hydrological and agricultural droughts assessment in a semi-arid basin: Inspecting the teleconnections of climate indices on a catchment scale. Agric. Water Manag. 2019, 217, 413–425. [Google Scholar] [CrossRef]
- Runting, R.K.; Bryan, B.A.; Dee, L.E.; Maseyk, F.J.F.; Mandle, L.; Hamel, P.; Wilson, K.A.; Yetka, K.; Possingham, H.P.; Rhodes, J.R. Incorporating climate change into ecosystem service assessments and decisions: A review. Glob. Chang. Biol. 2017, 23, 28–41. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Li, Z.; Zhang, L.; Wang, Z. Processes and driving forces for changing vegetation ecosystem services: Insights from the Shaanxi Province of China. Ecol. Indic. 2020, 112, 106105. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, R.; Zhang, Z.; Deng, C.; Zhang, H.; Liu, K. Exploring the Driving Factors of Remote Sensing Ecological Index Changes from the Perspective of Geospatial Differentiation: A Case Study of the Weihe River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 10930. [Google Scholar] [CrossRef]
- Ju, X.F.; He, J.L.; Qi, Z.; Saitiniyazi, A. Evolution pattern and driving mechanism of eco-environmental quality in arid oasis belt—A case study of oasis core area in Kashgar Delta. Ecol. Indic. 2023, 154, 110866. [Google Scholar] [CrossRef]
- Dong, Y.K.; Ma, W.; Tan, Z.W.; Wang, Y.; Zeng, W.J. Spatial and temporal variation of multiple eco-environmental indicators in Erhai Lake Basin of China under land use transitions. Environ. Sci. Pollut. Res. 2023, 30, 16236–16252. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.B.; Wu, Z.R.; Dawson, R.J.; Barr, S.; Ford, A.; Li, Y.F. Quantifying surface urban heat island variations and patterns: Comparison of two cities in three-stage dynamic rural-urban transition. Sustain. Cities Soc. 2024, 109, 105538. [Google Scholar] [CrossRef]
- Fan, X.L.; Qu, Y.; Zhang, J.; Bai, E.D. China’s vegetation restoration programs accelerated vegetation greening on the Loess Plateau. Agric. For. Meteorol. 2024, 350, 109994. [Google Scholar] [CrossRef]
- Xu, D.; Bai, T.; Song, Y.; Xia, Z.; Duan, X.; Santamouris, M.; Cui, Y. Reassessing the climate mitigation potential of Chinese ecological restoration: The undiscovered potential of urban. Innov. Geosci. 2024, 2, 100068. [Google Scholar] [CrossRef]
Index | Data Product | Source | Time Span | Data Source |
---|---|---|---|---|
NDVI | MODND1M/MOD11A1 | GSCloud/NASA | 2001–2020 | https://www.gscloud.cn/ https://www.earthdata.nasa.gov/ (accessed on 5 May 2023) |
LST | MODLT1M/MOD11A1 | GSCloud/NASA | 2001–2020 | https://www.gscloud.cn/ https://www.earthdata.nasa.gov/ (accessed on 5 May 2023) |
WET | MOD09A1 | NASA | 2001–2020 | https://www.earthdata.nasa.gov/ (accessed on 5 May 2023) |
NDBSI | MOD09A1 | NASA | 2001–2020 | https://www.earthdata.nasa.gov/ (accessed on 5 May 2023) |
Ecological index (EI) | — | — | 2001–2020 | https://sthjt.henan.gov.cn/ (accessed on 10 July 2023) |
— | monthly 1 km precipitation | TPDC | 2001–2020 | https://data.tpdc.ac.cn [35] (accessed on 15 October 2023) |
— | 1 km global land human footprint | — | 2001–2020 | https://www.x-mol.com/groups/li_xuecao/news/48145 [36] (accessed on 15 October 2023) |
— | Digital elevation model (DEM) | NASA | — | https://search.asf.alaska.edu/ (accessed on 15 September 2024) |
— | Land use types | RESDC | 2001–2020 | http://www.resdc.cn/ [37] (accessed on 15 September 2024) |
LV. | CRSEI Levels | CRSEI Value |
---|---|---|
1 | Poor | 0 ≤ Index < 0.2 |
2 | Fair | 0.2 ≤ Index < 0.4 |
3 | Moderate | 0.4 ≤ Index < 0.6 |
4 | Good | 0.6 ≤ Index < 0.8 |
5 | Excellent | 0.8 ≤ Index |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Hou, L.; Yang, H.; Zhao, Y.; Chen, F.; Li, Q.; Duan, Z. Spatial–Temporal Assessment of Eco-Environment Quality with a New Comprehensive Remote Sensing Ecological Index (CRSEI) Based on Quaternion Copula Function. Remote Sens. 2024, 16, 3580. https://doi.org/10.3390/rs16193580
Wang Z, Hou L, Yang H, Zhao Y, Chen F, Li Q, Duan Z. Spatial–Temporal Assessment of Eco-Environment Quality with a New Comprehensive Remote Sensing Ecological Index (CRSEI) Based on Quaternion Copula Function. Remote Sensing. 2024; 16(19):3580. https://doi.org/10.3390/rs16193580
Chicago/Turabian StyleWang, Zongmin, Longfei Hou, Haibo Yang, Yong Zhao, Fei Chen, Qizhao Li, and Zheng Duan. 2024. "Spatial–Temporal Assessment of Eco-Environment Quality with a New Comprehensive Remote Sensing Ecological Index (CRSEI) Based on Quaternion Copula Function" Remote Sensing 16, no. 19: 3580. https://doi.org/10.3390/rs16193580
APA StyleWang, Z., Hou, L., Yang, H., Zhao, Y., Chen, F., Li, Q., & Duan, Z. (2024). Spatial–Temporal Assessment of Eco-Environment Quality with a New Comprehensive Remote Sensing Ecological Index (CRSEI) Based on Quaternion Copula Function. Remote Sensing, 16(19), 3580. https://doi.org/10.3390/rs16193580