Landslide Susceptibility Assessment in Yulong County Using Contribution Degree Clustering Method and Stacking Ensemble Coupled Model Based on Certainty Factor
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Data Source
- Historical Landslide Inventory Data were obtained from the 2021 Geological Hazard Risk Survey Project (1:50,000 scale) in Yulong Naxi Autonomous County, Yunnan Province (Figure 1 blue dots);
- DEM data were sourced from the ALOS satellite’s AW3D30 (ALOS World 3D) 30 m dataset, available from JAXA, Japan Aerospace Exploration Agency (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm, accessed on 11 January 2024), used for extracting factors such as the slope, aspect, planar curvature, profile curvature, topographic wetness index (TWI), stream power index (SPI), and topographic position index (TPI);
- The Road and River Data from the 2021 Geological Hazard Risk Survey Project of Yulong Naxi Autonomous County, Yunnan Province (1:50,000), and the fracture data from the 1:200,000 geologic data were processed by Euclidean distance to extract the evaluation indexes of distance to a road, river, and fault;
- Annual Average Rainfall factors were obtained through the Kriging interpolation of precipitation data from Yulong County Meteorological Bureau;
- Vegetation cover assessment factors were extracted from the 30 m Annual China Land Cover Dataset (CLCD) [18];
- Slope Length Factor (LR) was derived from DEM data using the Terrain Factors Calculation Tool (Version 2.0) of the Soil Erosion Model [19];
- Lithological Data from 1:200,000 geological data were categorized into eight types based on regional lithological characteristics: dense, massive, hard extrusive rock units; moderately thick to thick bedded weak to moderately karstified, relatively hard carbonate rock units; thin to moderately thick bedded, relatively soft sandstone–mudstone to relatively hard conglomerate; thin to moderately thick bedded, relatively hard sedimentary metamorphic rock units; loose to medium-dense mixed soil; massive to blocky, hard intrusive rock units; thin to moderately thick bedded, weak mudstone, sandstone, and conglomerate units; thin to moderately thick bedded, relatively soft sedimentary metamorphic rock units.
3. Methods
3.1. Research Methodology
3.2. Evaluation Factor Selection and Attribute Interval Grading
3.2.1. Evaluation Factor Selection
3.2.2. Evaluation Factor Attribute Interval Grading
- Certainty Factor Model:
- 2.
- Factor Attribute Interval Grading:
3.3. Dataset Construction and Factor Selection
3.3.1. Dataset Construction
3.3.2. Evaluation Factor Screening
3.4. Evaluation Model Construction and Result Partitioning Method
3.4.1. Evaluation Model Construction
Sparrow Search Algorithm
Support Vector Machine Model
Back Propagation Neural Network Model
Random Forest Model
Stacking Ensemble Coupling Model
3.4.2. Landslide Susceptibility Mapping Zones
3.5. Modeling Evaluation Metrics
3.6. SHAP Value
4. Results and Analysis
4.1. Spatial Consistency Analysis of Landslide Susceptibility Mapping Results
4.2. Modeling Evaluation Metrics Results
4.3. Distribution Patterns of Landslide Susceptibility Index
5. Discussion
5.1. The Advantages of the Proposed Method over Traditional Methods
5.2. Distribution Patterns of Landslide Susceptibility Index Analysis
5.3. SHAP-Based Interpretability Analysis of Model Results
5.4. Implications, Limitations, and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.-L.; Zhang, J.; Li, J.-Z.; Huang, F.; Wang, L.-C. A Bibliometric Analysis of the Landslide Susceptibility Research (1999–2021). Geocarto Int. 2022, 37, 14309–14334. [Google Scholar] [CrossRef]
- Miao, F.; Ruan, Q.; Wu, Y.; Qian, Z.; Kong, Z.; Qin, Z. Landslide Dynamic Susceptibility Mapping Base on Machine Learning and the PS-InSAR Coupling Model. Remote Sens. 2023, 15, 5427. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, Z.; Xi, W.; Zhao, X.; Chao, J. New Method for Landslide Susceptibility Evaluation in Alpine Valley Regions That Considers the Suitability of InSAR Monitoring and Introduces Deformation Rate Grading. Geo-Spat. Inf. Sci. 2024, 0, 1–24. [Google Scholar] [CrossRef]
- Meng, Q.; Miao, F.; Zhen, J.; Wang, X.; Wang, A.; Peng, Y.; Fan, Q. GIS-Based Landslide Susceptibility Mapping with Logistic Regression, Analytical Hierarchy Process, and Combined Fuzzy and Support Vector Machine Methods: A Case Study from Wolong Giant Panda Natural Reserve, China. Bull. Eng. Geol. Environ. 2016, 75, 923–944. [Google Scholar] [CrossRef]
- Wubalem, A. Landslide Susceptibility Mapping Using Statistical Methods in Uatzau Catchment Area, Northwestern Ethiopia. Geoenviron. Disasters 2021, 8, 1. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the Quantitative Analysis of Landslide Risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Chen, G.; Han, Z. Spatiotemporal Assessment of Landslide Susceptibility in Southern Sichuan, China Using SA-DBN, PSO-DBN and SSA-DBN Models Compared with DBN Model. Adv. Space Res. 2022, 69, 3071–3087. [Google Scholar] [CrossRef]
- Lu, W.; Xu, J.; Li, Y. Improved Classification Algorithm for Stacking Integration. Comput. Appl. Softw. 2022, 39, 281–286. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Li, S.; Ren, F.; Du, Q. A Hybrid Model Considering Spatial Heterogeneity for Landslide Susceptibility Mapping in Zhejiang Province, China. Catena 2020, 188, 104425. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Han, Z.; Pham, B.T. Improved Landslide Assessment Using Support Vector Machine with Bagging, Boosting, and Stacking Ensemble Machine Learning Framework in a Mountainous Watershed, Japan. Landslides 2020, 17, 641–658. [Google Scholar] [CrossRef]
- Zhou, C.; Gan, L.; Wang, Y.; Wu, H.; Yu, J.; Cao, Y.; Yin, K. Landslide Susceptibility Prediction Based on Non-Landslide Samples Selection and Heterogeneous Ensemble Machine Learning. J. Geo-Inf. Sci. 2023, 25, 1570–1585. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, C.; Nie, R.; Yang, Z.; Li, W.; Dai, X.; Cheng, J.; Zhang, J.; Ma, L.; Fu, X.; et al. A Comparative Analysis of Certainty Factor-Based Machine Learning Methods for Collapse and Landslide Susceptibility Mapping in Wenchuan County, China. Remote Sens. 2022, 14, 3259. [Google Scholar] [CrossRef]
- Xiao, B.; Zhao, J.; Li, D.; Zhao, Z.; Zhou, D.; Xi, W.; Li, Y. Combined SBAS-InSAR and PSO-RF Algorithm for Evaluating the Susceptibility Prediction of Landslide in Complex Mountainous Area: A Case Study of Ludian County, China. Sensors 2022, 22, 8041. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zeng, S.; Yao, C.; Xiang, H.; Fan, X.; Huang, J. Uncertainties of Landslide Susceptibility Prediction Modeling: Influence of Different Selection Methods of “Non-Landslide Samples”. Adv. Eng. Sci. 2024, 56, 169–182. [Google Scholar] [CrossRef]
- Li, L.; Lan, H.; Guo, C.; Zhang, Y.; Li, Q.; Wu, Y. A Modified Frequency Ratio Method for Landslide Susceptibility Assessment. Landslides 2017, 14, 727–741. [Google Scholar] [CrossRef]
- Ke, C.; He, S.; Qin, Y. Comparison of Natural Breaks Method and Frequency Ratio Dividing Attribute Intervals for Landslide Susceptibility Mapping. Bull. Eng. Geol. Environ. 2023, 82, 384. [Google Scholar] [CrossRef]
- Sannino, A.; Amoruso, S.; Boselli, A.; Wang, X.; Zhao, Y. Aerosol Monitoring at High Mountains Remote Station: A Case Study on the Yunnan Plateau (China). Remote Sens. 2022, 14, 3773. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Fu, S.; Liu, B.; Zhou, G.; Sun, Z.; Zhu, X. Calculation Tool of Topographic Factors. Sci. Soil. Water Conserv. 2016, 13, 105–110. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Huang, F.; Huang, J.; Jiang, S.; Zhou, C. Landslide Displacement Prediction Based on Multivariate Chaotic Model and Extreme Learning Machine. Eng. Geol. 2017, 218, 173–186. [Google Scholar] [CrossRef]
- Costache, R.; Ali, S.A.; Parvin, F.; Pham, Q.B.; Arabameri, A.; Nguyen, H.; Crăciun, A.; Anh, D.T. Detection of Areas Prone to Flood-Induced Landslides Risk Using Certainty Factor and Its Hybridization with FAHP, XGBoost and Deep Learning Neural Network. Geocarto Int. 2022, 37, 7303–7338. [Google Scholar] [CrossRef]
- Xing, Y.; Chen, Y.; Huang, S.; Xie, W.; Wang, P.; Xiang, Y. Research on the Uncertainty of Landslide Susceptibility Prediction Using Various Data-Driven Models and Attribute Interval Division. Remote Sens. 2023, 15, 2149. [Google Scholar] [CrossRef]
- Demoulin, A.; Chung, C.-J.F. Mapping Landslide Susceptibility from Small Datasets: A Case Study in the Pays de Herve (E Belgium). Geomorphology 2007, 89, 391–404. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a Few Examples: A Survey on Few-Shot Learning. ACM Comput. Surv. 2020, 53, 63. [Google Scholar] [CrossRef]
- Miao, Y.; Zhu, A.; Yang, L.; Bai, S.; Zeng, C. A New Method of Pseudo Absence Data Generation in Landslide Susceptibility Mapping. Geogr. Geo-Inf. Sci. 2016, 32, 61–67. [Google Scholar]
- Sun, D.; Xu, J.; Wen, H.; Wang, D. Assessment of Landslide Susceptibility Mapping Based on Bayesian Hyperparameter Optimization: A Comparison between Logistic Regression and Random Forest. Eng. Geol. 2021, 281, 105972. [Google Scholar] [CrossRef]
- Lu, Z.; Yang, H.; Zeng, W.; Liu, P.; Wang, Y. Geological Hazard Identification and Susceptibility Assessment Based on MT-InSAR. Remote Sens. 2023, 15, 5316. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 79–81. [Google Scholar]
- Pourghasemi, H.; Pradhan, B.; Gokceoglu, C.; Moezzi, K.D. A Comparative Assessment of Prediction Capabilities of Dempster-Shafer and Weights-of-Evidence Models in Landslide Susceptibility Mapping Using GIS. Geomat. Nat. Hazards Risk 2013, 4, 93–118. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Jiang, S.; Huang, J.; Cao, Z. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chin. J. Rock. Mech. Eng. 2018, 37, 156–167. [Google Scholar] [CrossRef]
- Shahabi, H.; Shirzadi, A.; Ronoud, S.; Asadi, S.; Binh, T.P.; Mansouripour, F.; Geertsema, M.; Clague, J.J.; Dieu, T.B. Flash Flood Susceptibility Mapping Using a Novel Deep Learning Model Based on Deep Belief Network, Back Propagation and Genetic Algorithm. Geosci. Front. 2021, 12, 101100. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked Generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Eskandari, S.; Amiri, M.; Sadhasivam, N.; Pourghasemi, H.R. Comparison of New Individual and Hybrid Machine Learning Algorithms for Modeling and Mapping Fire Hazard: A Supplementary Analysis of Fire Hazard in Different Counties of Golestan Province in Iran. Nat. Hazards 2020, 104, 305–327. [Google Scholar] [CrossRef]
- Mourtada, J.; Gaiffas, S.; Scornet, E. Minimax Optimal Rates for Mondrian Trees and Forests. Ann. Stat. 2020, 48, 2253–2276. [Google Scholar] [CrossRef]
- Pradhan, B. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Neural Information Processing Systems (nips): La Jolla, CA, USA, 2017; Volume 30. [Google Scholar]
- Zhou, X.; Wen, H.; Li, Z.; Zhang, H.; Zhang, W. An Interpretable Model for the Susceptibility of Rainfall-Induced Shallow Landslides Based on SHAP and XGBoost. Geocarto Int. 2022, 37, 13419–13450. [Google Scholar] [CrossRef]
- Li, G.; Tan, Z.; Xu, W.; Xu, F.; Wang, L.; Chen, J.; Wu, K. A Particle Swarm Optimization Improved BP Neural Network Intelligent Model for Electrocardiogram Classification. BMC Med. Inform. Decis. Mak. 2021, 21, 99. [Google Scholar] [CrossRef]
- Huang, F.; Ye, Z.; Yao, C.; Li, Y.; Yin, K.; Huang, J.; Jiang, Q. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Sci. 2021, 45, 4535–4549. [Google Scholar] [CrossRef]
- Huang, F.; Yan, J.; Fan, X.; Yao, C.; Huang, J.; Chen, W.; Hong, H. Uncertainty Pattern in Landslide Susceptibility Prediction Modelling: Effects of Different Landslide Boundaries and Spatial Shape Expressions. Geosci. Front. 2022, 13, 101317. [Google Scholar] [CrossRef]
- Chang, Z.; Catani, F.; Huang, F.; Liu, G.; Meena, S.R.; Huang, J.; Zhou, C. Landslide Susceptibility Prediction Using Slope Unit-Based Machine Learning Models Considering the Heterogeneity of Conditioning Factors. J. Rock. Mech. Geotech. Eng. 2023, 15, 1127–1143. [Google Scholar] [CrossRef]
- Sun, D.; Wu, X.; Wen, H.; Gu, Q. A LightGBM-Based Landslide Susceptibility Model Considering the Uncertainty of Non-Landslide Samples. Geomat. Nat. Hazards Risk 2023, 14, 2213807. [Google Scholar] [CrossRef]
- Kuncheva, L.I. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Mach. Learn. 2003, 51, 181–207. [Google Scholar] [CrossRef]
- Niculescu-Mizil, A.; Caruana, R. Predicting Good Probabilities with Supervised Learning. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; Association for Computing Machinery: New York, NY, USA, 2005; pp. 625–632. [Google Scholar]
- Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Antwarg, L.; Miller, R.M.; Shapira, B.; Rokach, L. Explaining Anomalies Detected by Autoencoders Using Shapley Additive Explanations. Expert. Syst. Appl. 2021, 186, 115736. [Google Scholar] [CrossRef]
- Liu, B.; Guo, H.; Li, J.; Ke, X.; He, X. Application and Interpretability of Ensemble Learning for Landslide Susceptibility Mapping along the Three Gorges Reservoir Area, China. Nat. Hazards 2024, 120, 4601–4632. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide Risk Assessment and Management: An Overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the Effects of Training Data Selection on the Landslide Susceptibility Mapping: A Comparison between Support Vector Machine (SVM), Logistic Regression (LR) and Artificial Neural Networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
Evaluation Factor | Type | Classification Range | CF | Evaluation Factor | Type | Classification Range | CF |
---|---|---|---|---|---|---|---|
Slope (°) | Continuous | 0.1–4.1 | 0.01709 | Distance to Fault (m) | Continuous | 1–539 | 0.10062 |
4.2–8.2 | 0.05351 | 540–1078 | 0.08177 | ||||
8.3–12.3 | 0.12942 | 1079–1617 | 0.06828 | ||||
12.4–16.4 | 0.13847 | 1618–2155 | 0.08447 | ||||
16.5–20.4 | 0.11670 | 2156–2694 | 0.09169 | ||||
20.5–24.5 | 0.14384 | 2695–3233 | 0.02720 | ||||
24.6–28.6 | 0.13701 | 3234–3772 | 0.03523 | ||||
28.7–32.7 | 0.08774 | 3773–4311 | 0.11018 | ||||
32.8–36.8 | 0.09173 | 4312–4850 | 0.03856 | ||||
36.9–40.9 | 0.02880 | 4851–5389 | 0.06814 | ||||
41–45 | 0.01777 | 5390–5927 | 0.06520 | ||||
45.1–49.1 | 0.03792 | 5928–6466 | 0.06236 | ||||
49.2–53.1 | 0 | 6467–7005 | 0.03790 | ||||
53.2–57.2 | 0 | 7006–7544 | 0.04672 | ||||
57.3 –61.3 | 0 | 7545–8083 | 0.03000 | ||||
61.4–65.4 | 0 | 8084–8622 | 0 | ||||
65.5 –69.5 | 0 | 8623–9160 | 0.05166 | ||||
69.6 –73.6 | 0 | 9161–9699 | 0 | ||||
73.7–77.7 | 0 | 9700–10,238 | 0 | ||||
77.8–81.8 | 0 | 10,239–10,777 | 0 | ||||
Aspect | Discrete | Flat | 0 | TPI | Discrete | Flat area | 0 |
North | 0.1145 | Lower slope | 0.1839 | ||||
Northeast | 0.1447 | Middle slope | 0.1936 | ||||
East | 0.1313 | Ridge | 0.2516 | ||||
Southeast | 0.1432 | Upper slope | 0.3069 | ||||
South | 0.1276 | Valley | 0.0641 | ||||
Southwest | 0.1197 | ||||||
West | 0.1140 |
Evaluation Factor | Multicollinearity Analysis | |
---|---|---|
VIF | TOL | |
Distance to Road | 1.166118 | 0.857546 |
Distance to Fault | 1.120423 | 0.892520 |
Distance to River | 1.144622 | 0.873651 |
Vegetation Coverage | 1.085449 | 0.921278 |
Rainfall | 1.162597 | 0.860144 |
Profile Curvature | 1.309268 | 0.763786 |
Planar Curvature | 1.551096 | 0.644705 |
TWI | 1.541271 | 0.648815 |
SPI | 1.831806 | 0.545989 |
LR | 1.507743 | 0.663243 |
Slope | 1.749590 | 0.571563 |
Aspect | 1.095354 | 0.912947 |
Lithology | 1.217160 | 0.821585 |
TPI | 1.804903 | 0.554046 |
Model | CF-SSA-SVM | CF-SSA-BPNN | CF-SSA-RF | CF-SSA-Stacking | |
---|---|---|---|---|---|
Very low | A/% | 10 | 10 | 10 | 10 |
B/% | 0.42 | 0 | 0.42 | 0 | |
B/A | 0.04 | 0 | 0.04 | 0 | |
Low | A/% | 20 | 20 | 20 | 20 |
B/% | 3.33 | 3.33 | 3.75 | 3.75 | |
B/A | 0.17 | 0.17 | 0.19 | 0.19 | |
Moderate | A/% | 40 | 40 | 40 | 40 |
B/% | 20.83 | 22.08 | 20.83 | 20.42 | |
B/A | 0.52 | 0.55 | 0.52 | 0.51 | |
High | A/% | 20 | 20 | 20 | 20 |
B/% | 30.42 | 27.50 | 27.92 | 24.17 | |
B/A | 1.52 | 1.38 | 1.39 | 1.21 | |
Very high | A/% | 10 | 10 | 10 | 10 |
B/% | 45.00 | 47.08 | 47.08 | 51.67 | |
B/A | 4.50 | 4.71 | 4.72 | 5.17 |
Model | Accuracy | F1 | Kappa Coefficient |
---|---|---|---|
CF-SSA-SVM | 0.889583 | 0.887473 | 0.779167 |
CF-SSA-BPNN | 0.870833 | 0.870293 | 0.741667 |
CF-SSA-RF | 0.877083 | 0.876310 | 0.754167 |
CF-SSA-Stacking | 0.893750 | 0.891720 | 0.787500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Zhao, Z.; Zhou, D.; Chang, K.; Mou, Q.; Yang, Y.; Hu, Y. Landslide Susceptibility Assessment in Yulong County Using Contribution Degree Clustering Method and Stacking Ensemble Coupled Model Based on Certainty Factor. Remote Sens. 2024, 16, 3582. https://doi.org/10.3390/rs16193582
Qin Y, Zhao Z, Zhou D, Chang K, Mou Q, Yang Y, Hu Y. Landslide Susceptibility Assessment in Yulong County Using Contribution Degree Clustering Method and Stacking Ensemble Coupled Model Based on Certainty Factor. Remote Sensing. 2024; 16(19):3582. https://doi.org/10.3390/rs16193582
Chicago/Turabian StyleQin, Yang, Zhifang Zhao, Dingyi Zhou, Kangtai Chang, Qiaomu Mou, Yonglin Yang, and Yunfei Hu. 2024. "Landslide Susceptibility Assessment in Yulong County Using Contribution Degree Clustering Method and Stacking Ensemble Coupled Model Based on Certainty Factor" Remote Sensing 16, no. 19: 3582. https://doi.org/10.3390/rs16193582
APA StyleQin, Y., Zhao, Z., Zhou, D., Chang, K., Mou, Q., Yang, Y., & Hu, Y. (2024). Landslide Susceptibility Assessment in Yulong County Using Contribution Degree Clustering Method and Stacking Ensemble Coupled Model Based on Certainty Factor. Remote Sensing, 16(19), 3582. https://doi.org/10.3390/rs16193582