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Abstract: Radar echo extrapolation (REE) is a crucial method for convective nowcasting, and current
deep learning (DL)-based methods for REE have shown significant potential in severe weather
forecasting tasks. Existing DL-based REE methods use extensive historical radar data to learn the
evolution patterns of echoes, they tend to suffer from low accuracy. This is because data of radar
modality face difficulty adequately representing the state of weather systems. Inspired by multimodal
learning and traditional numerical weather prediction (NWP) methods, we propose a Multimodal
Asymmetric Fusion Network (MAFNet) for REE, which uses data from radar modality to model
echo evolution, and data from satellite and ground observation modalities to model the background
field of weather systems, collectively guiding echo extrapolation. In the MAFNet, we first extract
overall convective features through a global shared encoder (GSE), followed by two branches of
local modality encoder (LME) and local correlation encoders (LCEs) that extract convective features
from radar, satellite, and ground observation modalities. We employ an multimodal asymmetric
fusion module (MAFM) to fuse multimodal features at different scales and feature levels, enhancing
radar echo extrapolation performance. Additionally, to address the temporal resolution differences in
multimodal data, we design a time alignment module based on dynamic time warping (DTW), which
aligns multimodal feature sequences temporally. Experimental results demonstrate that compared to
state-of-the-art (SOTA) models, the MAFNet achieves average improvements of 1.86% in CSI and
3.18% in HSS on the MeteoNet dataset, and average improvements of 4.84% in CSI and 2.38% in HSS
on the RAIN-F dataset.

Keywords: radar echo extrapolation (REE); convective nowcasting; multimodal data; asymmetric
fusion

1. Introduction

Convective nowcasting aims to provide convective system predictions for a local re-
gion over relatively short time scales (e.g., 0–2 h), including type, intensity, and location [1].
It provides timely weather forecasting and impacts residents’ daily life greatly [2]. Weather
forecasting based on Numerical Weather Prediction (NWP) used to serve as the foundation
for severe weather forecasting. However, NWP models suffer from spin-up problems,
struggling to provide convective nowcasting with high accuracy [3,4].

Traditional REE models such as centroid tracking and cross-correlation methods rely
on kinematic approaches for echo extrapolation. Due to their inadequate capability for
handling the complex nonlinearity of atmospheric systems [5,6], they suffer from low
prediction accuracy. In recent years, deep learning (DL)-based methods have drawn great
attention and emerged as a novel driving force for innovation in weather forecasting. In
comparison to NWP-based methods, DL-based radar echo extrapolation (REE) methods
have increasingly become the primary techniques for convective nowcasting, attributed to
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their robust nonlinear modeling capability and proficiency in handling complex data [7].
They predict future echo sequences based on given historical sequences, without reliance
on solving complex formulas of physical evolution laws by high-performance computers
(HPC). As a data-driven methodology, the DL-based REE method inputs historical me-
teorological data into neural networks to uncover the laws of convective evolution. The
extrapolation performance is primarily determined by the network architecture, which
extracts features and learns laws, and the input data, which provide convective information.
A number of studies have been conducted to enhance REE performance by improving
the architectures of networks. Existing DL-based REE methods can be broadly classified
into four categories: convolution neural network (CNN)-based methods [8–10], recurrent
neural network (RNN)-based methods [11–15], generative adversarial network (GAN)-
based methods [16–18], and Transformer-based methods [19–21]. However, convective
nowcasting is not merely a spatiotemporal sequence prediction task, and improvements
at the neural network architecture level struggle to utilize meteorological principles for
constraining model predictions. Therefore, there is an urgent need to enhance meteorologi-
cal data inputs by utilizing the interrelationships among various meteorological elements,
which promises to significantly improve the performance of convective nowcasting.

Modern weather observation involves a variety of instruments, encompassing ground
observation stations, weather radars, and meteorological satellites spanning from the sur-
face to the upper atmosphere [22]. Multimodal data provide information on the same
weather system from different aspects and possess potential correlations, despite dispari-
ties in their observational orientations and data organization [23]. Recently, there has been
growing attention to studies focusing on improving REE accuracy by incorporating multi-
modal data inputs. Zhang et al. [24] proposed a multi-input multi-output recurrent neural
network, which uses precipitation grid data, radar echo data, and reanalysis data as input to
simultaneously predict precipitation amount and intensity. Ma et al. [25] introduced ground
observation data and radar data into an RNN-based framework and adopted a late fusion
strategy to incorporate the features of ground meteorological elements into radar features.
The extrapolation results are superior to those of common RNN using only radar modal
data. Niu et al. [26] devised a two-stage network framework for precipitation nowcasting,
in which the spatial-channel attention and the generative adversarial module are used to
fuse features and generate radar echo sequences. Although the aforementioned research
based on multimodal data has made progress in improving the accuracy of convective now-
casting, there are still limitations in the alignment of spatiotemporally heterogeneous data
and the fusion strategy of multimodal data. Firstly, there exists a significant disparity in
both the temporal and spatial resolutions of multimodal heterogeneous data (as illustrated
in Table 1), where the interpolation methods employed for data alignment often introduce
errors. Second, existing multimodal symmetric fusion strategy treats modality-specific and
modality-shared features equivalently, potentially leading to the loss of high-frequency
detailed information contained within modality-specific features during the propagation
process of the fusion network [27,28].

Table 1. Parameter information of different datasets.

Dataset Modality Time Resolution Spatial Resolution

HKO-7 [29] Radar 6 min 1 km

SEVIR [30]
Radar 5 min 0.5 km

Satellite (vis/ir/lght) 5 min 0.5/2/8 km

RainBench [31]
SimSat 3 h 10 km
ERA5 1 h 30 km

IMERG 30 min 10 km
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Table 1. Cont.

Dataset Modality Time Resolution Spatial Resolution

RAIN-F [32]
Radar 1 h 0.5 km

Ground Observations 1 h 10 km
IMERG 1 h 10 km

RAIN-F+ [33]

Radar 5 min 0.5 km
Ground Observations 1 h 10 km

IMERG 30 min 10 km
Himawari-8 10 min 2 km

MeteoNet [34]

Radar 5 min 1 km
Ground Observations 6 min 10 km

Satellite 1 h 3 km
AROME 1 h 10 km
ARPEGE 1 h 1 km

Recently, novel advancements have been made in multimodal data fusion strate-
gies, particularly in addressing the fusion of heterogeneous and diverse data. In [35],
an attention-based nonlinear diffusion module is proposed, which increases the spatial
resolution and temporal resolution of sparse NWP forecast data and facilitates the fusion
with spatiotemporally heterogeneous radar data. Chen et al. [36] propose a dynamic time
warping (DTW)-based method for time series assessment, which improves the precision
of time series data generated by time–space fusion. These two methods offer valuable
insights into time series alignment that do not rely on interpolation. Moreover, recent works
explore the inter-modal correlation and complementary in multimodal data. To decompose
modality-specific features, modality-shared features, and model cross-modality features,
Zhao et al. [37] propose a novel correlation-driven feature decomposition method, which
adopts a dual-branch structure and achieves promising results in multimodal image fusion
tasks. In [38], an asymmetric multilevel alignment module is designed for refining the
feature alignment between images and text. Xu et al. [39] propose an asymmetric attention
fusion module to dynamically adjusts to the informativeness of each modality, which
allows for a dynamic fusion of modalities and enhances the integration of information.

In the field of convective nowcasting based on REE, different data modalities con-
tribute significantly differently, with radar data often exerting a more pronounced influence
than data from satellite and ground observations modalities. For instance, weather radar
typically exhibits higher temporal and spatial resolution, enabling accurate detection of the
dynamic variations within local convective systems [40,41]. In addition to its broad detec-
tion range, weather radar can also detect the vertical structure of convective systems [42,43].
We are inspired to propose a multimodal asymmetric fusion network (MAFNet) for REE.
When considering multimodal REE tasks, radar modality provides the ground truth labels
and exhibits strong correlations with the prediction outputs. High-frequency detailed
information within modality-specific features of the radar modality aids in predicting the
evolution details of echoes more effectively. Furthermore, low-frequency basic information
within modality-shared features among other modalities provides insights into the overall
evolutionary trends of convective systems, thus serving as a supplement to radar modality.
Our framework employs a multi-branch structure and equips each modality branch with
global–local encoders. Thus, the low-frequency basic information within modality-shared
features and high-frequency detailed information within modality-specific can be sepa-
rately extracted. Then, multimodal features with temporal resolution distinction are aligned
by the DTW-based alignment module (DTW-AM), where the errors introduced by interpo-
lation can be alleviated. Finally, the multimodal features are integrated by the multimodal
asymmetric fusion module (MAFM) and achieve a more nuanced fusion of convective
information. The MAFNet exploits the convective complementary information inherent in
multimodal data, leveraging the advantages of multiple modalities while mitigating the
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weaknesses of individual modalities, thereby improving the overall performance of REE.
In summary, the primary contributions of the MAFNet are as follows:

(1) We propose a multimodal asymmetric fusion network (named the MAFNet) for
REE, which incorporates a multi-branch architecture and a global–local feature encoding
and fusion structure. This framework allows for the extraction and integration of effective
convective complementary information from multimodal data, thereby enhancing the
accuracy of REE.

(2) Inspired by non-interpolative alignment methods, we have designed a DTW-based
alignment module (DTW-AM) in the feature encoding stage, which aligns multimodal data
with temporal resolution distinction by computing the correlation of features at different
positions between multimodal feature sequences.

(3) Considering the varying contributions of multimodal data to REE, we have de-
signed a multimodal asymmetric fusion module (MAFM), which fused the modality-
specific features of radar modality and the modality-shared feature among multiple modal-
ities to guide REE, thus leveraging their respective strengths and improving the accuracy
of REE.

The remainder of this article is organized as follows. In Section 2, we review the
DTW algorithm and multimodal fusion strategies. Section 3 introduces the definition of
multimodal spatiotemporal prediction and the architecture of the MAFNet. Experimental
results and analysis are presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Related Work
2.1. DTW Algorithm

The dynamic time warping (DTW) algorithm was initially proposed by Itakura to align
words in speech recognition tasks [44]. As research progresses, the DTW algorithm has
shown promising performance in tasks related to time series. DTW enables the comparison
of similarity between sequences of different lengths and sequences that are stretched or
compressed, thereby achieving alignment of elements at different positions, which serves
as a basis for alignment, classification, clusters, and other related tasks [45,46].

In multimodal meteorological data, the data sequences within the same period often
vary in length due to the different temporal resolutions of the sensing instruments. When
performing multimodal feature fusion, aligning feature sequences with different lengths
and extending them to a uniform length is necessary. Therefore, DTW-based alignment
holds promise in this regard and we propose a DTW-AM to align other modalities to the
radar modality, which facilitates subsequent multimodal fusion. The principles of the
proposed DTW-AM are elucidated in Section 3.4.

2.2. Asymmetric Fusion Strategy

Existing methods for multimodal data fusion can be broadly classified into four
categories based on the fusion stage and feature hierarchy: early fusion, middle fusion,
late fusion, and asymmetric fusion (as depicted in Figure 1). The early fusion strategy
performs concatenation of multiple modalities before the encoder. The middle fusion
strategy fuses multimodal feature branches’ output by feature encoders. The late fusion
strategy integrates the output of multimodal branches for final decoding. However, these
three symmetrical fusion strategies consider the importance of each modality to be equal,
and this may lead to the loss of information from certain modalities. In contrast, within an
asymmetric fusion strategy, a specific modal branch takes precedence, while other modal
branches provide supplementary information to facilitate the accomplishment of the final
task. From a structural perspective, the asymmetric fusion strategy bears a resemblance to
the late fusion strategy, as it occurs before the decoder. However, at the feature level, the
information hierarchy within different modal branches varies, and a specific branch tends
to dominate.
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(b) Middle fusion strategy. (c) Late fusion strategy. (d) Asymmetric fusion strategy.

Several representative multimodal models designed for specific spatiotemporal predic-
tion tasks are enumerated in Table 2. In the EF-ConvSLTM [30], MCGLN [47], RN-Net [2],
and MFSP-Net [30], the early fusion and middle fusion strategies are adopted, and the
multimodal input is fused by channel concatenation or convolution in the very first layers
of the model. However, the early fusion and middle fusion strategies are often affected
by information entanglement, which potentially weakens the performance of the model.
In [31,48–50], the late fusion strategy integrates multimodal branches as input to the de-
coder, which effectively preserves the information from each branch and facilitates learning
data from each modality better. However, these symmetric fusion strategies treat each
modality equally, and different modalities struggle to interact dynamically. The asym-
metric fusion strategy employed in [35,39] offers valuable insights, assigning weights to
different modal branches and integrating multimodal features at different scales, thereby
fully exploiting the contributions of different modalities to the final task. In Section 3.5,
we present the considerations and implementation of the multimodal asymmetric fusion
module (MAFM) in the MAFNet.

Table 2. Representative multimodal models for spatiotemporal prediction.

Model Fusion Strategy Prediction Target

EF-ConvLSTM [30] Early fusion Precipitation nowcasting
MCGLN [47] Early fusion Lightning nowcasting
RN-Net [2] Middle fusion Rainfall nowcasting

MFSP-Net [30] Middle fusion Precipitation nowcasting
MM-RNN [31] Late fusion Precipitation nowcasting
LightNet [48] Late fusion Lightning nowcasting

LGRF [49] Late fusion Autonomous navigation
FURENet [50] Late fusion Convective nowcasting
HST-AFP [35] Asymmetric fusion Precipitation nowcasting

3. Methodology

This section provides a detailed description of the MAFNet. Section 3.1 presents the
formulation of multimodal REE. The overall architecture of the MAFNet is described in
Section 3.2, and mainly includes three modules: global–local encoders, DTW-AM, and
MAFM. Section 3.3 introduces the components of the global–local encoders. In Section 3.4,
we introduce the DTW-AM that was specifically designed for aligning radar modality and
other modalities. Section 3.5 illustrates the structure of MAFM and the propagation of
multimodal features within it. Section 3.6 gives a detailed introduction to the loss function
used in model training.
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3.1. Problem Description

REE typically refers to the prediction of the radar echoes in the forthcoming 0–2 h,
encompassing attributes such as intensity, morphology, and location. REE is essentially a
spatiotemporal sequence predicting problem, where the sequence of past radar maps serves
as the input and the sequence of future radar maps is the output [11]. As for multimodal
REE tasks, they involve the sequences of multiple modalities as the input, with the sequence
of radar maps as the output.

Let us use the tensors Rt, St, Gt ∈ RC×H×W to denote the radar map, satellite map,
and ground observation map observed at time t, respectively, where C, W, and H de-
note the number of channels, the width, and the height of the data observed within the
same region in each modality. Suppose that there are three input sequences, namely
radar maps, satellite maps, and ground observation maps, R = {Rt−m+1, Rt−m+2, ..., Rt},
S = {St−m+1, St−m+2, ..., St}, G = {Gt−m+1, Gt−m+2, ..., Gt}, where m is the length of the
input sequence. The REE problem is to predict the most probable output sequence of
radar maps, R̂ =

{
R̂t+1, R̂t+2, ..., R̂t+n

}
, where n is the length of the output sequence.

Specifically, we train the MAFNet parameterized as θ by batch gradient descent for REE
tasks, and maximize the likelihood of predicting the sequence of the true radar map,
R∗ = {Rt+1, Rt+2, ..., Rt+n}. The formulation can be described as:

R̂ = argmax
R∗

P(R∗|R, S, G; θ) (1)

where P is the conditional probability. In contrast to unimodal REE, where only R is used
for parameterization, multimodal REE involves R, S, and G to jointly parameterize θ.

3.2. Overview of the MAFNet

The workflow of our proposed MAFNet is presented in Figure 2, employing a multi-
branch structure and global–local encoders. The MAFNet consists structurally of global–
local encoders, DTW-AM, MAFM (integrated within RNN layers), and a decoder.
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Figure 2. The architecture of the MAFNet.

First, the global encoder extracts shallow features from the multimodal inputs, where
the parameters of this encoder are shared. Subsequently, multimodal features undergo
local encoding to extract modality-specific and modality-shared features. Among these,
the modality-shared features of different lengths are aligned by the DTA-AW before being
concatenated. Afterward, modality-specific and modality-shared features are fused in the
MAFM of the RNN layers and propagated forward. During this process, as modality-
specific features and modality-shared features do not share parameters, their feature
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hierarchies differ, making the fusion process asymmetric. Finally, the fused multimodal
features are decoded to obtain the predicted echo sequences.

3.3. Global–Local Encoders

The encoders consist of three components: the Restormer block [51]-based global
shared encoder (GSE), the 3D-U-Net [52]-based local modality encoder (LME), and the
Dual-former block [53]-based local correlation encoder (LCE). In multimodal branches, the
weights of GSE are shared, while the weights of LME and LCE are private.

For clarity in formulations, some symbols are defined. The input sequences of
radar modality, satellite modality, and ground observation modality are denoted as R ∈
RC×H×W×L1 , S ∈ RC×H×W×L2 , G ∈ RC×H×W×L3 , where L1, L2, L3 denote the lengths of
the sequences, respectively. The GSE, LME, and LCE are represented by GSE(·), LME(·),
LCE(·), respectively.

3.3.1. Global Shared Encoder

GSE is a shared encoder across multimodal branches, which aims to extract shallow
features from multimodal inputs and map them into a unified feature space at an initial
stage. The encoding process can be formulated as:

FGSE
R = GSE(R), FGSE

S = GSE(S), FGSE
G = GSE(G) (2)

where FGSE
R , FGSE

S and FGSE
G are shallow features extracted from radar, satellite, and ground

observation inputs R, S, and G, respectively.
GSE employs a computationally efficient Restormer block, which can extract shallow

features and achieve cross-modality feature extraction through weight sharing across
multiple branches. According to the original paper [51], the simplified architecture of the
Restormer block in GSE is represented in Figure 3a.

3.3.2. Local Modality Encoder

LME aims to extract modality-specific features from the shallow features of the radar
modality branch, which is formulated as:

FLME
R = LME

(
FGSE

R

)
(3)

where FGSE
R and FLME

R are the shallow features and modality-specific features, respectively.
The reason we choose 3D-U-Net in LME is that it can effectively extract multi-scale

features from radar modality. The unique symmetric structure of 3D-U-Net facilitates
feature reuse and parameter sharing, and its adoption of skip connections helps to capture
information at different scales without increasing computation too much. The architecture
of LME is shown in Figure 3b.

In LME, one assumption is that the high-frequency detailed information in modality-
specific features is modality-irrelevant and represents the unique characteristics of the radar
modality (e.g., the texture details of local echoes and the strength of echo reflectivity make it
challenging to directly relate to the information from other modalities). Therefore, modality-
specific features of radar input can be effectively preserved during forward propagation,
facilitating the subsequent stage of asymmetric feature fusion.

3.3.3. Local Correlation Encoder

Contrary to LME, the LCE is designed to extract low-frequency basic information in
modality-correlated features from multimodal inputs, which can be expressed as:
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FLCE

R = LCE
(

FGSE
R

)
FLCE

S = LCE
(

FGSE
S

)
FLCE

G = LCE
(

FGSE
G

) (4)

where FLCE
R , FLCE

S and FLCE
G are the correlated features extracted from radar, satellite, and

ground observation modalities, respectively.
The Dual-former is an efficient feature encoder, which combines the Hybrid Trans-

former and local feature extraction modules to model local features and long-distance
relationships while maintaining a small computational cost. The structure of the Dual-
former-based LCE is illustrated in Figure 3c.
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3D-U-Net- based LME, (c) The Dual-former-based LCE.

We assume that the modality-shared features containing low-frequency basic informa-
tion are modality-relevant, multimodal features. The modality-shared features collectively
reveal the inherent patterns and evolution trends of the convective systems (e.g., despite
different observational orientations in multimodal inputs, the evolution trends of the con-
vective system within the same background field remain consistent across multi-modalities).
By leveraging the relevant information embedded in the modality-shared features, the
utilization of convective evolution laws is enhanced and the performance of REE can be
improved.
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3.4. DTW-Alignment Module (DTW-AM)

The DTW-AM is designed to align modality-correlated features from LCEs’ outputs,
which comprise two DTW units and one feature interaction module (FIM). For temporally
inconsistent multimodal feature sequences, DTW units first calculate pairwise similarities
between their sequences and identify the optimal time alignment paths. They then extend
the feature sequences of different lengths to the same length and concatenate them together.
The concatenated feature sequence is fed into the FIM for interaction among modality-
correlated features.

As illustrated in Figure 4, DTW-AM measures the similarity between feature maps of
each frame in different modal feature sequences by SSIM scores [54], which comprehen-
sively evaluates similarity across luminance, contrast, and structure of the feature maps.
The task of the DTW-AM is to find the shortest alignment path that maximizes the sum
of feature map similarities. We assume that there are two feature sequences of lengths m
and n, denoted as X and Y, respectively. For any frame of feature at a given time, they are
represented as Xi and Yj. The alignment path of length K is denoted as W. Therefore, the
k-th point in W can be represented as Wk =

(
Xi, Yj

)
. The alignment path is subject to the

following three constraints:

(1) Boundary condition: The alignment path must start from (X0, Y0), and end at (Xm, Ym).
(2) Continuity condition: For any point

(
Xi, Yj

)
on the alignment path and its subsequent

point
(
Xi′, Yj′

)
, they must satisfy i′ − i ≤ 1, and j′ − j ≤ 1.

(3) Monotonicity condition: For any point
(
Xi, Yj

)
on the alignment path and its subse-

quent point
(
Xi′, Yj′

)
, they must satisfy i′ − i ≥ 0, and j′ − j ≥ 0.
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Consequently, as illustrated in Figure 4a, the alignment path is constrained to start
from the green point in the bottom-left corner and end at the red point in the top-right
corner; each point can only progress in one of the three directions indicated by the blue
arrows. This ensures that the two feature sequences are aligned in a forward temporal
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process, without skipping any frame of feature maps, and the path does not revisit or
backtrack. The optimization process of the alignment path can be formalized as follows:

DTW(X, Y) = arg min
K

(
K

∑
k=1

(
1

SSIM(Wk)
)) (5)

where the higher the SSIM score, the more similar the two feature maps are. We take the
reciprocal to represent the difference between the two feature maps.

In Figure 4b,c, there are two examples of aligning radar feature sequences with ground
observation feature sequences and satellite feature sequences, respectively. Here, R, G, and
S denote the radar, ground observation, and satellite feature sequences, with the optimal
alignment path indicated by red arrows. It is noteworthy that in DTW-AM, we fixed the
length of the radar feature sequence, aligning the ground observation and satellite feature
sequences with the radar feature sequence. Specifically, the alignment from R to G/S is a
one-to-one mapping, while from G/S to R is a one-to-many mapping. There is an example
of the output of DTW-AM in Figure 5a, where the aligned multimodal feature sequences
are extended to the same length. Subsequently, the multimodal feature sequences are
concatenated and fed into the FIM.
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Figure 5. Aligned multimodal feature sequences in DTW and multimodal feature interaction in FIM.
(a) An example of the aligned multimodal feature sequences. The red boxed annotations denote
the expanded feature maps after alignment; (b) the architecture of FIM and the multimodal feature
interaction process in it.

The FIM is a feature interaction module based on Maintaining the Original information-
Deeply Separable Convolution (MODSConv) [55], which helps maintain original informa-
tion after depthwise separable convolution. The architecture of FIM is shown in Figure 5b.
In the FIM, one branch of the input feature undergoes a grouped depthwise convolution,
while another branch maintains the original information. Then, they are added together to
supplement missing information between channels. Subsequently, pointwise convolution
integrates information between the channels of the multimodal feature and reduces the
dimension of the channels.

We denote the output of the DTW unit and FIM as DTW(·), FIM(·), respectively. The
outcome of DTW-AM can be expressed as:

FDTA−AM
R = FIM

([
DTW

(
FLCE

R , FLCE
S

)
; DTW

(
FLCE

R , FLCE
G

)])
(6)

where FDTW−AM
R is the output feature sequence of DTW-AM, ‘;’ indicates feature concate-

nation.

3.5. Multimodal Asymmetric Fusion Module (MAFM)

The MAFM is a plug-and-play component integrated within the RNN layers, which
is employed to fuse modality-specific features and modality-correlated features from
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different encoding branches during the forward propagation process. The MAFM is based
on attentional feature fusion (AFF) [56] and its architecture is illustrated in Figure 6.

The MAFM receives two streams of feature inputs. The modality-specific feature
sequences and modality-correlated feature sequences undergo 3 × 3 and 5 × 5 convolution,
respectively, generating multi-scale abstract features. Subsequently, the two sequences
are summed up, and it is passed through the global average pool layer to compress its
spatial size, while another branch maintains its dimensions. Following this, both feature
branches undergo pointwise convolutional layers and activation layers individually, and
the outcomes are summed up. Next, the activated sum is used as a weight and distributed
to the two original feature input branches in different proportions. Finally, a weighted
average is calculated to obtain the multimodal asymmetric fused feature. If we denote the
weights as M, the formulation of MAFM can be expressed as:

FMAFM
R = M

(
FLME

R
⊎

FDTW−AM
R

)
⊗ FLME

R +
(

1 − M
(

FLME
R

⊎
FDTW−AM

R

))
⊗ FDTW−AM

R (7)

where a FMAFM
R is the multimodal asymmetric fused feature, ‘

⊎
’ denotes the initial feature

integration, and ‘⊗’ denotes the Hadamard product.
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Figure 6. The architecture of the MAFM.

3.6. Loss Function

During the training of the models, we employ a combination of mean absolute error
(MAE) and mean square error (MSE) as the loss function, which is a common approach
in regression tasks [31]. Furthermore, to enhance the model’s perception and predictive
capability of intense convective echoes, we assign greater weights to echoes of higher
intensity. The loss function can be formulated as:

LMAE =
1

H × W

H

∑
i=1

W

∑
j=1

∣∣∣yi,j −
∼
y i,j

∣∣∣ (8)

LMSE =
1

H × W

H

∑
i=1

W

∑
j=1

(y i,j −
∼
y i,j)

2 (9)

Loss = ωi,j[λLMAE + (1 − λ)LMSE] (10)

ωi,j =


1, i f yi,j ≤ 20 dBZ
5, i f 20 dBZ < yi,j ≤ 35 dBZ

10, i f 35 dBZ < yi,j ≤ 45 dBZ
20, i f 45 dBZ < yi,j

(11)
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where the intensity of the radar echo is expressed in dBZ; yi,j,
∼
y i,j are the ground truth and

prediction of the echoes; and H, W are the height and width of the echo image, respectively.
ωi,j is the weight assigned to echoes of different intensities. λ is a constant to adjust the
proportion of MAE and MSE, which is 0.5 in our experiments.

4. Experiment

In this section, the experimental setup and results are presented. Section 4.1 describes
the datasets used in experiments. In Section 4.2, the evaluation metrics are introduced. In
Section 4.3, we present the implementation details. In Sections 4.4 and 4.5, the experimental
results on two datasets are displayed. In Section 4.6, the ablation study of the MAFNet is
analyzed.

4.1. Datasets

Due to the stochastic nature of weather phenomena and limitations in detection capa-
bilities and locations of meteorological instruments, existing multimodal datasets are rare
and limited in variety. The MeteoNet [29] provided by Meteo France and the RAIN-F [27]
provided by SI-Analytics are two representative publicly available multimodal meteorolog-
ical datasets. Their contributions are highly significant for research in multimodal weather
forecasting.

(1) MeteoNet: This dataset provides multimodal meteorological data from southeast-
ern (SE) France from 2016 to 2018, including ground observations, rain radar data, satellite
remote sensing data, weather forecast models, and land–sea and terrain masks. In experi-
ments performed on MeteoNet, we have delineated a study area of 460 km× 460 km within
the SE region (see Figure 7). We conduct experiments using radar data, ground-observed
precipitation, and IR108 data of satellites from the SE region. The spatial resolutions of
radar, ground observations, and satellite data are 1 km, 10 km, and 3 km, respectively,
with temporal resolutions of 5 min, 6 min, and 1 h, respectively. The preprocessed dataset
consists of 19,000 samples, partitioned in a ratio of 13,000:2000:4000 for training, validation,
and test subsets, respectively.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 22 
 

 

where the intensity of the radar echo is expressed in dBZ; 𝑦𝑖,𝑗, �̃�𝑖,𝑗 are the ground truth 

and prediction of the echoes; and 𝐻,𝑊 are the height and width of the echo image, re-

spectively. 𝜔𝑖,𝑗 is the weight assigned to echoes of different intensities. 𝜆 is a constant to 

adjust the proportion of MAE and MSE, which is 0.5 in our experiments. 

4. Experiment 

In this section, the experimental setup and results are presented. Section 4.1 describes 

the datasets used in experiments. In Section 4.2, the evaluation metrics are introduced. In 

Section 4.3, we present the implementation details. In Sections 4.4 and 4.5, the experi-

mental results on two datasets are displayed. In Section 4.6, the ablation study of the 

MAFNet is analyzed. 

4.1. Datasets 

Due to the stochastic nature of weather phenomena and limitations in detection ca-

pabilities and locations of meteorological instruments, existing multimodal datasets are 

rare and limited in variety. The MeteoNet [29] provided by Meteo France and the RAIN-

F [27] provided by SI-Analytics are two representative publicly available multimodal me-

teorological datasets. Their contributions are highly significant for research in multimodal 

weather forecasting. 

(1) MeteoNet: This dataset provides multimodal meteorological data from southeast-

ern (SE) France from 2016 to 2018, including ground observations, rain radar data, satellite 

remote sensing data, weather forecast models, and land–sea and terrain masks. In exper-

iments performed on MeteoNet, we have delineated a study area of 460 km ×  460 km 

within the SE region (see Figure 7). We conduct experiments using radar data, ground-

observed precipitation, and IR108 data of satellites from the SE region. The spatial resolu-

tions of radar, ground observations, and satellite data are 1 km, 10 km, and 3 km, respec-

tively, with temporal resolutions of 5 min, 6 min, and 1 h, respectively. The preprocessed 

dataset consists of 19,000 samples, partitioned in a ratio of 13,000:2000:4000 for training, 

validation, and test subsets, respectively. 

   
(a) (b) (c) 

Figure 7. The study area of the SE region in France (highlighted by the red boxes). (a) Radar com-

posite reflectivity (CR) data; (b) satellite infrared brightness temperature (IR108) data; (c) ground-

observed precipitation (Precip) data. (Sample time: 5 April 2016, 07:00, UTC+2). 

(2) RAIN-F: This dataset offers ground observations, radar, and satellite data col-

lected by the Korea Meteorological Administration (KMA) and the National Aeronautics 

and Space Administration (NASA), which cover an area of the Korean Peninsula from 

2017–2019 (see Figure 8). The spatial resolutions of radar, satellite data, and ground ob-

servations are 0.5 km, 10 km, 10 km, respectively, with a temporal resolution of 1 h. The 

preprocessed dataset consists of 12,000 samples, with the training, validation, and testing 

subsets containing 9000, 1500, and 1500 samples respectively. 

Figure 7. The study area of the SE region in France (highlighted by the red boxes). (a) Radar composite
reflectivity (CR) data; (b) satellite infrared brightness temperature (IR108) data; (c) ground-observed
precipitation (Precip) data. (Sample time: 5 April 2016, 07:00, UTC+2).

(2) RAIN-F: This dataset offers ground observations, radar, and satellite data collected
by the Korea Meteorological Administration (KMA) and the National Aeronautics and
Space Administration (NASA), which cover an area of the Korean Peninsula from 2017–2019
(see Figure 8). The spatial resolutions of radar, satellite data, and ground observations are 0.5
km, 10 km, 10 km, respectively, with a temporal resolution of 1 h. The preprocessed dataset
consists of 12,000 samples, with the training, validation, and testing subsets containing
9000, 1500, and 1500 samples respectively.
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Figure 8. The study area of RAIN-F (126.3–129.3◦E, 35–38◦N). (a) Radar observation coverage; (b)
satellite observation coverage; (c) ground observation coverage. (Sample time: 26 July 2019, 16:00,
UTC+9).

4.2. Evaluation Metrics and Implementation Details

We employ both quantitative and qualitative evaluations to compare the REE per-
formance of the MAFNet with other models. Quantitative evaluation metrics include
convective nowcasting evaluation metrics and image quality evaluation indexes, which are
the critical success index (CSI) [57], Heidke Skill Score (HSS) [58], peak signal-to-noise ratio
(PSNR) [59], structural similarity index measure (SSIM), and mean square error (MSE).

The CSI and HSS are calculated at the radar echo intensity threshold of τ = {20, 35, 45}
dBZ, respectively corresponding to incrementally increasing precipitation intensities. The
prediction results and ground truth are first converted to 0/1 according to the intensity
thresholds (0 denotes the absence of precipitation, 1 denotes the presence of precipitation),
and distinct labels are assigned accordingly (as shown in Table 3).

Table 3. The labels of confusion matrix.

Prediction = 1 Prediction = 0

Ground Truth = 1 TP FN

Ground Truth = 0 FP TN

Therefore, the CSI and HSS can be formulated as:

CSI =
TP

TP + FN + FP
(12)

HSS =
2 ∗ (TP ∗ TN − FN ∗ FP)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
(13)

The CSI and HSS collectively measure the accuracy of convective nowcasting, reflecting
the model’s predictive capability regarding the location, morphology, and intensity of radar
echoes. The PSNR and SSIM quantify the visual similarity between predicted radar echo
images and ground truth, where higher scores indicate better visual performance of the
predicted radar echo images. MSE is a commonly used statistical metric that assesses the
general predictive capability of the model.

4.3. Implementation Details

Considering the differences between MeteoNet and RAIN-F datasets, we employ
different experimental configurations on them, respectively.

In experiments performed on the MeteoNet dataset, multimodal data of different sizes
are resized to 460 × 460 for analysis. We use multimodal data as inputs, including radar
data and ground observations from the previous hour, along with satellite data from the
past three hours, with the radar echoes for the next hour serving as the prediction target.
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This setup is motivated by the capability of DTW-AM to align multimodal features with
different time intervals. Moreover, we have implemented an asymmetric fusion strategy
in the MAFNet, where radar data include modality-specific features crucial for detailed
echo evolution, while ground observations and satellite data contain modality-correlated
features, providing atmospheric motion background fields.

The experimental setup on RAIN-F is slightly different from those on MeteoNet.
Since the temporal resolution of multimodal data is uniformly 1 h, experiments conducted
on the RAIN-F dataset no longer involve DTW-AM, as the temporal alignment of data
is unnecessary. All of the multimodal data are preprocessed and resized to 300 × 300.
We use multimodal data including radar reflectivity, satellite-observed precipitation, and
ground-observed precipitation, where the first two steps serve as inputs and the subsequent
three steps are prediction targets. Given that the lifecycle of short-lived convective systems
typically spans only a few hours, the temporal resolution of 1 h poses a significant challenge
for convective nowcasting. This configuration is more closely aligned with the practical
demands of convective nowcasting.

In experiments conducted on two datasets, the MAFNet uses MotionRNN [60] as the
backbone RNN unit. The MAFNet is compared with representative DL-based REE meth-
ods, including CNN-based SmaAt-UNet [61], RNN-based PredRNN [12] and MIM [14],
Transformer-based Rainformer [21], and Earthformer [62]. The above DL-based REE mod-
els have configurations similar to those of the MAFNet. Specifically, all models use the
Adam optimizer [63] with momentum β1 = 0.5, β2 = 0.999, and an initial learning rate of
1 × 10−4. The maximum epoch of training is set to 200, and an early stop will be imple-
mented if the validation scores do not improve for more than 5 epochs. The number of
feature channels is 32, and the number of hidden states channels is 256. Their training is
performed on four RTX 3090 GPUs, with a batch size of eight. The quantitative evaluation
scores are averaged over all samples in the test set. Specifically, CSI and HSS are computed
at thresholds of τ = {20, 35, 45} dBZ, while PSNR, SSIM, and MSE are calculated without
restriction of echo intensity thresholds. For a fair comparison, the comparative models
use temporally interpolated multimodal data aligned and concatenated along the channel
dimension as input, with radar echoes as the output.

4.4. Experimental Results on MeteoNet

For the MeteoNet dataset, the quantitative evaluation results of comparison experi-
ments are shown in Table 4.

Table 4. Quantitative evaluation results on MeteoNet.

Models
CSIτ ↑ HSSτ ↑

PSNR ↑ SSIM ↑ MSE ↓
τ=20 τ=35 τ=45 τ=20 τ=35 τ=45

PredRNN 0.5304 0.3367 0.1587 0.6132 0.4291 0.2135 27.2192 0.8441 22.376
MIM 0.5376 0.3478 0.1633 0.6154 0.4349 0.2192 27.3685 0.8483 21.985
SmaAt-UNet 0.5463 0.3536 0.1689 0.6204 0.4427 0.2251 29.1214 0.8605 21.297
Rainformer 0.5561 0.3588 0.1753 0.6318 0.4503 0.2318 28.5453 0.8524 20.446
Earthformer 0.5782 0.3645 0.1814 0.6375 0.4626 0.2367 28.9346 0.8567 20.139
MAFNet 0.5819 0.3769 0.1842 0.6521 0.4852 0.2423 29.4568 0.8649 19.854

where ‘τ’ denotes threshold of radar echo intensity. ↑ indicates that higher scores are better, while ↓ indicates that
lower scores are better. The best and the second-best scores are respectively denoted by bold and underlined
markers.

From Table 4, we can see that the MAFNet outperforms other DL-based models on
all convective nowcasting evaluation metrics. Specifically, compared to the representative
RNN-based MIM, the MAFNet demonstrates improvements of 8.24%, 8.37%, 12.80%,
5.96%, 11.57%, and 10.54% on CSI20, CSI35, CSI45, HSS20, HSS35, and HSS45, respectively.
Furthermore, compared to the CNN-based SmaAt-UNet, the MAFNet shows improvements
of 6.52%, 6.59%, 9.06%, 5.11%, 9.6%, and 7.64% on CSI metrics and HSS metrics, respectively.
Particularly, compared to the state-of-the-art (SOTA) Earthformer, the MAFNet achieves
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enhancements of 0.64%, 3.40%, 1.54%, 2.29%, 4.89% and 2.37% on CSI20, CSI35, CSI45, HSS20,
HSS35, and HSS45, respectively. In addition, the MAFNet exhibits superior scores across
PSNR and SSIM metrics, as well as the lowest MSE, indicating not only its effectiveness
in convective nowcasting evaluation metrics but also its competitiveness in the quality
of predicted images. Furthermore, SmaAt-UNet achieves the second-best scores in PSNR
and SSIM, which may be attributed to its robust CNN-based image feature processing
capabilities.

The qualitative evaluation results of different models are shown in Figure 9. Two
convective weather event cases selected from the SE region of France are presented here
to visually demonstrate the REE performance of the MAFNet and compare it with other
models. In Figure 9a, a convective system is moving from central to northeastern parts,
with its convective core region highlighted in red boxes. The MAFNet exhibits the closest
prediction to the ground truth across all forecast results, which predicts not only the
movement of the echo region but also its shape and intensity to a considerable degree. In
contrast, PredRNN, MIM, and SmaAt-UNet exhibit significant deviations in predicting
the trend of echo movement, while Rainformer and Earthformer show deficiencies in
predicting echo morphology and intensity. Furthermore, we can analyze the variations
in the convective systems from the perspective of multimodal data. From the satellite
modality input, variations in the cloud-top brightness temperature indicate a trend of the
convective system moving towards the northeast. The decrease in brightness temperature
and the expansion in area suggest an intensification and broadening of convection, which
is consistent with the information contained in the radar modality. From the ground
observation modality input, precipitation sites are predominantly concentrated in the
northeastern region, indicating vigorous convective development in that area. This often
corresponds to continuous precipitation cloud layers, which aligns with the radar input
as well.
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In Figure 9b, a convective system is intensifying gradually, and predictions from
different methods are highlighted with red boxes for visual comparison of discrepancies.
The MAFNet is capable of forecasting adjacent and continuous areas of strong echoes
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(yellow regions exceeding 30 dBZ), whereas other models exhibit deficiencies in predicting
echo shape and intensity. Furthermore, from the perspective of satellite modality input,
the region with lower cloud-top brightness temperatures in the lower part of the image
has merged from several smaller areas into a contiguous region (yellow areas), indicating
the coalescence and growth of the convective core. This observation is consistent with the
distribution of the elongated strong convective area observed at time T = 0 in the radar
modality input. From the ground observation modality input, the locations of precipitation
sites show minimal variation; however, there is a significant increase in precipitation
intensity (with areas changing from blue and green to orange and red). This increase is
significantly correlated with the intensification of convection observed in the radar modality
input.

Based on the comprehensive quantitative and qualitative assessment, it can be con-
cluded that integrating detailed echo information from radar modality with convective
background field information from satellite and ground observational modalities and fus-
ing them asymmetrically at different feature levels, effectively improves the performance
of REE. This suggests that supplementing single radar modal data with other modal data is
feasible and features at different levels can collectively contribute to REE.

4.5. Experimental Results on RAIN-F

The quantitative evaluation results on the RAIN-F dataset are presented in Table 5,
while the qualitative assessment results are illustrated in Figure 10.

Table 5. Quantitative evaluation results on RAIN-F.

Models
CSIτ ↑ HSSτ ↑

PSNR ↑ SSIM ↑ MSE ↓
τ=20 τ=35 τ=45 τ=20 τ=35 τ=45

PredRNN 0.3961 0.2922 0.0783 0.4489 0.3483 0.1205 25.2198 0.7325 26.944
MIM 0.4010 0.2980 0.0872 0.4563 0.3654 0.1256 25.4547 0.7379 25.621
SmaAt-UNet 0.4185 0.3074 0.0935 0.4625 0.3768 0.1319 26.8326 0.7482 24.837
Rainformer 0.4219 0.3103 0.0984 0.4793 0.3937 0.1358 26.4342 0.7466 24.258
Earthformer 0.4247 0.3177 0.1031 0.4856 0.4024 0.1447 26.7683 0.7537 23.776
MAFNet 0.4368 0.3286 0.1116 0.4913 0.4139 0.1492 27.1432 0.7584 23.245

where ‘τ’ denotes threshold of radar echo intensity. ↑ indicates that higher scores are better, while ↓ indicates that
lower scores are better. The best and the second-best scores are respectively denoted by bold and underlined
markers.

From Table 5, it is observed that the quantitative evaluation scores on the RAIN-F
dataset are generally lower compared to those on the MeteoNet dataset. This is because
experiments on RAIN-F focus on predicting radar echoes for only the next three time
steps, but due to longer time intervals, the lead time can extend to three hours, resulting in
greater extrapolation difficulty. In comparison to MIM, the MAFNet shows improvements
of 8.92%, 10.27%, 27.98%, 7.67%, 13.27%, and 18.79% on CSI20, CSI35, CSI45, HSS20, HSS35,
and HSS45, respectively. Furthermore, compared to the latest Earthformer (2023), the
MAFNet exhibits enhancements of 2.85%, 3.43%, 8.24%, 1.17%, 2.86%, and 3.11% in the
corresponding CSI and HSS metrics. The quantitative evaluation results indicate that
experimental conclusions on the RAIN-F dataset align with those on the MeteoNet dataset,
demonstrating the effectiveness of the MAFNet in improving REE, particularly with more
notable improvements at the thresholds of 35 dBZ and 45 dBZ.
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In Figure 10, there are two examples illustrating the movement of convective systems
over the Korean Peninsula. In Figure 10a, the convective system moves from west to east,
with its intensity initially increasing and subsequently decreasing. Due to the extended
forecast lead time causing significant prediction uncertainty, all models struggle to forecast
the process of radar echo intensity decrease. However, the MAFNet still demonstrates
superiority in predicting radar echo movement and morphology. As highlighted by the
red boxes, PredRNN and MIM fail to predict the elongated north-south extension of radar
echoes. While SmaAt-UNet, Rainformer, and Earthformer forecast the originally continuous
radar echo region as two separate parts. Despite overestimating the radar echo intensity
in some areas, the MAFNet provides more accurate predictions of the overall radar echo
morphology. Additionally, from the satellite modality input, the convective system is
observed to be moving eastward with a tendency for intensification. Concurrently, the
ground observation modality input reveals that the convective system is evolving into a
narrow, north-south oriented shape. Together, these observations provide supplementary
information to the radar modality regarding the movement direction and morphological
changes of the convective system.

In Figure 10b, there is a process of an eastward-moving convective system, where
the connected radar echo areas gradually increase in size. The predictions of PredRNN
and MIM indicate a decrease in the radar echo area, while SmaAt-UNet forecasts radar
echo shapes that diverge significantly from the ground truth. Rainformer and Earthformer
correctly capture the movement trends of radar echoes, but they exhibit less accuracy in
intensity and morphological details compared to the MAFNet. Moreover, from the inputs
of both satellite and ground observation modalities, there is a high degree of similarity
observed: the strong convective center is slowly moving toward the northeast while its
intensity significantly increases. This observation is strongly correlated with the inputs
from the radar modality.

In the convective storm nowcast experiments conducted on the RAIN-F dataset with a
lead time of 3 h, which exceeds the 1-h lead time on the MeteoNet dataset, slightly lower
CSI and HSS scores were obtained. However, in comparative extrapolation experiments
across different models, our proposed MAFNet consistently achieved superior performance.
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This proves the effectiveness of our multimodal asymmetric fusion strategy, which supple-
ments convective information with satellite and ground modalities, integrating them at
hierarchical feature levels to enhance REE accuracy.

4.6. Ablation Study Results

In the MAFNet, LCE is utilized to extract modality-relevant, multimodal features
from multimodal data, particularly the atmospheric background field information. It
supplements the developmental insight into convective systems with perspectives from
satellite and ground observations, exploring correlations and complementarities among
multimodal information. MAFM asymmetrically integrates multimodal features to fuse
radar modality-specific features from the LME branch and modality-relevant, multimodal
features from the LCE branch at different levels and scales, thereby alleviating the limita-
tions of single radar-mode information. Therefore, we designed ablation experiments to
separately evaluate the effectiveness of LCE and MAFM in extracting multimodal features
and asymmetrically fusing features.

The quantitative evaluation results of the ablation experiments are presented in
Tables 6 and 7, while the qualitative assessment results are illustrated in Figure 11. Since
LCE and MAFM are sequentially connected network components, with MAFM reliant
on LCE, we have designed two variant models (without LCE AND MAFM and MAFM)
to separately evaluate the effects of LCE and MAFM. From Table 6, the model without
MAFM shows average improvements of 1.76% and 3.13% over the model without LCE
AND MAFM on CSI and HSS metrics, respectively. Compared to the model without
MAFM, the MAFNet shows average improvements of 2.87% and 1.73% on CSI and HSS
scores. In Table 7, the model without MAFM shows an average improvement of 2.66% in
CSI and 1.74% in HSS compared to the model without LCE AND MAFM. The MAFNet
demonstrates a 5.27% improvement in CSI and a 3.76% improvement in HSS compared to
the model without MAFM.

Table 6. Ablation experiment results on MeteoNet.

Models
CSIτ ↑ HSSτ ↑

PSNR ↑ SSIM ↑ MSE ↓
τ=20 τ=35 τ=45 τ=20 τ=35 τ=45

w/o LCE
AND MAFM 0.5682 0.3597 0.1724 0.6342 0.4604 0.2274 28.5617 0.8536 20.976

w/o MAFM 0.5743 0.3613 0.1789 0.6439 0.4741 0.2385 28.8356 0.8584 20.364
MAFNet 0.5819 0.3769 0.1842 0.6521 0.4852 0.2423 29.4568 0.8649 19.854

where ‘τ’ denotes threshold of radar echo intensity. ↑ indicates that higher scores are better, while ↓ indicates that
lower scores are better. The best and the second-best scores are respectively denoted by bold and underlined
markers.

Table 7. Ablation experiment results on RAIN-F.

Models
CSIτ ↑ HSSτ ↑

PSNR ↑ SSIM ↑ MSE ↓
τ=20 τ=35 τ=45 τ=20 τ=35 τ=45

w/o LCE
AND MAFM 0.4256 0.3082 0.0973 0.4796 0.3945 0.1364 26.4528 0.7489 24.688

w/o MAFM 0.4281 0.3145 0.1025 0.4827 0.3986 0.1412 26.6511 0.7529 24.125
MAFNet 0.4368 0.3286 0.1116 0.4913 0.4139 0.1492 27.1432 0.7584 23.245

where ‘τ’ denotes threshold of radar echo intensity. ↑ indicates that higher scores are better, while ↓ indicates that
lower scores are better. The best and the second-best scores are respectively denoted by bold and underlined
markers.
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In Figure 11, there are two ablation study cases selected from the MeteoNet dataset
and the RAIN-F dataset, respectively. The model without LCE AND MAFM exhibits the
poorest predictive performance, which significantly underestimates the echo intensity in
its predictions. It also faces insufficient representation of detailed internal features within
the echoes, along with positional bias and ambiguity in predictions. The performance of
the model without MAFM has shown slight improvement, as it can predict areas of higher
echo intensity. However, it still struggles with location inconsistencies between predictions
and ground truth. The MAFNet is equipped with both LCE and MAFM, and demonstrates
superior performance across all three models. It not only predicts strong echo centers (red
areas exceeding 45 dBZ), but also forecasts echo shapes closer to ground truth.

The ablation experiments on LCE and MAFM reveal that LCE extracts convective-
related features from multimodal data, uncovering correlations and complementarities
among these features. MAFM asymmetrically integrates convective features from differ-
ent encoders, enhancing the model’s utilization of multimodal convective features and
improving REE accuracy.

5. Conclusions

Radar echo extrapolation based on deep learning is emerging as a promising tech-
nique for convective nowcasting, demonstrating significant application potential. Previous
DL-based methods face challenges such as error introduction during data alignment, and
difficulties in feature representation and fusion when integrating spatiotemporally hetero-
geneous multimodal data. This paper proposes a multimodal asymmetric fusion network
for radar echo extrapolation. Our proposed MAFNet employs a global–local encoder
architecture to model convective system dynamics from three perspectives: overall convec-
tive features, dynamic echo features from radar modality, and top and bottom convective
features from satellite and ground observation modalities, thereby leveraging the correla-
tion and complementarity of multimodal data. Notably, DTW-AM provides new insights
into non-interpolative data alignment methods by dynamically aligning multimodal data
sequences through feature map similarity calculation. Additionally, MAFM is designed
to asymmetrically fuse multimodal convective features across various levels and scales,
thereby enhancing REE performance. Through comparative and ablation experiments, we
have demonstrated that the MAFNet outperforms representative CNN-based, RNN-based,
and Transformer-based radar echo extrapolation models on two multimodal meteorological
datasets. Furthermore, visualized radar echo extrapolation cases clearly illustrate the supe-
riority of the MAFNet, affirming the enhancement in extrapolation performance achieved
through multimodal input and asymmetric fusion strategy.
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In future work, we will further investigate the underlying mechanisms by which
different modalities improve REE performance, enhance the interpretability of multimodal
data studies, explore the role of physical products from different modalities in REE, and
incorporate atmospheric physics constraints into model training.
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57. Lin, C.; Vasić, S.; Kilambi, A.; Turner, B.; Zawadzki, I. Precipitation forecast skill of numerical weather prediction models and
radar nowcasts. Geophys. Res. Lett. 2005, 32, 2005GL023451. [CrossRef]

58. Hogan, R.J.; Ferro, C.A.T.; Jolliffe, I.T.; Stephenson, D.B. Equitability Revisited: Why the “Equitable Threat Score” Is Not Equitable.
Weather. Forecast. 2010, 25, 710–726. [CrossRef]

59. Hore, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern
Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369.

60. Wu, H.; Yao, Z.; Wang, J.; Long, M. MotionRNN: A Flexible Model for Video Prediction with Spacetime-Varying Motions. In
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25
June 2021.
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