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Abstract: Managing the amount of greenspace (i.e., increasing or decreasing greenspace coverage)
and optimizing greenspace configuration (i.e., increasing or decreasing greenspace fragmentation)
are cost-effective approaches to cooling the environment. The spatial variations in their impacts on
the thermal environment, as well as their relative importance, are of great importance for greenspace
planning and management but are far from thoroughly understood. Taking Changsha, China as an
example, this study investigated the spatial variations of the impacts of greenspace amount (measured
as a percent of greenspace) and greenspace fragmentation (measured by edge density of greenspace)
on the Landsat-derived land surface temperature (LST) using geographically weighted regression
(GWR), and also uncovered the spatial pattern of their relative importance. The results indicated
that: (1) Greenspace amount showed significantly negative relationships with LST for 91.73% of
the study area. (2) Both significantly positive and negative relationships were obtained between
greenspace fragmentation and LST, covering 14.90% and 13.99% of the study area, respectively.
(3) The negative relationship between greenspace fragmentation and LST is mainly located in the
urban areas, while the positive relationship appeared in the rural areas. (4) Greenspace amount made
a larger contribution to regulating LST than greenspace fragmentation in 93.31% of the study area,
but the latter had stronger roles in about 6.69% of the study area, mainly in the city center. These
findings suggest that spatially varied greenspace planning and management strategies should be
adopted to improve the thermal environment.

Keywords: greenspace fragmentation; edge density; land surface temperature; geographically
weighted regression; urban and rural contrast

1. Introduction

Urban and surrounding rural areas are experiencing rapid temperature increases
caused by both global warming and the urban heat island effect [1–3], and thus are suffer-
ing from severe ecological and environmental consequences, such as increasing building
cooling energy use [4], threatening biodiversity [5], risking human health [6]. Mitigation
of the elevating temperature has attracted increasing attention from both scientific com-
munities and decision-makers, as more than half the global population resides here [7,8].
Several strategies—such as land greening (e.g., increasing greenspace coverage, building
green roofs) [9], land evaporation (e.g., increasing water coverage, installing spray foun-
tains) [10], increasing albedo through white rooftops and light-colored pavements [11], and
constructing urban ventilation corridors [12]—have been widely suggested and effectively
adopted to decrease urban temperature [13]. Greenspace, the landscape that is covered with
vegetation in the form of trees, shrubs, and grasses can significantly decrease temperature
because: (1) it has strong evapotranspiration, which can absorb solar radiation and transfer
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sensible heat to latent heat [14–16]; (2) it can generate a large amount of shadow, which
prevents the surface from direct heating by solar radiation [17–19]; and (3) it has a higher
albedo compared to the developed impervious surfaces of buildings, for example [20,21].
A proliferation of studies demonstrate a significant negative relationship between tempera-
ture and the strategy of planting more trees, and this has been recognized and applied as a
cost-effective, nature-based solution to mitigate temperature increase [22,23].

Though expanding greenspace coverage by, for example, planting more trees is theo-
retically effective in decreasing urban temperature, it is very difficult if not impossible in
practice because land for greening is usually limited, especially in highly developed urban
areas. Based on the landscape ecology theory, greenspace in any area is formed by several
patches with different sizes and shapes, which generate different spatial compositions
(i.e., the amount of greenspace) and spatial configuration (i.e., fragmentation, aggregation).
Spatial composition and also the spatial configuration of greenspace both significantly
impact energy flow and the consequent temperature [24–26]. Researchers also found that
the spatial configuration of greenspace even had a stronger impact on surface temperature
than the spatial composition of greenspace [27,28]. Therefore, optimizing the spatial config-
uration of the greenspace is another effective approach to mitigate temperature increase in
addition to expanding the greenspace area.

Fragmentation is a fundamental characteristic of landscape configuration [29–31] and
greenspace fragmentation has been widely demonstrated as an important factor impacting
surface temperature [27,32,33]. Current studies among different cities showed diverse and
even opposite results. For example, some studies reported significant negative relationships
between greenspace fragmentation and surface temperature [34,35], while others concluded
that there were positive impacts of greenspace fragmentation [24,36]. Many studies showed
that greenspace amount has a stronger impact than greenspace fragmentation [32,33,37],
but other studies reported a stronger impact of greenspace fragmentation than greenspace
amount [27,28]. Furthermore, the impact of greenspace fragmentation on temperature
and its relative importance compared to greenspace amount also showed strong intra-city
variations. For example, Guo et al. showed that greenspace amount dominated the drivers
of LST in Guangzhou and Shenzhen, China, but greenspace fragmentation also explained
more variation of LST in some other areas [38].

Previous investigations of the impact of greenspace fragmentation on temperature
mostly assume a spatially consistent relationship between them, and the global least squares
regression was applied [39,40]. This approach has the limitation of decreasing the prediction
power, hindering the spatial variation of the impacts [38,41]. Geographically weighted
regression (GWR) is an effective approach and has been widely adopted to investigate
the spatial non-stationarity of the relationships between landscape patterns and ecological
processes [42]. Some studies have applied GWR to investigate the spatial variations of
the relationship between LST and land indicators (such as land cover fraction, vegetation
index, land use intensity, etc.) [41,43,44]. However, few studies have uncovered the spatial
variations of the impacts of greenspace amount and greenspace fragmentation, as well as
their relative importance.

Taking the subtropic city of Changsha, China as an example, this study aims to inves-
tigate the spatial variation of greenspace fragmentation impacts on surface temperature.
We attempted to answer two questions: (1) How does the relationship between greenspace
fragmentation and LST vary spatially? (2) How does the relative contribution of greenspace
amount and greenspace fragmentation on LST vary spatially? We built geographically
weighted regression (GWR) with Landsat LST as the dependent variable and greenspace
fragmentation (i.e., edge density) as well as percent land covers (i.e., cropland, bare land,
and greenspace) and elevation as independent variables. Variance partitioning was applied
to investigate the relative importance of greenspace amount and greenspace fragmentation
to explain the variation of LST. The findings of this study can extend our understanding of
the spatial variations of the greenspace fragmentation impacts on LST and aid better urban
greenspace planning and management.
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2. Materials and Methods
2.1. Study Area

Changsha (111◦53′~114◦E, 27◦51′~28◦41′N), the capital city of Hunan Province, is
situated in the northeastern part of Hunan Province, China (Figure 1). It lies along the
lower reaches of the Xiang River and the western edge of the Changliu Basin. The city has
elevations ranging from 23.5 to 1607.9 m. Changsha has a subtropical monsoon climate,
characterized by hot summer and cold winter. In 2020, the city recorded an annual average
temperature of 18.2 ◦C [45].
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Changsha has experienced rapid urban expansion and socioeconomic development
since 1978. The urbanization rate increased from 20.5% to 82.60%, and GDP soared from
16.85 billion RMB to 1214.252 billion RMB [45]. During urbanization, large areas of farmland
were transformed into impervious surfaces, as part of urban development, causing the
thermal environment in downtown Changsha to heat up each year. The proportion of
high-temperature areas has continuously increased, and the urban heat island effect has
intensified. Rapid urbanization has also shifted the spatial distribution of heat islands from
concentrated urban zones to a more dispersed, multi-center pattern, making the urban
heat island effect increasingly prominent. Our study area encompasses seven districts (i.e.,
Furong District, Yuelu District, Yuhua District, Tianxin District, Kaifu District, Wangcheng
District, and Changsha County) (Figure 1). Water was excluded within the study area in
later analyses, to avoid its impact on temperature.

2.2. Land Surface Temperature

We employed Landsat-8 OLI TIRS satellite data (Collection 1, Level 1, LANDSAT/
LC08/C01/T1_SR) downloaded from the United States Geological Survey (https://earthexplorer.
usgs.gov/, accessed on 20 April 2024) to retrieve LST. Based on data availability, we selected
LST data on 17 August 2019, a typical clear sky day in the hot summer with an average
temperature of 32.50 ◦C (29–37 ◦C), an average wind speed of 1.47 m/s, and an average
humidity of 60.13%. The LST was derived using the radiative transfer equation method [46–48].

LST =
TB

1 +
(
λTB

ρ

)
∗ ln(ε)

(1)

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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where TB is brightness temperature which is estimated by the following Equation (2) and λ

is the central wavelength of the thermal infrared band (i.e., 10.9). ρ = 1.438 × 10−2 mk. ε is
the surface emissivity, which is estimated by the following Equation (3).

The radiance of the thermal infrared band (B10) was converted to brightness temperature TB.

TB =
K2

ln(K1/Lλ + 1)
(2)

where Lλ is the the radiance of the thermal infrared band (B10) and K1 and K2 are preset
constants before launch. K1 = 1321.08 and K2 = 774.89.

ε =


0.004 ∗ ρRed + 0.979 (NDVI < 0.2)
0.987 ∗ Pv + 0.971 ∗ (1 − Pv) (0.2 ≤ NDVI ≤ 0.5)
0.987 (0.5 < NDVI)

(3)

where Pv is vegetation fraction and was derived using Equation (4) [49]. ρRed is Landsat-8
band 4 (Red).

Pv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2
(4)

where NDVI is the normalized difference vegetation index [50] calculated using the surface
reflectance of Landsat-8 band 4 (Red) and band 5 (NIR), as shown in Equation (5).

NDVI =
(ρNIR − ρRed)

(ρNIR + ρRed)
(5)

Figure 2 shows the spatial distribution of LST in the study area. We quantified the
average LST for each 1 km grid (the analytical unit), which is used as the dependent variable
in later statistical analysis.
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2.3. Quantifying Landscape Composition and Greenspace Fragmentation

We quantified landscape composition (i.e., percent of land cover) for each 1 km grid
using Equation (6).

Pi =
Si

A
∗ 100% (6)

where Pi is the percent of land cover i (i.e., greenspace, cropland, and bare land), Si is the
total area of land cover, and A is the area of the analytical unit (i.e., the 1 km grid).
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Following previous studies [33,51], we quantified the edge density of greenspace to
measure its fragmentation using Equation (7).

ED =
∑m

k=1 ek

A
∗ 10000 (7)

where ek is the edge length of the kth greenspace patch in meters, m is the total number of
greenspace patches, and A is the size of the unit (i.e., the 1 km grid). The increase in edge
density is a fundamental process of landscape fragmentation and a higher value indicates
a greater degree of fragmentation [52–54]. Both landscape composition and greenspace
fragmentation were calculated using the “landscapemetrics” package of R 4.4.1 [55].

2.4. Statistical Analysis

We built a multiple linear regression model to investigate the impact of land cover
and greenspace fragmentation on LST. The regression model was specified as Equation (8).

y = β0 + ∑m
k=1 βkxk + ϵ (8)

where β0 is the intercept, βk are the regression coefficients for explanatory variable k (i.e.,
percent of greenspace, percent of cropland, percent of bare land, elevation, and greenspace
fragmentation), and ϵ is the random error. These regression coefficients were estimated
using the ordinary least squares (OLS) algorithm, which assumes spatially consistent linear
relationships between LST and the explanatory variables. Variance inflation factors of
the five explanatory variables are lower than 5, suggesting the model is not suffering
from multicollinearity.

We applied GWR to investigate the spatial variation of the impacts of these explanatory
variables on LST. GWR performs a local regression for each place (grid, site) based on
samples surrounding it, so for each grid it generates spatially varied regression coefficients,
significance, and R2 [41]. The GWR model was specified as Equation (9).

yi = β0(ui, vi) + ∑m
k=1 βk(ui, vi)xik + εi (9)

where yi, xik, εi represent the dependent variable, the independent variables, and random
error at location i. β0(ui, vi) is the geographically varying intercept and βk(ui, vi) represents
the local regression coefficients for the kth explanatory variable at location i. εi is the random
error at location i. The coordinates (ui, vi) indicate the spatial location of location i. We
employed an adaptive Gaussian kernel function and selected the optimal bandwidth based
on the Cross-Validation [56]. We calculated the coefficient of determination (R2), spatial
autocorrelation of the residuals, and Akaike Information Criterion for both OLS and GWR.
The “spgwr” package in R was utilized to fit the GWR model.

We applied variance partitioning to assess the relative importance of greenspace
amount and greenspace configuration in explaining the variation of LST [32,33]. We
categorized the explanatory variables as those included in the GWR model into three
groups: greenspace amount (i.e., percent of greenspace), greenspace fragmentation (i.e.,
edge density of greenspace), and other variables (i.e., percent of cropland, percent of bare
land, and elevation). We fitted a series of GWR models with different combinations of
these three groups of variables and partitioned the predicted variation of LST (R2) into
independent effects and joint effects of these three groups of variables using the variance
partitioning method. The details of the variance partitioning process can be found in [32,57].

3. Results
3.1. Descriptive Statistics

The average LST is 30.47 ◦C (27.32–38.33 ◦C), with a standard deviation of 1.45 ◦C
(Table 1). The urban area shows very high LST as a big island compared with the rural
areas (Figure 3a). The average percent of greenspace is 49.073% (0.10–100%). The urban
area has lower values, with some scattered hotspots such as urban parks; and the rural area
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has a high coverage of greenspace (Figure 3b). The average percent of cropland is 24.16%
(0–90.658%), which is primarily concentrated in the northwestern regions and middle
east of the study area (Figure 3c). The average percent of bare land is 12.09% (0–71.09%),
mainly distributed in the fringe of the urban areas (Figure 3d). The average edge density of
greenspace is 136.75 m·hm−2 (0–287.98 m·hm−2). The spatial distribution of edge density
of greenspace did not show a clear urban–rural difference (Figure 3f).

Table 1. Descriptive statistics of percent land cover, edge density, and LST at the 1 km grid level.

Variables (Unit) Mean SD Min Max

LST (◦C) 30.468 1.448 27.316 38.334
Percent of greensapce (%) 49.073 28.252 0.102 100.00
Percent of cropland (%) 24.161 19.394 0.00 90.658
Percent of bare land (%) 12.085 9.605 0.00 71.092

Elevation (m) 59.478 44.2 8.986 464.05
Edge density of greenspace (m·hm−2) 136.752 59.651 0.00 287.979
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greenspace) (f) for the 1 km grids.

3.2. Spatial Variation of Greenspace Fragmentation Impacts on LST

The OLS model explained 86.79% of the variation of LST (Table 2). Percent of
greenspace, percent of bare land, percent of cropland, and elevation show a significant
negative regression coefficient; while the edge density of greenspace displays an insignif-
icant positive value (Table 2). The residual of the OLS model shows significant spatial
autocorrelation with a Moran’s I of 0.67 (p < 0.01). The GWR model explained 96.61% of
the variation of LST (Table 2). The local R2 showed strong spatial variations ranging from
0.665 to 0.998 (Figure 4a). Only 6.95% of the study area had R2 lower than 0.90, mainly
located in the northeast, central, and southwest of the rural areas (Figure 4b). The spatial
autocorrelation of the residual of the GWR model is not significant with a Moran’s I of
0.0047 (p > 0.05).

Regression coefficients of the percent of greenspace showed an average of −0.056,
ranging from −0.151 to 0.152 (Table 2). This indicates that every 10% increase of greenspace
coverage in each 1 km grid can averagely decrease LST by 0.56 ◦C. However, this value had
strong spatial variations, with LST decreasing as much as 1.51 ◦C or increasing as much
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as 1.52 ◦C. Expanding greenspace coverage can decrease LST in 98.77% of the study area
where the regression coefficient had a negative value (Figure 5a). Specifically, 91.73% of the
study area showed significant negative values, demonstrating that expanding greenspace
coverage in these areas can effectively decrease LST (Figure 5b). Areas with a strong cooling
effect of greenspace expansion (i.e., regression coefficient lower than −0.06) were mainly
distributed in the rural areas (Figure 5a).

Table 2. Summary of the OLS model and GWR model.

Factors
OLS GWR

Estimate Std. Error t Value VIF Mean Min 1st Qu 3rd Qu Max

(Intercept) 35.17 *** 0.057 617.11 / 35.25 25.84 34.22 36.28 45.77
PG −0.055 *** 0.00060 −94.28 3.11 −0.056 −0.15 −0.067 −0.046 0.15
PC −0.064 *** 0.00060 −104.76 1.62 −0.061 −0.16 −0.073 −0.048 0.029
PB −0.021 *** 0.0013 −16.26 1.72 −0.033 −0.20 −0.047 −0.017 0.090
ED 0.00030 0.00020 1.79 1.37 0.00030 −0.027 −0.00090 0.0023 0.019
ELE −0.0041 *** 0.00030 −12.21 2.49 0.0011 −0.073 −0.0062 0.0039 0.13

R-squared 0.87 0.98

Diagnostics OLS GWR

Residual sum of squares 875.55 139.93
log Lik −2457.89 1201.22

Classic AIC 4929.79 −12.38
AICc 4929.82 1547.36

Adjusted R-squared: 0.87 0.97
Moran’s I 0.67 *** 0.0047

ED is edge density, ELE is elevation, PG, PC, PB are percent of greenspace, percent of cropland, and percent of
bare land, respectively. *** p <= 0.001.
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Regression coefficients of greenspace fragmentation showed an average of 0.0003,
ranging from −0.029 to 0.019 (Table 2). This indicates that every unit increase of greenspace
fragmentation can, on average, increase LST by 0.003 ◦C. However, this value had strong
spatial variations, with LST decreasing as high as 0.29 ◦C or increasing as high as 0.19 ◦C.
Greenspace fragmentation can decrease LST in 36.47% of the study area where the regres-
sion coefficient had a negative value (Figure 5c). Specifically, 13.99% of the study area
showed significant negative values, demonstrating that increasing greenspace fragmenta-
tion in these areas can effectively decrease LST (Figure 5d). Greenspace fragmentation will
increase LST in 63.53% of the study area, as the regression coefficient is positive (Figure 5c).
Specifically, 14.90% of the study areas showed significant positive values, indicating that
enhancing greenspace fragmentation in these areas can effectively increase LST (Figure 5d).
Almost all the urban areas showed significant negative regression coefficients of greenspace
fragmentation, while the positive values were scattered in the rural areas (Figure 5c).
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3.3. Spatial Variation of the Relative Importance of Greenspace Coverage and Fragmentation

Greenspace amount independently explained 4.64% of the LST variations, ranging
from −0.19% to 37%. The independent explanation of greenspace amount showed strong
spatial variations with the high values (i.e., that higher than 10%) located in the suburban
area near the urban areas (Figure 6a). Greenspace fragmentation independently explained
0.54% of the LST variations, ranging from −0.91% to 14% (Figure 6b). Most regions show
low individual contributions from ED, with a few high values occurring in the northeast
and southeast of the city.
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Figure 7 shows the difference of the independently explained variance of LST by
greenspace amount and greenspace fragmentation. The positive values mean a stronger
impact of greenspace amount than greenspace fragmentation and vice versa. Greenspace
amount displays stronger impacts on LST than greenspace fragmentation in about 93%
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of the study area. The city center and sub-center in the east of the study area witnessed a
stronger impact of greenspace fragmentation than greenspace amount.
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4. Discussion
4.1. Spatial Variation of the Greenspace Fragmentation Impacts on LST

According to previous research, greenspace fragmentation impacts LST through two
approaches: altering evapotranspiration and changing the amount of shadow [17,58,59]. In-
creasing greenspace fragmentation usually decreases evapotranspiration but increases shadow,
and thus generates opposite effects on temperature. Therefore, the direction of the greenspace
fragmentation impacts on LST is a tradeoff between these two energy processes [28,60,61].

The regression coefficients of greenspace edge density show strong spatial variations
with nearly equal areas of significant positive and negative values. Strong spatial variations
of the regression coefficient between surface temperature and landscape configuration
metrics were also reported in previous studies. For example, LST and land cover diversity
measured by Shannon’s diversity showed both significant positive and negative relation-
ships in Austin and San Antonio, Texas, USA [43]. Regression coefficients of patch richness
density for different land covers in explaining the variation of LST ranged from negative
to positive in Shenzhen, China [41]. The GWR model reported both positive and negative
regression coefficients for landscape metrics (i.e., patch density, aggregation index, and
largest patch index) using LST as the dependent variable in Dalian, China [44]. The spatial
variation of the relationship between surface temperature and landscape configuration
metrics was possibly caused by the significant spatial variations in, for example, land use
and land cover, landscape structure, development intensity, vegetation type, anthropogenic
heat release, and so on [28,37,62,63].

The spatial distribution of the regression coefficients of greenspace edge density shows
clear urban and rural differences, with negative values in the almost urban areas and
positive values in the almost rural areas. This indicates that fragmented greenspace in
the urban areas can decrease LST, while that in the rural areas will increase LST. In highly
developed urban areas where impervious surface dominates the landscape, evapotran-
spiration is reduced [64]. Increasing greenspace edge density generates more shadow to
cool the environment, but decreases evapotranspiration. The increased cooling effect from
shadow generated by greenspace fragmentation overpasses the lost evapotranspiration
cooling effect, and thus a significant negative relationship was observed between LST and
greenspace fragmentation [65,66]. In the less developed rural areas where vegetation (i.e.,
forest and crop) dominantly covers the landscape, strong evapotranspiration dominates the
energy process. The shadow-generated cooling can be ignored in the rural area and it may
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even decrease the evapotranspiration of vegetation in the shadow. Therefore, greenspace
fragmentation in rural areas may decrease the cooling effect of the landscape and result in
a positive relationship between LST and greenspace fragmentation.

4.2. Management Implementations

Our study showed that greenspace amount has a stronger role in regulating LST
than greenspace fragmentation. This suggests that managing greenspace amount (i.e., in-
creasing greenspace coverage) is more effective than optimizing greenspace fragmentation
to mitigate temperature increase. Considering the dominance of impervious surfaces in
urban areas and the increasing importance of farmland in rural areas, it is not possible to
expand greenspace without limitation. Greening impervious surfaces such as roofs and
walls can be adopted to increase greenspace amount in highly developed urban areas. In
rural areas, farmland shelter belts composed of trees can be well designed to enhance their
cooling effects.

The significant but spatially varied impact of greenspace fragmentation on LST sug-
gests that optimizing spatial configuration (i.e., fragmentation) of greenspace can effec-
tively improve the thermal environment. Furthermore, the relationships between LST and
greenspace fragmentation were opposite between urban and rural areas. This suggests
that the traditional “one-size-fits-all” strategy is not applicable and a spatially explicit
greenspace fragmentation optimization strategy should be developed. Specifically in ur-
ban areas, increasing greenspace fragmentation besides expanding greenspace coverage
should be considered and, in the rural areas, decreasing greenspace fragmentation should
be recommended.

5. Conclusions

This study investigated the spatial variations of the impacts of greenspace amount and
greenspace fragmentation on LST using geographically weighted regression. Generally,
greenspace amount contributed more than greenspace fragmentation to regulating LST.
Expanding greenspace coverage can effectively decrease LST for the whole study area,
but the impacts of greenspace fragmentation on LST varied spatially and even showed
opposite impacts between urban and surrounding rural areas. Specifically, greenspace
fragmentation positively impacted LST in rural areas, but negatively impacted LST in urban
areas. We also found that in the highly developed urban center, greenspace fragmentation
has a stronger role in explaining the variation of LST than greenspace fragmentation. Our
study suggests spatially explicit urban greenspace planning and management strategies to
improve the thermal environment.
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