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Abstract: Earth hummocks are periglacial landforms that are widely distributed in arctic and alpine
regions. This study employed an uncrewed aerial vehicle (UAV) and a structure from motion
(SfM) framework to map and analyze the spatial distribution and morphological characteristics of
earth hummocks across an extensive area in Daisetsuzan National Park, Japan. The UAV-captured
images were processed using SfM photogrammetry to create orthomosaic images and high-resolution
DEMs. We identified the distribution and morphological characteristics of earth hummocks using
orthoimages, hillshade maps, and DEMs and analyzed how their morphological parameters relate to
topographical conditions. A total of 18,838 individual earth hummocks in an area of approximately
82,599 m² were mapped and analyzed across the two study areas, surpassing the scale of existing
studies. The average length, width, and height of these earth hummocks are 1.22 m, 1.03 m, and 0.15 m,
respectively, and topographical features such as slope, aspect, and landforms are demonstrated to
have an essential influence on the morphology of the earth hummocks. These findings enhance
our understanding of topographical features. Furthermore, this study demonstrates the efficacy
of utilizing the UAV-SfM framework with multi-directional hillshade mapping as an alternative to
manual field measurements in studying periglacial landforms in mountainous regions.

Keywords: earth hummocks; periglacial landform; UAV-SfM framework; Daisetsuzan National Park

1. Introduction

Periglacial environments are characterized by the dominance of processes related to
freezing and thawing cycles, with or without permafrost [1]. The distinctive landforms in
periglacial regions produced by azonal processes collectively define the broader scope of
periglacial geomorphology [2]. These dynamic landscapes result in ground movements
such as cryoturbation and solifluction, which are vulnerable to climate change [3–5]. Relict
periglacial landforms, such as ice-wedge polygons, rock glaciers, and solifluction lobes,
have proven instrumental in reconstructing paleoenvironmental conditions, bridging our
understanding of past to present periglacial dynamics [6–9].

Earth hummocks, one of the most widespread periglacial landforms in the alpine
environment [10–12], refer to a specific form of non-sorted net patterned ground with
a mesh characterized by a distinct three-dimensional knoblike shape and covered with
vegetation [13,14], usually spaced on flat or gentle slopes [12]. The origin of earth hum-
mocks has been explained by several theories, including the cellular circulation model [10],
cryostatic and hydrostatic pressures [14,15], and differential frost heave [16–18], which
suggest a polygenetic origin of the development process. Studies have shown that earth
hummocks can exhibit unique physical, chemical, mineralogical, and micromorphological
features [19] and serve as crucial paleoenvironmental proxies [20–22].
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Recent research on earth hummocks has explored their morphological characteris-
tics [23–25], spatial patterns [26–28], controlling environmental factors [29–31], and genetic
processes across various geographical contexts [32–34]. In terms of morphological as-
pects, some studies have examined slope and aspect as factors influencing the shape of
earth hummocks [14,35]; however, no research has yet been conducted in discontinuous
mountain permafrost zones, and it remains necessary to clarify in more detail how topo-
graphical conditions affect the morphological parameters of earth hummocks. Existing
studies typically examine at most several hundred earth hummocks. For example, Gurney
and Hayward [36] examined the morphological attributes and developmental pathways of
650 earth hummocks in northern Norway. Ruiz-Fernández and his team [9] characterized
120 earth hummocks and their geomorphological settings in northeast Greenland. Miloše-
vić et al. [37] measured the morphological attributes of 305 hummocks in five regions of
the Ponor Depression in Serbia.

Enhanced systematic quantification of vital physical parameters and their spatiotem-
poral variations is crucial for understanding earth hummocks [38]. The morphology of
numerous earth hummocks within an extensive area still needs to be explored to avoid a
fragmented understanding. In morphological studies, data collection and mapping consti-
tute the most time-consuming and labor-intensive phases of research [39]. To expand the
scale of the investigation, it is imperative to employ data collection and analysis methods
that surpass traditional approaches in terms of both efficiency and precision, particularly
for small-scale geomorphological features such as earth hummocks.

Structure from motion (SfM) is a sophisticated photogrammetric and computer vision
method that uses a succession of overlapping two-dimensional (2D) pictures taken by a
moving sensor to extract three-dimensional (3D) information [40,41]. Integrating uncrewed
aerial vehicle (UAV) photogrammetry and SfM techniques has rapidly emerged as a robust
survey methodology. It has been widely applied as a valuable investigative tool in sur-
veying and related fields [42,43]. It ushered in a transformative era for geomorphological
investigations and cartographic endeavors and enabled topography recording at extremely
high spatial and temporal resolutions that are challenging for humans to access [44]. Re-
cently, UAV-acquired high-resolution imagery has been used to create 3D models using
SfM techniques. This enables the identification of geographical features, such as pit rim
structures and hummocky landforms in debris avalanche deposits, from derived digital
elevation models (DEMs) [45–47]. The synergistic use of UAV and SfM photogrammetry al-
lows for precise, efficient, and cost-effective production [48], which is pivotal for identifying
and analyzing the detailed characteristics of landforms. Given these benefits, the UAV-SfM
research framework has been increasingly investigating periglacial landforms in recent
years, including ice-wedge polygons, fan surfaces, and sorted circles [49–52]. However,
extant studies have not examined detailed morphological data of earth hummocks. A
detailed methodology and workflow for acquiring and analyzing extensive morphological
data on a more significant number of earth hummocks is yet to be proposed.

The objectives of this study were to: (1) investigate the detailed distribution and
morphological characteristics of earth hummocks in a study area using the UAV-SfM
framework; (2) analyze the relationships between the morphological parameters (length,
width, and height) of earth hummocks and topographical conditions using a geographic
information system (GIS); and (3) validate the reliability of the UAV-SfM framework
for studying earth hummocks in mountainous regions. For these objectives, we chose
Daisetsuzan National Park, Japan.

2. Materials and Methods
2.1. Study Area

Daisetsuzan National Park, spanning 2267.6 km2, is in the mountainous center of
Hokkaido, Japan’s northernmost island. It was established on 4 December 1934. It is
one of Japan’s oldest national parks and remains the country’s second largest national
park [53]. The park’s center is dominated by the Daisetsuzan Volcanic Group, which
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consists of several volcanoes exceeding 2000 m in elevation [54] and features Ohachi-
daira, a 2000 m diameter caldera formed by volcanic eruptions approximately 30,000 years
ago [55]. Volcanic activity began in the Late Pleistocene, and eruptions continued during
the Holocene. The extensive, gently sloping bare lands adorned with pyroclastic deposits or
lava are gentle lava plateaus that facilitate the retention of high water content in the active
layer [56]. This condition makes the Daisetsu Mountains a suitable setting for developing
periglacial landforms, making it potentially the largest region in Japan with permafrost and
periglacial features [56,57].

The current pyroclastic deposits generated by an eruption from the caldera covered the
mountains surrounding the Ohachi-daira, forming several pyroclastic flow plateaus [58].
The specific areas chosen for UAV flights were the Hokkai-daira (Area A, 1.3 km2) and
Kumono-daira (Area B, 0.8 km2) plateaus located northeast and southeast of the Ohachi-
daira, respectively (Figure 1). These are covered with pumice and welded tuff from volcanic
eruptions, forming gentle surfaces at approximately 2000 m, concurrent with the emergence
of Ohachi-daira [59]. As early as the 1960s, Koaze [60] used a traditional field plane table
method to create paper-based periglacial landform maps of these areas and identified
numerous periglacial landforms.
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Figure 1. Map of the study areas (created using the Red Relief Image Map (RRIM) technique
developed by Asia Air Survey Co., Ltd.; Patent No. 3670274, 4272146). Coordinate System:
GCS_WGS_1984.

The flat summit terrain experiences heavy snowfall and strong westerly winds pre-
dominantly during winter [61]. Permafrost has been confirmed above 1700 m [62,63]. The
alpine zone of Daisetsuzan is a notable example of Japan’s periglacial environment and
encompasses a multitude of plant and animal species that are hypothesized to be relicts
from the Pleistocene epoch [64,65].

2.2. Earth Hummocks in the Study Area

Figure 2 shows a photograph of the earth hummocks in Area B. To enhance the
description of the surface cover of these earth hummocks, we conducted a 3D scan using
an iPhone equipped with LiDAR technology (iPhone 15 Pro, manufactured by Apple Inc.,
Cupertino, California, USA, with the built-in Sony IMX591 Time of Flight (ToF) LiDAR
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sensor, produced by Sony Corporation, Tokyo, Japan). The scan targeted a prominent earth
hummock adjacent to the hiking trail in Area B, which was digitally trimmed to a circular
area using the 3D scanner app (version 2.1.3). This scan, consisting of 37.4 k triangles and
18.9 k vertices, was completed in July 2024, when we were able to see the different flowers,
as shown in Figure 3. The scan revealed that the hummock was populated by various
plant species, including Sieversia pentapetala, Phyllodoce caerulea, and Trollius riederianus.
The distribution of vegetation varied significantly among individuals. These variations
are attributable to the differing exposure of the hummocks to the wind (windward and
leeward sides), snow accumulation, and moisture conditions [66]. For example, only earth
hummocks near water sources have wetland plants on them.
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2.3. UAV Data Acquisition Process

We used a DJI Phantom 4 RTK (manufactured by DJI, Shenzhen, China) equipped
with a 1-inch 20MP CMOS sensor. The UAV has an internal Global Navigation Satellite
System (GNSS) receiver to record its rover position and satellite observation data for
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real-time kinematic (RTK) processing with the D-RTK2 GNSS base station, which is also
manufactured by DJI. The horizontal and vertical positioning accuracies of the aircraft with
the FIX solutions by RTK correction are expected to be 1 cm and 2 cm, respectively. The
base station was set in the field, and the positioning data of the base station were corrected
later using post-processed kinematic (PPK) with a nearby permanent GNSS base station.
This approach is particularly suitable for mountainous areas, where network connectivity
is unavailable. According to an accuracy study, the PPK solution can offer similar levels of
accuracy to the ground control point solution [67]. We used a GNSS-based Control Station
located at Higashikawa (ID: 020867) provided by the Geospatial Information Authority
of Japan (GSI) (https://terras.gsi.go.jp/, accessed 1 August 2024), approximately 10 km
from the study area. Post-processing involved converting the DAT file’s location data
from D-RTK2 to RINEX format and the PPK corrections for each D-RTK2 position using
RTKLIB software (version 2.4.3) [68], achieving fixed solutions for both the Hokkai-daira
(two positions) and Kumono-daira (one position). The differences between the tentative
and corrected base coordinates were calculated and applied to shift the camera positions
during the SfM process, ensuring high-precision georeferencing of the position data.

The UAV flights were conducted over two days on September 8th and 9th, 2022, under
favorable weather conditions with light winds. Flight plans were generated by DJI GS RTK
software (version v2.2.0) designed in terrain-following mode using a 10 m resolution DEMs
(DEM10B) provided by the GSI as a reference surface. Aerial surveys were conducted at
two distinct flight altitudes: a higher altitude of approximately 80 m for a broader area, and
a lower altitude of approximately 40 m along the hiking trail for more detailed mapping.
Camera angles of 70◦ and 75◦ were chosen to avoid the doming effect, which is often
observed with nadir camera orientations [69]. The image overlap was set to 80% in the
flight direction and 70% in the lateral direction. The UAV captured 2754 images in Area A
and 1497 in Area B (Table 1).

Table 1. UAV flight details.

Study
Areas

Survey
Dates

Numbers
of Flights

Flight
Heights Coverage Camera

Angles Image Numbers Ground Sample
Resolution (GSD)

Area A Sept. 9 6 80 m ca. 1750 m × 750 m 70◦ 1703 2.0 cm/pixel
3 40 m ca. 1400 m × 100 m 75◦ 1051

Area B Sept. 8 2 80 m ca. 1700 m × 500 m 70◦ 747 1.8 cm/pixel
2 40 m ca. 1200 m × 60 m 75◦ 750

2.4. SfM Processing to Generate Orthomosaic Images and DEMs

This study employed Agisoft Metashape Pro software (version 1.8) to process UAV
images using SfM photogrammetry. Metashape has been widely validated in the literature
for its reliability, particularly in processing UAV imagery. The photogrammetry steps
were as follows [70]: import of images, metadata, and coordinates; inspect load images
and discard unnecessary images; align the photographs and generate sparse point clouds;
optimize camera positions; densify the point cloud; convert into triangulated 3D mesh and
apply texture; build orthomosaic images and DEMs; and export the results.

2.5. Mapping and Visualizing the Terrain Characteristics

To comprehend and illustrate the topographic characteristics of the study areas, we
focused on four vital topographic indices: slope, aspect, topographic wetness index (TWI),
and Geomorphon Landforms classification. All maps of slopes, aspects, TWI, and Geo-
morphon Landforms were produced using tools in ArcGIS Pro (version 3.2) based on 5 m
resolution DEMs (DEM5A) provided by the GSI. DEM5A data were derived from airborne
laser measurements, from which artificial structures and vegetation such as trees were
removed. To process the DEM5A data in ArcGIS Pro, we used a dedicated plugin. After
adding the converted data to the software using the plugin, the “Elevation Void Fill” raster
function was employed since water areas appear as “Nodata”. We set the [Maximum Void

https://terras.gsi.go.jp/
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Width] parameter to 0 to fill all no-data areas. Subsequently, we generated a new layer and
exported the processed data.

The TWI index was then employed to determine the soil moisture conditions in the
study area. It is one of the most reliable soil wetness predictors [71]. The increasing
availability of high-resolution DEM data has led to the growing utilization of TWI in
various fields and remote regions [72]. Calculation of TWI uses the formula ln(a/tanβ),
where ‘a’ denotes the upslope area draining through the specific point per unit contour
length, and ‘tanβ’ denotes the terrain gradient at that point [73]. Higher TWI values
represent convergence zones for water with higher soil moisture levels, typically suggesting
suitability for wetlands or marsh formations. Lower TWI values represent well-drained and
typically drier areas. The steps were derived from the methodology employed in calculating
TWI using the System for Automated Geoscientific Analyses (SAGA GIS) [74], albeit
using different software. We compared the results of TWI calculations using DEMs with
different resolutions and determined that the 5 m resolution DEM5A provides sufficient
detail while maintaining computational efficiency, and the results are consistent with field
survey observations.

We used the Geomorphon Landforms tool in ArcGIS Pro to classify the terrain of the
study area. This classification is a solid and effective depiction method for classifying and
mapping landform elements derived from the DEM data [75]. It offers a benefit compared
with fundamental elevation analysis, enabling classification at broader scales while main-
taining the original spatial resolution. This makes it suitable for diverse geomorphological
and hydrological studies [76]. We employed this method to categorize the terrain into ten
common landform elements: pit, valley, footslope, hollow, slope, spur, shoulder, ridge,
peak, and flat. After comparisons, we used the parameters of a 50 m search distance and 5◦

as an angle threshold.

2.6. Identifying the Distribution of Earth Hummocks

Analytical relief shading has become more prevalent with the development of DEMs,
enhancing the visualization of high-resolution terrain data [77] and the interpretation of
map elements [78]. However, traditional hillshade with a single light source always requires
enhancement. For example, it cannot depict massif directions in mountainous terrain, and
it is challenging to identify subtle variations in the relief [79]. The single direction of the
light source frequently overexposes the lighted sides and hides features of the terrain on
the unilluminated sides. In contrast, the multi-directional hillshade more accurately depicts
the topography and balances the overexposed and unlit portions of the map by adjusting
the light direction from six separate sources (Figure 4). Considering this, we employed
a multi-directional hillshade to facilitate the interpretation of earth hummocks, and the
height index (Z) was adjusted to 3 for a better effect.

The steps are as follows: First, create three views in ArcGIS Pro and link all views
together (Figure 5) to enable viewing a site from three different perspectives simultaneously.
A preliminary site was selected using the terrain conditions in the 2D hillshade map (view a).
Earth hummocks are more prominently visible in the hillshade map than in the orthomosaic
images, displaying distinct patterns of dense and irregular mounds. These patterns help
distinguish prominent earth hummock sites from other locations. Then, the hillshade map
from a 3D perspective (3D height information is from the UAV-derived DEMs) is used to
verify whether the terrain is raised on the 3D structure and to determine the detailed shape
of each earth hummock (view b). This step allows for a better understanding of the less
clear parts of the hillshade map by observing the elevation information from the DEMs in
the 3D view, leading to a more accurate determination of the shapes. At the same time, the
orthomosaic image rules out protrusions caused by non-earth-hummock features, such as
dwarf pine or rocks (view c). For example, Pinus pumila appears as a deeper green, and
rocks appear white on the image, distinctly different from the vegetation color on the earth
hummocks, which is usually red or light green during the UAV flight season.
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2.7. Acquiring Data on Individual Hummock Shapes

To manually delineate and vectorize the distinct individual shapes of earth hummocks,
we employed a method in ArcGIS Pro that involves creating a minimum bounding polygon
around the shape of each earth hummock, typically circular or elliptical. We used high-
resolution DEMs obtained from the UAV for the height information, and the height of an
earth hummock was determined by the difference between the highest point within the
earth hummock (red point in Figure 6) and the average height of the points distributed
evenly across ten divisions along the edge of the shape (blue points in Figure 6). It should be
noted that measuring length and width from a top-down perspective inherently introduces
errors. Because earth hummocks are distributed on slopes, the observed lengths appear to
be shorter than their actual values. For instance, a 10◦ slope with length aligned along the
slope direction could result in a maximum error of approximately 1.52%.
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Figure 6. Schematic diagram of the minimum bounding geometry and points calculating the height.

Because DEMs derived from UAV-SfM processing cannot eliminate low-lying vegeta-
tion interference, the extracted elevations are the sum of the heights of the earth hummocks
and the vegetation on them. It is essential to ascertain the vegetation heights and determine
whether the height changes significantly between the different parts of a single earth hum-
mock. Thirty earth hummocks were randomly selected from Areas A and B. We collected
ten values from each earth hummock’s central and peripheral parts (Figure 7). The results
indicate that the average vegetation height differences from the central and peripheral
parts of earth hummocks in Areas A and B are 0.68 cm and 0.58 cm, respectively. Given
the minimal variation, the influence of vegetation height differences was disregarded in
height calculations.

Finally, we analyzed and determined the relationships between morphology and
topography based on the distribution and morphological characteristics of earth hummocks
combined with topographical maps. The overall workflow is illustrated in Figure 8.
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3. Results
3.1. Image Data Obtained from UAV and Terrain-Related Maps

We generated high-resolution orthomosaic images and DEM maps for our study areas
using the SfM method (Figure 9). In Area A, the density of the dense point cloud was
776 pts/m², with a total camera position error of 1.3 cm. For Area B, the dense point cloud
density was 870 pts/m², and the total camera position error was 9 mm. The standard
deviations of the PPK-corrected positions in the north, east, and altitude directions of
D-RTK2 for the two positions in Area A were 0.25 mm, 0.20 mm, 0.57 mm and 0.20 mm,
0.10 mm, 0.30 mm, respectively. In Area B, for one position, the standard deviations were
0.10 mm, 0.10 mm, and 0.20 mm. These values are considered to provide an estimation of
the potential measurement error from the D-RTK2 measurements and are sufficiently small
to be negligible. The resolutions of the orthomosaic images were 2.0 cm/pixel for Area A
and 1.8 cm/pixel for Area B, respectively. DEM maps were produced at 3.9 cm/pixel for
Area A and 3.6 cm/pixel for Area B. These high-resolution images provided the necessary
details for precise landform observations.

From the imagery of Area A, we observed a large area of gentle slopes along the
hiking trail, with a decrease in altitude as the distance from the trail increases, along with
significant undulations and valleys. Area B exhibited dense vegetation and an overall
eastward decline in elevation. Shallow snow depressions and meltwater channels were
present in the southern part of Area B.

Slope, aspect, TWI, and Geomorphon Landforms maps were also created (Figure 10).
These maps allowed us to identify the topographic characteristics of the two study areas.

1. Slope: The average slope in Area A was 13.7◦, whereas that in Area B was 15.2◦.
This higher average in Area B was primarily due to the extensive steep slopes in its
southern part, although the rest exhibited relatively gentle slopes.
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2. Aspect: In Area A, the distribution of slope aspects is relatively uniform, whereas
in Area B, the slopes predominantly face the southeast and nearby directions, with
notably few slopes facing west.

3. TWI: Areas shaded in darker blue indicate higher TWI values and light blue areas
indicate lower TWI values. Both study areas feature complex networks of drainage
channels that typically originate near the hiking trail.

4. Geomorphon Landforms: In both study areas, the most prevalent landform was slope,
accounting for 58.11% and 64.11% of the total area in Areas A and B, respectively. The
distribution of peaks and pits was the least common, comprising less than 2% of each
study area (Table 2).
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Table 2. Geomorphon Landforms in the study areas.

Study
Areas Flat Peak Ridge Shoulder Spur Slope Hollow Valley Footslope Pit Total

Area A 1.02% 0.03% 4.55% 4.70% 13.43% 58.11% 10.36% 2.09% 5.72% 0.01% 100.00%
Area B 1.91% 0.01% 2.27% 6.95% 9.42% 64.11% 7.05% 2.75% 5.39% 0.15% 100.00%

3.2. Distribution of Earth Hummocks

By meticulously observing orthomosaic images and hillshade maps, we identified
the distribution pattern of earth hummocks in the two study areas (Figure 11). The sites
containing earth hummocks are outlined in yellow, including distinct and subtle earth
hummocks and inter-hummock areas, such as depressions and vegetation.
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In Area A, we identified 35 earth hummock sites covering 29,641 m2, with an average
area of 847 m2 for a single site. The largest of these areas spanned an area of 5197 m2. Area
B exhibited a denser distribution of earth hummocks, with 52 individual sites covering
a total area of 52,958 m2 and an average area of 1018 m2 at each site. The largest earth
hummock site in Area B measured 7184 m2. The total area of the earth hummocks identified
in both study areas amounts to 82,599 m2.

We characterized the distribution patterns of earth hummocks in the study areas.
Broadly speaking, the distribution of individual earth hummocks can be classified into two
types (Figure 12). The first type is an ‘isolated distribution’ (pattern a), where individual
earth hummocks are not interconnected and maintain specific spacing between them. The
second type is a ‘cluster distribution’, in which earth hummocks are closely distributed
(pattern b1) or overlapped (pattern b2), sometimes leading to unrecognizable borders.
Other studies have also reported complex coalescent forms [35,80].

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 25 
 

 

In Area A, we identified 35 earth hummock sites covering 29,641 m2, with an average 
area of 847 m2 for a single site. The largest of these areas spanned an area of 5197 m2. Area 
B exhibited a denser distribution of earth hummocks, with 52 individual sites covering a 
total area of 52,958 m2 and an average area of 1018 m2 at each site. The largest earth hum-
mock site in Area B measured 7184 m2. The total area of the earth hummocks identified in 
both study areas amounts to 82,599 m2. 

We characterized the distribution patterns of earth hummocks in the study areas. 
Broadly speaking, the distribution of individual earth hummocks can be classified into 
two types (Figure 12). The first type is an ‘isolated distribution’ (pattern a), where individ-
ual earth hummocks are not interconnected and maintain specific spacing between them. 
The second type is a ‘cluster distribution,’ in which earth hummocks are closely distrib-
uted (pattern b1) or overlapped (pattern b2), sometimes leading to unrecognizable bor-
ders. Other studies have also reported complex coalescent forms [35,80]. 

 
Figure 12. Distribution patterns of earth hummocks: (a) earth hummocks are widely spaced apart; 
(b1) earth hummocks are closely connected with minimal spacing; and (b2) earth hummocks over-
lap. 

3.3. Morphological Features of the Earth Hummocks 
We identified the individual shapes of earth hummocks using ArcGIS Pro to vector-

ize the earth hummock edges. Earth hummocks with indistinguishable boundaries are 
disregarded because proximity or overlapping blurs the boundaries of individual earth 
hummocks, leading to measurement inaccuracies. The mean, median, range (using the 
first and third quartiles), and standard deviation (SD) of these parameters are listed in 
Table 3. In Area A (N = 5843), the average shapes of the earth hummocks in terms of length, 
width, and height were 1.27 m, 1.08 m, and 0.16 m, respectively. Area B’s corresponding 
values (N = 12,995) were 1.20 m, 1.01 m, and 0.15 m. The average dimensions of all earth 
hummocks (N = 18,838) were 1.22 m in length, 1.03 m in width, and 0.15 m in height, 
yielding a length/width ratio of 1.19 and a length/height ratio of 0.12. 

Table 3. Morphological parameters of earth hummocks. 

 Area A (N = 5843) Area B (N = 12,995) All (N = 18,838) 
Length (m)    

Mean 1.27 1.20 1.22 
Median 1.22 1.16 1.18 
Range 0.96–1.52 0.94–1.40 0.95–1.44 

SD 0.42 0.37 0.39 
Width (m)    

Mean 1.08 1.01 1.03 
Median 1.04 0.99 1.00 
Range 0.82–1.30 0.80–1.19 0.81–1.22 

SD 0.34 0.30 0.32 
Height (m)    

Mean 0.16 0.15 0.15 

Figure 12. Distribution patterns of earth hummocks: (a) earth hummocks are widely spaced apart;
(b1) earth hummocks are closely connected with minimal spacing; and (b2) earth hummocks overlap.

3.3. Morphological Features of the Earth Hummocks

We identified the individual shapes of earth hummocks using ArcGIS Pro to vector-
ize the earth hummock edges. Earth hummocks with indistinguishable boundaries are
disregarded because proximity or overlapping blurs the boundaries of individual earth
hummocks, leading to measurement inaccuracies. The mean, median, range (using the
first and third quartiles), and standard deviation (SD) of these parameters are listed in
Table 3. In Area A (N = 5843), the average shapes of the earth hummocks in terms of length,
width, and height were 1.27 m, 1.08 m, and 0.16 m, respectively. Area B’s corresponding
values (N = 12,995) were 1.20 m, 1.01 m, and 0.15 m. The average dimensions of all earth
hummocks (N = 18,838) were 1.22 m in length, 1.03 m in width, and 0.15 m in height,
yielding a length/width ratio of 1.19 and a length/height ratio of 0.12.

Figure 13 indicates significant statistical differences in length, width, and height
between Areas A and B (p < 0.001). These results suggest that even though these two study
areas are not far apart (less than 1 km), different shapes of earth hummocks can form,
most probably due to the influence of local microclimatic conditions (such as sunlight,
wind speed, and temperature) and topographical factors (such as slope, aspect, TWI,
and landforms).



Remote Sens. 2024, 16, 3610 14 of 25

Table 3. Morphological parameters of earth hummocks.

Area A (N = 5843) Area B (N = 12,995) All (N = 18,838)

Length (m)
Mean 1.27 1.20 1.22

Median 1.22 1.16 1.18
Range 0.96–1.52 0.94–1.40 0.95–1.44

SD 0.42 0.37 0.39
Width (m)

Mean 1.08 1.01 1.03
Median 1.04 0.99 1.00
Range 0.82–1.30 0.80–1.19 0.81–1.22

SD 0.34 0.30 0.32
Height (m)

Mean 0.16 0.15 0.15
Median 0.14 0.14 0.14
Range 0.10–0.20 0.10–0.18 0.10–0.19

SD 0.09 0.08 0.08
Length/Width ratio

Mean 1.19 1.19 1.19
Median 1.15 1.15 1.15
Range 1.07–1.27 1.07–1.27 1.07–1.27

SD 0.16 0.17 0.17
Height/Length ratio

Mean 0.13 0.12 0.12
Median 0.12 0.12 0.12
Range 0.09–0.15 0.09–0.14 0.09–0.14

SD 0.05 0.05 0.05
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Figure 13. Differences in the morphological parameters of earth hummocks between Areas A and B.

The correlation coefficients between the length, width, and height of the earth hum-
mocks in the two study areas are similar, with Pearson coefficients of 0.91 and 0.90 for length
and width, 0.69 and 0.63 for length and height in Areas A and B, respectively (Figure 14).
However, the dimensions of the earth hummocks varied between the two study areas.
Combining all data from the two areas, the plane geometry is expressed by:

W = 0.7333L + 0.1368 (R2 = 0.82), (1)
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H = 0.1314L − 0.0077 (R2 = 0.40), (2)

where W, L, and H represent width, length, and height, respectively.
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3.4. Terrain Characteristics of the Distribution Area of Earth Hummocks

By integrating the identified boundaries of earth hummocks with the obtained topo-
graphical maps, we analyzed the topographical conditions of the earth hummock distribu-
tions. The overall distribution of earth hummocks is summarized in Table 4.

The average slopes of the earth hummock areas in Areas A and B were 10.0◦ and 7.6◦,
respectively. Earth hummocks were barely distributed on steep slopes over 20◦ (Figure 15a).
Only a few earth hummocks were on the west-facing slopes (Figure 15b).
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Table 4. Overall distribution of earth hummocks by topographical conditions in the study areas.

Items Categories N Percent (%) Cumulative Percent (%)

Slope (◦)

0–5 1447 7.68 7.68
10–15 3951 20.97 28.65
5–10 12,983 68.92 97.57
>15 457 2.43 100.00

Geomorphon
Landforms

Flat 30 0.16 0.16
Ridge 94 0.50 0.66

Shoulder 468 2.48 3.14
Spur 1409 7.48 10.62
Slope 14,032 74.49 85.11

Hollow 2297 12.19 97.30
Footslope 373 1.98 99.28

Valley 135 0.72 100.00

Aspect

E 8023 42.59 42.59
N 4980 26.44 69.03
S 5474 29.06 98.08
W 361 1.92 100.00

Total 18,838 100 100.00
Note: Peaks and pits are not present.
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Figure 16 illustrates the characteristics of the Geomorphon Landforms. It highlights
their prevalence on slopes: earth hummocks found on slopes accounted for 77.9% and 73.0%
in Areas A and B, respectively. The next most common type of Geomorphon Landform
hosting earth hummocks was the hollow, representing 9.8% and 13.3% in Areas A and
B, respectively. The pit and peak landforms exhibited no presence of earth hummocks.
This distribution suggests that the slope-type area could provide a suitable moisture
environment for the formation of earth hummocks.

We also observed a pronounced tendency for earth hummocks to occur adjacent to
lower-lying areas with higher TWI values, indicative of areas prone to water accumulation.
A notable example is the eastern part of Area B (Figure 17), where the lowest areas, char-
acterized by higher TWI values, formed distinct drainage lines (gullies). Earth hummock
sites are commonly found near these lines and are separated by them.
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3.5. Analysis of the Relationship between Morphological Features and Topographical Conditions

We explored the relationships between the datasets by calculating the Pearson correla-
tion coefficients among four parameters: width, length, and height of the earth hummocks,
and surface slope (Table 5). Observations showed that all the coefficients between the
variables exhibited significant relationships and strong positive correlations among these
morphological parameters (r = 0.63 to 0.90). However, the correlations between these
parameters and the surface slope were weak (r = 0.17 to 0.19), suggesting a minimal in-
fluence of slope on the dimensions of earth hummocks. It is also important to note that
Pearson correlation coefficients primarily measure linear relationships; therefore, these low
r values may also indicate the presence of more complex, non-linear relationships not fully
captured by this metric. One possible reason may be that, with steeper slopes, the shape
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of earth hummocks is limited [9,81], which could lead to a non-linear interaction between
these variables.

Table 5. Pearson correlation between slope, width, length, and height.

Slope (◦) Width (m) Length (m) Height (m)

Slope (◦) Coefficient 1
p value -

Width (m)
Coefficient 0.19 * 1

p value 0 -

Length (m) Coefficient 0.20 * 0.90 * 1
p value 0 0 -

Height (m) Coefficient 0.17 * 0.63 * 0.63 * 1
p value 0 0 0 -

* p < 0.001.

One-way analysis of variance (ANOVA) tests were applied to compare the morpholog-
ical parameters, specifically the width, length, and height of earth hummocks distributed
across different groups of slopes, aspects, and Geomorphon Landforms. Table 6 shows the
significant differences across the groups. These considerable variations confirm that these lo-
cal topographical factors play a critical role in shaping the dimensions of earth hummocks.

Table 6. ANOVA results for earth hummock dimensions across different slopes, aspects, and landforms.

Slope Aspect Geomorphon Landforms
F p F p F p

Width 206.985 0.000 * 174.513 0.000 * 32.413 0.000 *
Length 244.469 0.000 * 146.640 0.000 * 26.005 0.000 *
Height 180.040 0.000 * 19.745 0.000 * 9.553 0.000 *

* p < 0.001.

4. Discussion
4.1. Earth Hummocks in Daisetsuzan National Park

We identified 18,838 earth hummocks covering an area of 82,598 m2. Compared to pre-
vious research on earth hummocks in Japan, this suggests that Daisetsuzan National Park
is most likely the country’s largest known area of earth hummocks [82]. Their distribution
and morphological features are discussed in the following subsections.

4.1.1. Distribution Characteristics

We found that earth hummocks were distributed on the slope at less than 20◦, with
an average of 8.3◦ (Figure 15a). They were rarely distributed on west-facing slopes in the
two study areas (Figure 15b). This is because the west-facing slopes in the study area are
relatively small, and the vegetation on the slopes is either predominantly Pinus pumila or
almost bare ground due to the steep slopes, making the formation of earth hummocks
difficult. Without vegetation, differential frost heaving occurs; then, it almost completely
returns to its previous state during the thawing period [60].

Distribution maps of earth hummocks (Figure 11) indicate a higher density of earth
hummocks in Area B than in Area A. This difference was attributed to the vegetation
coverage in both areas, as shown in Figure 9. Turf-banked terraces were widely observed
on steeper slopes in Area A (Figure 18). The tread surface of the terraces had no vegetation
cover, and only steep risers were vegetated. Sparse vegetation cover would be insufficient
to support the formation of earth hummocks, although further studies are needed.
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hiking trail.

Most earth hummocks are grouped in clusters in the study area, whereas earth hum-
mocks with significant spacing are relatively rare, which is common in other research [36,83].
Distribution patterns may be associated with soil moisture levels and permafrost [34]. The
TWI maps suggest that earth hummocks tend to be closer to drainage channels and are
distributed in areas slightly elevated above the lowest gully bottoms (Figure 17). A similar
situation was reported in other studies [36,37]. The formation of such patterns can be
attributed to the role of earth hummocks as barriers to the flow of water. Their existence
modifies the topography of the surface by dividing the ground into earth hummock areas
with low hydraulic conductivity and inter-hommock areas with high hydraulic conductiv-
ity [26]. This affects the direction of water movement, influences drainage systems, and
forms drainage systems and wetlands in inter-hummock areas [26,33]. Moreover, areas
elevated above wetlands provide optimal conditions with moderate moisture and good
drainage, preventing excessive soil saturation and offering a favorable environment for
plant growth. Such conditions could benefit the soil freeze–thaw cycles and stabilization by
plant root systems, further promoting the development of earth hummocks.

4.1.2. Morphological Characteristics

Morphological data (Table 3) indicate that the shape of the earth hummocks in the two
study areas is close to a planar ellipsoidal base with an oblate dome-shaped protrusion.
The length and width of the earth hummocks were similar to the field data recorded in
Koaze’s study [60] at Hakuun-dake (less than 500 m away from Area A) in the 1960s.

Compared to previous studies in the mid-latitude regions of the Northern Hemisphere,
the earth hummocks in our study areas were relatively large in terms of planar shape [37,81,84],
but only one study examined earth hummocks similar in size [85]. Differences in regional
climatic conditions primarily drive morphological variation. Both the thin snow cover on
convex slopes due to extremely strong winter winds and the existence of permafrost in
Daisetsuzan National Park lead to deep seasonal freeze–thaw cycles [61,63,86] and may
promote the formation of large earth hummocks. Height was not included in the comparison
because of potential errors arising from different calculation methods.

4.2. Advantages of UAV-SfM Framework in the Mountainous Area Research

This study demonstrates the advantages of using the UAV-SfM framework for ge-
omorphological research, especially in mountainous areas. Walking off the approved
hiking trail is forbidden in Japan’s national parks [53]. Even if a remote area is accessible
by submitting a permit application for research activity off the trail, trampling during
the survey can have adverse impacts on the alpine ecosystem, such as vegetation loss,
plant community degradation, and damage to the terrain [87,88]. The distribution map
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produced by the UAV-SfM framework shows that some earth hummock areas extend far
from the hiking trails (Figure 11). If traditional manual in situ measurements were chosen,
researchers would need to enter these areas, which would inevitably have an adverse affect
on alpine ecosystems. The UAV-SfM framework enables periglacial landform studies in
protected areas.

Furthermore, obstacles such as dense forests and lakes between a trail and a target
site hinder the approach of the site even if researchers are allowed to go off the trail. For
example, one of the earth hummock sites in Area B (Figure 19), approximately 70 m away
from the hiking trail, is densely covered with Pinus pumila, approximately 1–2 m tall. In
situ field surveys were virtually impossible in this case. In addition, survey activities away
from hiking trails are often dangerous because of the steep slopes, unstable ground, and
wildlife. The use of the UAV-SfM framework can effectively address these challenges.
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The UAV-SfM framework also showed improved data collection efficiency. Current
traditional measurement methods usually capture morphological data only for dozens
or hundreds of earth hummocks [17,33,81,89]; this study collected 18,838 data from earth
hummocks. The size of the dataset acquired for this study was unprecedented in scale,
allowing for a more thorough analysis.

The most extensive study on patterned ground in Daisetsuzan National Park was
conducted by Koaze [60]. He conducted an in situ field survey over seven years, between
1957 and 1964. In his study, he was able to identify less than one-tenth of all distributed
periglacial landforms, including earth hummocks. It is clear that an in situ field survey in
mountains is challenging when compared to the capabilities of the UAV-SfM framework.

Numerous studies have also used the UAV-SfM framework to investigate periglacial
landforms, including solifluction features and patterned ground [49,52,90,91]. These studies
typically rely on orthomosaic images and DEMs to map and interpret landforms. Our
study introduces multi-directional hillshade maps in 2D and 3D views. The ability of the
hillshade maps to more effectively reveal the details of micro-landforms greatly simplifies
the visual interpretation process and provides high accuracy. Periglacial landform studies
should include multi-directional hillshade mapping as part of the UAV-SfM framework.
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5. Conclusions

We focused on earth hummocks distributed in Daisetsuzan National Park and suc-
cessfully created highly accurate distribution maps using the UAV-SfM framework. The
orthomosaic images and DEMs achieved resolutions higher than 2 cm/pixel and 4 cm/pixel,
respectively. Observation of DEMs and multi-directional hillshade maps identified 18,838
individual earth hummocks at 87 sites.

Moreover, for the first time, we identified the individual shapes of massive earth
hummocks based on high-resolution imagery data. The average length, width, and height
were 1.22 m, 1.03 m, and 0.15 m, respectively, and the shape of the earth hummocks
resembled an ellipsoidal base topped with an oblate dome-like protrusion. We used multi-
directional hillshade maps derived from high-resolution DEMs in both 2D and 3D for
mapping and provided detailed documentation of the entire process for calculating the
morphological parameters of earth hummocks.

We also investigated the relationship between the morphology of earth hummocks
and various topographical factors. Maps of the topographical conditions, including slope,
aspect, TWI, and the Geomorphon Landforms of the study areas and the distribution areas
of earth hummocks were examined. The average slope of the distribution areas is 8.3◦

(mostly below 20◦), and earth hummocks tend to develop in the areas that are slightly
elevated above the lowest gully bottoms.

Statistical analysis confirmed a significant correlation between morphological pa-
rameters of earth hummocks and topographical conditions such as slope, aspect, and
Geomorphon Landforms in the study areas.

We highlight the advantages and importance of the UAV-SfM framework with multi-
directional hillshade mapping for studying periglacial landforms, particularly in protected
natural areas such as national parks and remote mountainous regions.

Finally, the imagery data obtained confirmed the existence of various other periglacial
landforms in the two study areas, which will be presented elsewhere.
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