remote sensing

Article

Quality Evaluation of Multi-Source Cropland Data in Alpine
Agricultural Areas of the Qinghai-Tibet Plateau

Shenghui Lv ">3%, Xingsheng Xia

check for
updates

Citation: Lv, S.; Xia, X.; Chen, Q.; Pan,
Y. Quality Evaluation of Multi-Source
Cropland Data in Alpine Agricultural
Areas of the Qinghai-Tibet Plateau.
Remote Sens. 2024, 16, 3611. https://
doi.org/10.3390/rs16193611

Academic Editors: Sathishkumar
Samiappan, Miao Zhang, Wei Su and
Qiangyi Yu

Received: 17 August 2024
Revised: 23 September 2024
Accepted: 25 September 2024
Published: 27 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,2,%,1 3

, Qiong Chen 12 and Yaozhong Pan -

Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
School of Geographical Sciences, Qinghai Normal University, Xining 810016, China

State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China
Correspondence: xxs@qhnu.edu.cn

These authors contributed equally to this work.

+ ¥ W N =

Abstract: Accurate cropland distribution data are essential for efficiently planning production
layouts, optimizing farmland use, and improving crop planting efficiency and yield. Although
reliable cropland data are crucial for supporting modern regional agricultural monitoring and
management, cropland data extracted directly from existing global land use/cover products present
uncertainties in local regions. This study evaluated the area consistency, spatial pattern overlap, and
positional accuracy of cropland distribution data from six high-resolution land use/cover products
from approximately 2020 in the alpine agricultural regions of the Hehuang Valley and middle basin of
the Yarlung Zangbo River (YZR) and its tributaries (Lhasa and Nianchu Rivers) area on the Qinghai-
Tibet Plateau. The results indicated that (1) in terms of area consistency analysis, European Space
Agency (ESA) WorldCover cropland distribution data exhibited the best performance among the
10 m resolution products, while GlobeLand30 cropland distribution data performed the best among
the 30 m resolution products, despite a significant overestimation of the cropland area. (2) In terms of
spatial pattern overlap analysis, Al Earth 10-Meter Land Cover Classification Dataset (AIEC) cropland
distribution data performed the best among the 10 m resolution products, followed closely by ESA
WorldCover, while the China Land Cover Dataset (CLCD) performed the best for the Hehuang Valley
and GlobeLand30 performed the best for the YZR area among the 30 m resolution products. (3) In
terms of positional accuracy analysis, the ESA WorldCover cropland distribution data performed the
best among the 10 m resolution products, while GlobeLand30 data performed the best among the
30 m resolution products. Considering the area consistency, spatial pattern overlap, and positional
accuracy, GlobeLand30 and ESA WorldCover cropland distribution data performed best at 30 m and
10 m resolutions, respectively. These findings provide a valuable reference for selecting cropland
products and can promote refined cropland mapping of the Hehuang Valley and YZR area.

Keywords: land use/cover products; cropland; consistency analysis; accuracy validation; influencing
factors; Qinghai-Tibet Plateau

1. Introduction

Accurate cropland distribution data form the cornerstone of modern agricultural pro-
duction management [1]. Currently, these data are extracted primarily from existing land
use/cover products, such as WorldCover (WC) by the European Space Agency (ESA) [2],
Sentinel-2 10-Meter Land Use/Land Cover (LC) by Esri [3], the AI Earth 10-Meter Land
Cover Classification Dataset (AIEC) by the Al Earth team of DAMO Academy [4], Glo-
beLand30 (GL) by the National Geomatics Center of China [5], GLC_FCS30 (GLC) by the
Chinese Academy of Sciences [6], and the China Land Cover Dataset (CLCD) by Wuhan
University [7]. Although these products have become vital data sources for acquiring
fundamental information on global or regional cropland distribution, they are generated
using diverse classification standards, data processing methods, training samples, and
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classification techniques. Moreover, inherent uncertainties in the application of Earth ob-
servation technology result in discrepancies in cropland distribution data extracted from
various products, which introduce uncertainty in practical research and applications [8-12].
Therefore, whether existing cropland distribution data in specific areas can meet user
research needs must be determined, and the criteria for selecting appropriate cropland
distribution data must be established based on these needs.

Thus, a number of researchers have conducted quality evaluations of various cropland
distribution datasets across different study areas to provide references for data application
selection. For instance, Xue et al. [13] and Zhang et al. [14] performed comparative evalua-
tions of cropland distribution datasets from multiple products covering mainland China
for 2010 and 2015, respectively, and revealed varying degrees of discrepancy between the
different products in terms of total area and spatial distribution consistency. Moreover,
global accuracy evaluation results do not necessarily reflect local evaluation results, with
plain areas exhibiting better area and spatial consistency between different products than
mountainous regions, which present significant terrain variations. The size of the plots sig-
nificantly influences the cropland data quality as well. Therefore, the quality of large-scale
data products for local applications must be further evaluated to ensure the accuracy of
basic data in local research or applications. Such evaluations will also aid in analyzing and
discussing uncertainties in research or applications.

Alpine agricultural areas, which are the major grain supply areas in cold and arid
regions, are responsible for ensuring regional grain self-sufficiency. However, owing to
environmental constraints in cold and arid regions, most alpine agriculture areas are con-
centrated in valleys with steep slopes and deep gullies [15], leading to cropland resources
characterized by small plot areas and fragmented distributions. Thus, accurate and reli-
able cropland distribution data are particularly crucial for supporting the modernization
of alpine agricultural management and the continuous optimization of the human-land
relationship. In practical research and applications, directly extracting cropland data from
existing datasets is undoubtedly cost-effective. However, most existing datasets [2-7] were
developed and produced on national or global scales. Although studies [9,10,13,14,16] have
conducted evaluations at different scales and provided application recommendations, they
have rarely focused on cold and arid regions. Moreover, single-element spatial distribution
quality evaluations of croplands are rare. Consequently, clear guidance on data selection
for practical applications is lacking.

This study aimed to further evaluate the consistency and accuracy of cropland dis-
tribution data within current medium- and high-resolution land use/cover datasets in
two major alpine agricultural regions of the Qinghai-Tibet Plateau: Hehuang Valley in
Qinghai, China, and the middle basin of the Yarlung Zangbo River and its tributaries
(Lhasa and Nianchu Rivers; YZR area) in Tibet, China. The objective was to elucidate the
quality of cropland distribution data in large-scale land use/cover products in the alpine
agricultural regions of the Qinghai-Tibet Plateau, thereby providing a reference for data
selection for research and application.

2. Materials and Methods
2.1. Study Area

The Hehuang Valley (Figure 1a,c) is located in the northeastern part of the Qinghai-
Tibet Plateau and encompasses a total area of approximately 26,000 km?. It consists of
a section of the Yellow River Valley approximately 200 km long and several valleys of
the Huangshui River system. The region is predominantly characterized by high or very
high mountains, alluvial plains, hills, and terraces, and it features numerous wide valleys
formed by river erosion.
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Figure 1. Overview of the study area: (a) study area location, (b) YZR area, and (c¢) Hehuang Valley.

Note: elevation and slope may also vary on Earth due to its geological activity.

The YZR area (Figure 1a,b) is situated in the southern part of the Qinghai-Tibet Plateau.
It primarily encompasses the middle reaches of the Yarlung Zangbo, Lhasa, and Nianchu
Rivers, with a total area of approximately 66,500 km?. This region belongs to the mountain
plain broad-valley area, which is characterized by wide and gentle river floodplains, alluvial
terraces, and alluvial fans along riverbanks, as well as a few gorges.

Owing to the valley terrain, both the Hehuang Valley and the YZR area have relatively
low altitudes that meet the hydrothermal conditions required for alpine agriculture. These
regions have become fertile lands with concentrated populations on the Qinghai-Tibet
Plateau, with cropland in these two regions accounting for more than 60% of the total
cropland area in the province/region. Agricultural production in these regions supports
approximately two-thirds of the population of Qinghai and Tibet. However, constraints
associated with the rugged valley terrain, which presents steep slopes and deep gullies [15],
have led to a fragmented and scattered distribution of cropland resources in both regions.
Therefore, accurate cropland distribution data are crucial for supporting the agricultural
development and regulation in these two major alpine agricultural areas to ensure grain
self-sufficiency and food security.

2.2. Data and Preprocessing

The data utilized in this study primarily consisted of land use/cover products, remote
sensing imagery, basic geographical data, and cropland statistics.

The land use/cover products were produced by various institutions based on 2020
as the benchmark: WC [2], LC [3], AIEC [4], GL [5], GLC [6], and CLCD [7] (all released
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by 2020). These products were primarily employed to extract cropland distribution data
from the study area at varying spatial resolutions. These datasets were primarily derived
from Landsat and Sentinel-2 series satellite data. Specifically, the GL, GLC, and CLCD
datasets, which are based on Landsat series satellite data, have a spatial resolution of 30 m,
whereas the WC, LC, and AIEC datasets, which are based on Sentinel-2 series satellite
data, have a spatial resolution of 10 m. Detailed information regarding the releasing
institutions, classification methods, and product accuracy is presented in Table 1. Data
preprocessing primarily involved downloading and mosaicking data tiles based on the
study area, extracting cropland distribution data according to land type codes, and unifying
spatial references.

Table 1. Land use/cover products.

Land Major Research and Satellite Extraction Overall Spatial
Use/Cover . Cropland Code Resolu-
Development Unit Sensors Method Accuracy .

Product tion
European Space . Decision tree

WC [2,17-19] Sentinel-2 e 74.40% 40 10 m
Agency classification

LC [3,20] ESRI Sentinel-2 Deep learning 75.00% 5 10m
classification

AIEC [4] DAMO Academy Sentinel-2 Deep learning — 1 10m
classification

National Geomatics Maximum
GL [5] . Landsat, HJ-1 likelihood 85.72% 10 30m
Center of China e
classification
Aerospace
Information Research Random forest
GLC 6] Institute, Chinese Landsat classification o 10,20 30m
Academy of Sciences

CLCD [7] Wuhan University Landsat Random forest 79.31% 1 30 m

classification
Note: “—” indicates that the publication accuracy was not clearly stated, or the data source was not found.

WC, WorldCover; LC, Sentinel-2 10-Meter Land Use/Land Cover; AIEC, AI Earth 10-Meter Land Cover Classifi-
cation Dataset; GL, GlobeLand30; GLC, GLC_FCS30; CLDC, China Land Cover Dataset.

Remote sensing imagery primarily consisted of Landsat 8, Sentinel-2A /B, and Google
Earth Engine (GEE) imagery from approximately 2020, with a focus on the growing season
(May-September). As this study evaluated the quality of historical data products, these
imagery datasets were primarily utilized to visually interpret and obtain cropland and
non-cropland samples to assess the accuracy of the cropland data products. Specifically,
grid center points within the study area were employed as the sampling population,
and a 10% random sample was drawn to obtain validation sample points, which were
visually interpreted using multisource remote sensing imagery. The results are shown in
Figure 2. In the Hehuang Valley, 1639 sample points were obtained, and they consisted
of 349 cropland samples and 1290 non-cropland samples. In the YZR area, 1468 sample
points were obtained, and they consisted of 151 cropland samples and 1317 non-cropland
samples. Additionally, to compare the spatial performance of cropland distribution data
during the same period, 0.75 m resolution Jilin-1 optical satellite imagery was utilized as
a reference, specifically for the Hehuang Valley on 7 October 2020, and the YZR area on
17 October 2020.

Basic geographical data consisted of topographic and administrative information.
Topographic data, primarily elevation and slope, were used to analyze the relationship
between cropland distribution and topographic factors in the study area. Elevation data
were directly obtained from the 30 m resolution NASADEM [21] digital elevation model
(DEM), and slope data were derived from the DEM. Administrative data encompassing
the county-level administrative boundaries of the study area were utilized to define the
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study area boundaries, and they were sourced from the National Catalogue Service for
Geographical Information of China [22].
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Figure 2. Verification sample points: (a) sample points in the Hehuang Valley and (b) sample points
in the YZR area.

Cropland statistics specifically denote the cropland area or grain crop planting area
of each county and were primarily employed to evaluate the area consistency of each
cropland distribution dataset by comparing their degree of fitness and deviation. These data
primarily originated from the agricultural or statistical departments of local governments.

2.3. Methods
2.3.1. Area Consistency

From a practical application standpoint, the agricultural sector is primarily concerned
with the total amount of cropland resources, followed by the spatial distribution, quality,
and production capacity of these resources. Consequently, the relative accuracy of an area
is often the primary concern of users, and it is typically assessed by comparing different
product data with reference data in terms of fitness and deviations.

Fitness evaluations are primarily performed via linear regression comparisons using
the coefficient of determination (R?; Equation (1)). R? values range from 0 to 1 and indicate
the degree of fit between observed and predicted values. In this study, R? values closer
to 1 indicated a greater fit between the cropland product data and reference data. The
deviation of cropland product data from the reference data was primarily assessed using
the root mean-square error (RMSE; Equation (2)), which measures the difference between
the observed and predicted values, with a smaller RMSE indicating greater data accuracy.
In this study, a smaller RMSE indicated a lower deviation between the cropland product
data and reference data.

R L) 1)
Y (v — )
RMSE = # )

where x; is the cropland area of the ith county in the various cropland data, y; is the
cropland area in the corresponding statistical data of that county, and ¥ is the average
cropland area in the statistical data.
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2.3.2. Spatial Pattern Overlap Analysis

Area consistency evaluation can indicate the similarity of the total cropland area but
cannot determine the consistency of different cropland distribution data in spatial terms.
Spatial certainty is crucial for decision-making in research and applications. Therefore,
this study employed a spatial overlay to obtain the spatial correspondence of different
data on a per-pixel basis, subsequently assessing the per-pixel consistency. Thematic
maps were generated to support the reliability assessment of the classification results. The
spatial overlay results were categorized into high-consistency pixels, medium-consistency
pixels, and low-consistency pixels. Specifically, high-consistency pixels indicated that all
three products identified them as cropland, medium-consistency pixels indicated that two
products classified them as cropland, and low-consistency pixels indicated that only one
product identified them as cropland.

2.3.3. Positional Accuracy

The accuracy of classification categories is a crucial foundation for precision oversight
in modern agriculture. In this context, this study primarily used samples to construct a
confusion matrix for evaluation, which is also referred to as a sample accuracy evaluation.
Constructing a confusion matrix from samples is a widely used method for accuracy
assessment in remote sensing classification [23,24]. Specific indicators included accuracy
(ACC), precision, Matthew’s correlation coefficient (MCC), true positive rate (TPR), false
positive rate (FPR), and comprehensive evaluation index (CEI).

ACC: ACC is a fundamental indicator that measures the performance of a classification
model and represents the proportion of correctly classified samples compared to the total
number of samples (Equation (3)). In this study, the higher ACC indicated that various data
products successfully predicted most cropland classes during extraction:

TP+ TN

ACC = TP+ TN +FP+FN )

where TP represents true positive, which is the number of correctly classified positive
samples, FN represents false negative, which is the number of incorrectly classified positive
samples, FP represents false positive, which is the number of negative samples misclassified
as positive, and TN represents true negative, which is the number of correctly classified
negative samples. In this study, positive and negative samples refer to the cropland and
non-cropland samples, respectively.

Precision: Precision measures the proportion of samples predicted as positive that
are truly positive among all samples predicted as positive (Equation (4)). In this study,
higher precision signified fewer instances of other land types being misclassified as cropland

during extraction:
TP
Precision = ———— 4
TP+ FP @
MCC: MCC is a comprehensive measure of a classification model’s performance that
considers the relationship between true positives, true negatives, false positives, and false
negatives (Equation (5)). Its value ranges from —1 to 1, where 1 denotes perfect prediction,

0 represents random prediction, and —1 signifies completely inconsistent prediction:
TP x TN —FP x FN

MCC = ()
/(TP +FDP) x (TP + EN) x (IN + TP) x (IN + EN)

TPR: TPR, also known as recall, measures the proportion of actual positives correctly
identified as positives among all actual positives (Equation (6)). In this study, a higher TPR
reflects the ability of the various datasets to identify a greater number of cropland patches

during extraction:
TP

TPR=7pTFN

(6)
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FPR: FPR measures the proportion of actual negatives incorrectly classified as positive
among all actual negatives (Equation (7)). A lower FPR signifies that various datasets
are more effective at reducing the misclassification of other land types, such as cropland,

during extraction:
Fp

- __ 7
TN+ FP @

An excessive number of evaluation indicators can result in information overload,
thereby increasing the difficulty of distilling key information and drawing conclusions
from the data. Therefore, based on the aforementioned evaluation indicators, this study
introduced a new CEI to assess the accuracy of the cropland extraction results from various
distribution datasets. Specifically, the algorithm first organizes all evaluation indicators in
descending order (with NaN values replaced by 0), and then assigns scores ranging from 6
to 1 to the evaluation results of various cropland datasets (with FPR scores ranging from
—6 to —1). The sum of all assigned scores for each cropland dataset yields a CEI. A higher
CEI indicates superior cropland distribution data extraction.

Additionally, according to the results of the spatial pattern analysis, data products
with the same spatial resolution should ideally exhibit consistent spatial distribution
results under the same natural environmental conditions. However, variations in the
data, samples, and methodologies may lead to discrepancies in the spatial distribution of
different products. High consistency suggests that data products from varying sources,
samples, and methods maintain a uniform data quality within specific regions, whereas
medium or low consistency indicates the products present variations in data quality under
identical natural environmental conditions, potentially indicating the products that offer
superior quality. Therefore, based on the sample accuracy evaluation, this study not only
investigated the overall accuracy of cropland data categories at the same spatial resolution
but concurrently assessed the category accuracy in pixel regions with medium and low
consistency, as indicated by the pattern analysis results.

FPR

3. Results
3.1. Area Consistency Results

Figures 3 and 4 display the cropland area statistics derived from various cropland
distribution datasets for Hehuang Valley and the YZR area. Theoretically, if all cropland
distribution datasets are reliable, then the area statistics across these regions should yield
consistent results. However, as illustrated in Figures 3 and 4, notable variations occurred
in the cropland area statistics among the different datasets. Specifically, cropland area
statistics from the 10 m resolution datasets for both the Hehuang Valley and the YZR
area were relatively consistent, whereas the 30 m resolution datasets showed considerable
discrepancies. Notably, cropland areas from the GL and GLC products showed substantially
higher consistency than those from other datasets, while CLCD demonstrated relatively
consistent results with the 10 m resolution data in the Hehuang Valley but showed markedly
lower consistency in the YZR area. This indicates that the 10 m resolution datasets may
offer more reliable results for both agricultural regions. Among the 30 m resolution datasets,
only CLCD provided reliability comparable to the 10 m resolution datasets in the Hehuang
Valley area, while its reliability in the YZR area may be poorer. Additionally, the GL and
GLC datasets may demonstrate lower reliability across both agricultural regions.

Using data from agricultural management and statistical departments, this study
assessed the relative discrepancies between cropland distribution data and county-level
statistical data. The results revealed that in the Hehuang Valley, 10 m resolution cropland
distribution data generally overestimated cropland areas, with notable overestimations
in the Chengbei District, Chengxi District, and Datong Hui and Tu Autonomous County.
Conversely, Huangyuan County and Ping’an District showed a tendency to underestimate
cropland areas. In contrast, 30 m resolution cropland distribution data products generally
overestimated cropland areas more severely than their 10 m resolution counterparts, with
the Ping’an District showing a relatively lower degree of overestimation. In the YZR area,
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although comprehensive statistical data references were lacking, analysis based on the
available data indicated that all three 10 m resolution cropland distribution datasets tended
to underestimate cropland areas. For the 30 m resolution data, while the GL, GLC, and
CLCD products overestimated cropland areas in some counties, they severely underesti-
mated cropland areas in others. These products extracted significantly less cropland area
from the YZR area compared to the other cropland distribution datasets.

Additionally, the correlation between various cropland distribution data and statis-
tical data was analyzed (Table 2). In the Hehuang Valley, for 10 m resolution cropland
distribution data, the R? value for WC surpassed that of LC and AIEC. Similarly, the RMSE
for WC was lower than that for AIEC and LC, although the differences were minimal. For
the 30 m resolution cropland distribution data, GL exhibited the highest R? value, followed
by GLC, while CLCD had the lowest R? value. Moreover, the RMSE of CLCD data was
lower than that of the GLC and GL data.
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Figure 3. Illustration of the relative area difference (%) between the cropland distribution data
products and statistical data in the Hehuang Valley. Note that the overestimation proportions
exceeding 100% were truncated at 100% to maintain the balance of the color bar. The issue of severe
overestimation was common in GL and GLC. (a) WC (10 m), (b) LC (10 m), (c) AIEC (10 m), (d) GL
(30 m), (e) GLC (30 m), and (f) CLCD (30 m).
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Figure 4. Illustration of the relative area difference (%) between the cropland distribution data
products and statistical data in the YZR area. (a) WC (10 m), (b) LC (10 m), (c) AIEC (10 m), (d) GL
(30 m), (e) GLC (30 m), and (f) CLCD (30 m).

Table 2. Fitness and deviation of data for the Hehuang Valley and the YZR area.

Data WC (10 m) LC (10 m) AIEC (10 m) GL (30 m) GLC (30 m) CLCD (30 m)

R? 0.68/0.77 0.67/0.76 0.64/0.74 0.76/0.91 0.74/0.41 0.62/0.13
RMSE 1.25/0.38 1.65/0.34 1.33/0.31 3.46/0.19 3.39/0.51 1.37/0.63

In the YZR area, for 10 m resolution cropland distribution data, the R? value for WC
was higher than that for LC and AIEC. Conversely, the RMSE of AIEC data was lower
than that of LC and WC data, although the differences were relatively small. For the 30 m
resolution cropland distribution data, GL achieved the highest R? value, followed by GLC,
while CLCD had the lowest R? value. Additionally, the RMSE of GL data was lower than
that of GLC and CLCD data.

Based on the comprehensive statistical results for area consistency, among the 10 m
resolution cropland distribution data, WC demonstrated the best performance in terms of
both similarity to and deviation from the statistical data. For the 30 m resolution cropland
distribution data, GL showed the highest similarity with statistical data but also exhibited
a greater degree of deviation, leading to a significant overestimation of cropland areas.
Therefore, in terms of area consistency, WC was identified as the most suitable cropland
distribution dataset for the study area.

3.2. Subsection Spatial Pattern Overlap Analysis Results

Figure 5 presents the spatial consistency analysis results of cropland distribution
data at different resolutions in Hehuang Valley and the YZR area. Ideally, if the cropland
distribution data from various products are accurate, then their spatial distributions should
be consistent. However, Figure 5 indicates otherwise. For the 10 m resolution cropland
distribution data, the proportion of high-consistency pixels was significantly lower than
that of medium- and low-consistency pixels, with low-consistency pixels being the most
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prevalent. For the 30 m resolution cropland distribution data, the proportion of high-
consistency pixels was similarly lower than that of medium- and low-consistency pixels,
and it was significantly lower than the results at the 10 m resolution.

101°F 102°F 103°1 88°1 920°} 92°1
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J0 100 Km

o AL

T T T T T T
101°F 102°F 1031 88°F 90°F 92°1
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[ stdy area Lake River

Figure 5. Spatial consistency among overlay results: (a) 10 m cropland distribution data in the
Hehuang Valley area, (b) 10 m cropland distribution data in the YZR area, (c) 30 m cropland distribu-
tion data in the Hehuang Valley area, and (d) 30 m cropland distribution data in the YZR area.

In the Hehuang Valley, for the 10 m spatial resolution cropland distribution data over-
lay results (Figure 5a; Tables 3-5), the largest proportion of pixels marked as cropland was
found for the low-consistency pixels (43.29%), followed by high-consistency pixels (33.73%)
and medium-consistency pixels (22.98%). High-consistency pixels were primarily concen-
trated in the northern area along the northern bank of the Datong River and the central
Huangshui River Basin, whereas medium- and low-consistency pixels were mainly found
in the central Huangshui River Basin and the southern Yellow River Basin. Among all WC
pixels, low-consistency pixels accounted for approximately 19.03%, medium-consistency
pixels accounted for approximately 26.12%, and high-consistency pixels accounted for
approximately 54.80%. For the LC pixels, low-consistency pixels accounted for approx-
imately 35.87%, medium-consistency pixels accounted for approximately 17.89%, and
high-consistency pixels accounted for approximately 46.21%. Among the AIEC pixels,
low-consistency pixels represent approximately 9.65%, medium-consistency pixels repre-
sent approximately 30.06%, and high-consistency pixels represent approximately 60.29%.
Additionally, when comparing pairs of cropland distribution data, WC and AIEC exhibited
the highest consistency in this region at 59.13%, whereas WC and LC showed the lowest
consistency at 42.17%.

Table 3. Overall consistency evaluation results for Hehuang Valley and the YZR area.

Pixels 10 m Resolution 30 m Resolution
Low-consistency pixels 43.29%/52.40% 39.67%/97.14%
Medium-consistency pixels 22.98%/23.68% 32.23%/2.83%

High-consistency pixels 33.73%/23.93% 28.10%/0.03%
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Table 4. Proportion of consistent pixels for each 10 m cropland distribution data product for Hehuang
Valley and the YZR area.

Pixels WC LC AIEC
Low-consistency pixels 19.03%/32.43% 35.87%/39.73% 9.65%/17.87%
Medium-consistency pixels 26.12%/26.24% 17.89%/20.04% 30.06%/37.70%
High-consistency pixels 54.80%/41.34% 46.21%/40.23% 60.29%/44.43%

Table 5. Spatial consistency among cropland distribution data products for Hehuang Valley and the
YZR area.

Index Cropland Cropland Consistent
Distribution Data A Distribution Data B Pixel Proportion
1 WC LC 42.17%/30.21%
2 WC AIEC 59.13%/47.03%
3 LC AIEC 46.02%/39.92%
4 GL GLC 53.13%/27.72%
5 GL CLCD 40.54%/0.05%
6 GLC CLCD 38.82%/1.44%

In the YZR area, for the 10 m spatial resolution cropland distribution data overlay
results (Figure 5b; Tables 3-5), the largest proportion of pixels marked as cropland was
found for low-consistency pixels (39.67%), followed by medium-consistency pixels (32.23%)
and high-consistency pixels (28.10%). High-consistency pixels were mainly concentrated in
the northeastern Lhasa River Basin and the eastern Yarlung Zangbo River and Nianchu
River valleys, whereas medium- and low-consistency pixels were relatively widespread.
Among all WC pixels, low-consistency pixels accounted for approximately 32.43%, medium-
consistency pixels accounted for approximately 26.24%, and high-consistency pixels ac-
counted for approximately 41.34%. For the LC pixels, low-consistency pixels accounted for
approximately 39.73%, medium-consistency pixels accounted for approximately 20.04%,
and high-consistency pixels accounted for approximately 40.23%. Among the AIEC pixels,
low-consistency pixels represented approximately 17.87%, medium-consistency pixels rep-
resented approximately 37.70%, and high-consistency pixels represented approximately
44.43%. Additionally, an analysis of pairs of cropland distribution data showed that WC
and AIEC exhibited the highest consistency in this region at 47.03%, while WC and LC
showed the lowest consistency at 30.21%.

In the Hehuang Valley, for the 30 m spatial resolution cropland data overlay results
(Figure 5c; Tables 3, 5 and 6), among all areas marked as cropland, the largest proportion
was found for low-consistency pixels (52.40%), followed by high-consistency pixels (23.93%)
and medium-consistency pixels (23.68%). High-consistency pixels were mainly concen-
trated in the northern area along the northern bank of the Datong River and the central and
eastern Huangshui River Basin, although they presented broader coverage. Medium- and
low-consistency pixels were mainly concentrated in the central Huangshui River Basin and
southern Yellow River Basin, although they were more scattered and showed an increased
area compared to the 10 m data. Among all GL pixels, low-consistency pixels accounted for
approximately 23.98%, medium-consistency pixels accounted for approximately 38.24%,
and high-consistency pixels accounted for approximately 37.78%. Among the GLC pix-
els, low-consistency pixels accounted for approximately 26.74%, medium-consistency
pixels accounted for approximately 36.64%, and high-consistency pixels accounted for
approximately 36.62%. For the CLCD pixels, low-consistency pixels accounted for ap-
proximately 3.51%, medium-consistency pixels accounted for approximately 21.18%, and
high-consistency pixels accounted for approximately 75.27%. Among the pairwise overlay
results of the three cropland distribution datasets, the highest consistency was observed
between GL and GLC at 53.13%, while the lowest consistency was observed between GLC
and CLCD at 38.82%.
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Table 6. Proportion of consistent pixels for each 30 m cropland distribution data product for Hehuang
Valley and the YZR area.

Pixels GL GLC CLCD
Low-consistency pixels 23.98%/97.07% 26.74%/61.07% 3.51%/34.45%
Medium-consistency pixels 38.24%/2.89% 36.64%/38.51% 21.18%/49.43%
High-consistency pixels 37.78%/0.03% 36.62%/0.42% 75.27%/16.12%

In the YZR area, for the 30 m spatial resolution cropland data overlay results (Figure 5d;
Tables 3, 5 and 6), among all areas marked as cropland, the vast majority were found among
low-consistency pixels (97.14%), followed by medium-consistency pixels (2.83%), with
very few found among high-consistency pixels (0.03%). The distribution of cropland
pixels was generally consistent with the 10 m resolution data, although the overall area in-
creased. Among all GL pixels, low-consistency pixels accounted for approximately 97.07%,
medium-consistency pixels accounted for approximately 2.89%, and high-consistency
pixels accounted for approximately 0.03%. Among all the GLC pixels, low-consistency
pixels accounted for approximately 61.07%, medium-consistency pixels accounted for
approximately 38.51%, and high-consistency pixels accounted for approximately 0.42%.
Among all the CLCD pixels, low-consistency pixels accounted for approximately 34.45%,
medium-consistency pixels accounted for approximately 49.43%, and high-consistency
pixels accounted for approximately 16.12%. Among the pairwise overlay results of the
three cropland distribution datasets, the highest consistency was observed between GL
and GLC at 27.72%, while the lowest consistency was observed between GL and CLCD
at 0.05%.

Regarding the spatial pattern analysis results mentioned above, among all the overlay
results of cropland distribution data, the cropland pixels were primarily characterized
by medium- to low-consistency pixels, with a smaller proportion characterized by high-
consistency pixels. This indicates poor consistency among different products, which
increases the difficulty of data application. Comparatively, the 10 m resolution cropland
distribution data showed a more consistent performance across the two agricultural regions.
AIEC performed the best, followed by WC, although the difference between the two
was not significant, whereas LC performed the worst. For the 30 m resolution cropland
distribution data, the performance varied significantly between the two agricultural regions.
Performance in the Hehuang Valley area was better than that in the YZR area. CLCD
performed the best in the Hehuang Valley area, whereas GL performed the best in the
YZR area.

3.3. Positional Accuracy Results

Based on the validation sample points, this study constructed confusion matrices and
obtained accuracy evaluation results for six cropland distribution datasets (ACC, precision,
MCC, TPR, FPR, and CEI; Tables 7-10).

Table 7. Accuracy evaluation results of 10 m resolution cropland distribution data for Hehuang
Valley and the YZR area.

WC LC AIEC
ACC 0.87/0.94 0.86/0.93 0.86/0.94
Precision 0.76/0.94 0.78/0.84 0.81/0.96
McCC 0.58/0.64 0.55/0.56 0.54/0.63
TPR 0.57/0.48 0.51/0.41 0.47/0.45
FPR 0.05/0.0038 0.04/0.0091 0.03/0.0023

CEI 20/23 15/17 12/20
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Table 8. Accuracy evaluation results of 30 m resolution cropland distribution data for Hehuang
Valley and the YZR area.

GL GLC CLCD
ACC 0.92/0.96 0.85/0.90 0.85/0.90
Precision 0.81/0.82 0.64/0.80 0.74/NaN
Mcc 0.79/0.77 0.57/0.19 0.53/NaN
TPR 0.86/0.77 0.69/0.05 0.51/0.00
FPR 0.06/0.019 0.11/0.0015 0.05/0.00
CEI 28/26 17/8 11/11

Table 9. Accuracy evaluation results of 10 m resolution cropland distribution data in medium- and
low-consistency areas for Hehuang Valley and the YZR area.

WC LC AIEC
ACC 0.49/0.60 0.56/0.37 0.51/0.57
Precision 0.64/0.89 0.74/0.67 0.74/0.94
MCC —0.06/0.24 0.14/-0.28 0.11/0.29
TPR 0.53/0.56 0.53/0.39 0.41/0.49
FPR 0.59/0.0027 0.38/0.0073 0.30/0.0013
CEI 6/16 13/4 11/17

Table 10. Accuracy evaluation results of 30 m resolution cropland distribution data in medium- and
low-consistency areas for Hehuang Valley and the YZR area.

GL GLC CLCD
ACC 0.79/0.81 0.44/0.21 0.47/0.18
Precision 0.78/0.82 0.49/0.80 0.51/NaN
Mcc 0.59/0.10 —0.16/—-0.03 —0.03/NaN
TPR 0.86/0.98 0.56/0.07 0.24/0.00
FPR 0.28/0.93 0.71/0.08 0.27/0.00
CEI 22/14 2/7 7/5

In the Hehuang Valley, for the evaluation results of 10 m resolution cropland distri-
bution data (Table 7), the highest ACC was achieved by WC, and the lowest was found
for LC and AIEC, with minimal differences among them. AIEC had the highest precision,
whereas WC had the lowest. The highest MCC was observed for WC and the lowest was
observed for AIEC, with only slight differences between the three products. WC exhibited
the highest TPR, whereas LC exhibited the lowest. AIEC exhibited the lowest FPR, whereas
WC exhibited the highest. WC exhibited the highest CEI, followed by LC, with AIEC
exhibiting the lowest CEl. However, when considering only areas of medium and low
consistency (Table 9), LC had the highest ACC and WC had the lowest. LC and AIEC had
the highest precision, whereas WC had the lowest. LC showed the highest MCC, while WC
showed the lowest. WC and LC had the highest TPR, while AIEC had the lowest. AIEC
exhibited the lowest FPR, while WC exhibited the highest. LC had the highest CEI, while
WC had the lowest. These results reveal that the performance of different 10 m resolution
cropland distribution data varied across different indicators. Overall, WC was slightly
superior to LC and AIEC. However, in areas with medium and low consistency, the precision
of the cropland distribution data from WC was noticeably lower than that of LC and AIEC.
In these regions, the cropland distribution data from LC performed relatively better.

In the YZR area, the evaluation results for 10 m resolution cropland data (Table 7)
showed that WC and AIEC both had the highest ACC, while LC had the lowest, with
minimal differences among the three. AIEC and LC had the highest and lowest precision,
respectively. The highest MCC was observed for WC, and the lowest was observed for LC.
WC exhibited the highest TPR, whereas LC exhibited the lowest, with minimal differences
among the three products. AIEC had the lowest FPR, whereas LC had the highest. WC
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had the highest CEI, followed by AIEC, with LC having the lowest. When considering
only areas of medium and low consistency (Table 9), WC had the highest ACC, LC had
the lowest AIEC but highest precision, LC had the lowest precision, AIEC had the highest
MCC, and LC had the lowest MCC. WC had the highest TPR, while LC had the lowest.
AIEC exhibited the lowest FPR, while LC exhibited the highest. AIEC exhibited the highest
CEI, followed by WC, and LC exhibited the lowest. These results indicate that in the YZR
area, both the overall accuracy evaluation and the accuracy evaluation based on medium
to low consistency showed relatively consistent performances across the different datasets.
This indicates that the cropland distribution data from both WC and AIEC performed
relatively well.

In the Hehuang Valley, the evaluation results for 30 m spatial resolution cropland
data (Table 8) showed that GL had the highest ACC while GLC and CLCD both had the
lowest. GL had the highest precision, whereas GLC had the lowest. GL had the highest
MCC, whereas CLCD had the lowest. GL exhibited the highest TPR, while CLCD had the
lowest. CLCD had the lowest FPR, while GLC has the highest. GL presented the highest
GEI, followed by GLC, with CLCD exhibiting the lowest. When considering only areas
of medium and low consistency (Table 10), GL had the highest ACC, while GLC had the
lowest. GL had the highest precision, while GLC had the lowest. GL had the highest MCC,
while GLC had the lowest. GL had the highest TPR, while CLCD had the lowest. CLCD
exhibited the lowest FPR, while GLC exhibited the highest. GL presented the highest CEI,
while GLC presented the lowest. Thus, in this region, GL performed the best, while GLC
performed the worst. Moreover, the 30 m resolution cropland distribution data products
in the Hehuang Valley showed consistent performance across various indicators, with GL
having the best performance and GLC presenting the worst.

In the overlay analysis of the 30 m resolution cropland data in the YZR area, CLCD
was excluded because of its poor cropland completeness and inability to meet the accuracy
assessment criteria. For cropland distribution data obtained from GL and GLC, GL out-
performed GLC in all accuracy evaluation metrics except for the FPR (Table 8). The same
results were found in the evaluation based on medium and low consistency (Table 10).
Therefore, the performance of GL was also superior in the 30 m resolution cropland data
for the YZR area.

Regarding the accuracy evaluation results, for 10 m cropland distribution data, WC
had the best performance, whereas for 30 m cropland distribution data, GL had the
best performance.

4. Discussion
4.1. Differences in the Presentation of Details

To further verify the performance of various cropland distribution data in detail, this
paper selected four representative areas in the Hehuang Valley region for comparison:
slope cropland (Figure 6a), concentrated cropland distribution areas (Figure 6b), urban
green spaces (Figure 6¢), and cropland mixed with other land types (Figure 6d).

All cropland distribution data could be used to roughly extract the distribution of
croplands; however, differences remained among the various cropland distribution data.
Specifically, for the 10 m resolution cropland distribution data, WC incorrectly identified
urban green spaces as croplands. AIEC and LC could not effectively distinguish between
forest and grassland, incorrectly classified them as croplands, and misidentified some built-
up areas as croplands. For the 30 m resolution cropland distribution data, GL also failed
to distinguish among forest, grassland, and built-up areas and commonly misclassified
the land types at the edges of cropland as cropland. This may explain why the extraction
results were much higher than the statistical and other cropland distribution data. GLC
incorrectly identified urban green spaces as croplands. CLCD exhibited the most severe
errors in misclassification and omission, with many omissions in slope croplands, and it
failed to distinguish forest and grassland well and incorrectly identified urban green spaces
as croplands.
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Figure 6. Details of cultivated land data in the Hehuang Valley. (a) Slope cropland, (b) areas with
concentrated cropland distribution, (c) urban green spaces, and (d) areas with a mixture of cropland
and other land types. WC (10 m), LC (10 m), AIEC (10 m), GL (30 m), GLC (30 m), and CLCD (30 m).
Note: The process of manual visual interpretation primarily relies on sub-meter resolution remote
sensing imagery, supplemented by auxiliary data, such as DEM data, ground survey samples, and
other cropland distribution data. In this context, the primary focus is on the misclassification of
cropland. Therefore, forest, grassland, and urban green spaces were categorized as a single class,
while built-up areas and bare areas were grouped into another class.

Similarly, this study randomly selected two representative regions in the YZR area, as
shown in Figure 7. For the 10 m resolution cropland distribution data, the overall results
were consistent with those of the Hehuang Valley, which generally reflects the overall
distribution characteristics of the cropland. However, compared with WC, both LC and
AIEC showed more severe omission errors, even among adjacent plots. The 30 m resolution
cropland distribution data differed significantly from the results in the Hehuang Valley.
Notably, GLC and CLCD barely extracted any cropland, with only a few cropland pixels
captured, whereas GL roughly reflected the distribution characteristics of the cropland but
misclassified the land types at the cropland edges.
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Figure 7. Details of cultivated land data in the YZR area. (al,a2) WC (10 m), (b1,b2) LC (10 m),
(c1,¢2) AIEC (10 m), (d1,d2) GL (30 m), (e1,e2) GLC (30 m), and (f1,£2) CLCD (30 m). Note: The
process of manual visual interpretation primarily relies on sub-meter resolution remote sensing
imagery, supplemented by auxiliary data, such as DEM data, ground survey samples, and other
cropland distribution data. In this case, the focus is on the omission of cultivated land. Consequently,
only the cropland category was interpreted.

Detailed analysis of the map differences above indicated that the 10 m resolution
cropland distribution data can generally depict the distribution of croplands in both sub-
regions. In contrast, among the 30 m resolution cropland distribution data products,
only GL provided an adequate representation. Furthermore, regardless of whether the
spatial resolution was 10 m or 30 m, most cropland distribution data products misclassified
grassland, woodland, and cropland. Therefore, to update and produce new cropland
distribution data for the study area, a partitioned mapping strategy should be adopted. In
addition, more attention should be paid to addressing the misclassification of croplands,
grasslands, and woodlands.

4.2. Factors Influencing the Classification Results

Due to the complex spectral characteristics of croplands, their spectral characteristics
early in the crop growth cycle or in poorly growing plots may resemble those of grasslands.
In addition, the planting of shelterbelts or fruit trees along roadsides or between plots may
cause the spectral characteristics of croplands to resemble those of forestland. In regions
with complex land types, especially in transitional areas between cropland and grassland or
forest land, significant “foreign matter with the same spectrum” phenomena may occur dur-
ing the growing season, leading to misclassification [11,25,26]. Numerous studies [27-30]
have shown that apart from the inherent spectral characteristics of land cover, the differ-
ences in classification results are related to the classification system used, spatial resolution
of the original imagery, classification method, and samples selected [31,32]. This paper
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explored the reasons for the significant differences in cropland data between the Hehuang
Valley area and the YZR area.

First, from the perspective of classification systems, WC defines croplands as land
cultivated with annual crops that are sown and harvested at least once within a 12-month
period following the sowing or planting date. Annual cropland typically produces an
herbaceous cover and may occasionally include trees or woody vegetation. Perennial
woody crops are classified as either tree cover or shrub land, as appropriate. Greenhouses
are categorized as built-up areas. LC defines cropland as land cultivated for cereals, grasses,
and non-tree crops, such as corn, wheat, soybeans, and fallow land. GL defines cropland
as land utilized for growing a variety of crops, including paddy fields, irrigated and rain-
fed dry land, vegetable gardens, pastures, and greenhouses. It also encompasses areas
primarily used for crops that are interspersed with fruit trees and other economic trees,
such as tea gardens, coffee plantations, and shrub-based economic crops. GLC defines
croplands as areas where natural vegetation has been removed or altered and replaced
by anthropogenic vegetation cover that is maintained through human activities. CLCD
defines croplands as paddy fields, greenhouse agriculture, and other types of farmlands
(such as arable and cultivated land). Fruit trees are classified as forests, and pastures
may transition from farmland to natural grassland. AIEC lacks a precise definition of
cropland. The classification systems of the various datasets exhibited significant differences
in defining croplands, particularly concerning forage land, fallow land, facility agriculture,
and economic tree species. The study area, situated in the agro-pastoral transitional
zone, features widespread forage land, facility agricultural land, and fallow land. These
definitional differences resulted in considerable discrepancies in cropland area estimates.
Furthermore, the categorization of facility agriculture and economic tree species influences
the spatial patterns of cropland distribution. These discrepancies affect not only the
consistency and comparability of the data but also the accuracy and reliability of the
cropland extraction results in the study area. Because of the absence of statistical indicators
at the county or district level, this study used the crop planting area as a reference for
estimating the cropland area. Crop planting area refers to the actual land where crops are
sown or transplanted, thereby encompassing any area with planted crops, regardless of
whether it is classified as cropland or non-cropland. It also includes areas where crops
are replanted or supplemented following disasters during the sowing season. Currently,
crop planting areas encompass nine categories: cereals, cotton, oilseeds, sugar crops, fiber
crops, tobacco, vegetables and melons, medicinal plants, and other crops. This reference
value may have some uncertainties owing to fallow periods and crop rotation in facility
agriculture. Consequently, the crop planting area is likely to be slightly larger than the
actual cropland area; however, the difference should be minor and offset by fallow land.
For regions dominated by single-season agriculture, the discrepancy between the crop
planting area and actual cropland area should be minimal. Additionally, a comparison of
multiyear statistical data revealed that the crop planting area used in this study showed
stable trends over time, indicating that the statistical data employed in this research were
reliable and had reference value.

A comparison of the statistical data with the cropland distribution data revealed that
in the Hehuang Valley area, most cropland distribution datasets tended to overestimate the
cropland area relative to the statistical figures, with the exception of AIEC. Conversely, in
the YZR area, most cropland distribution datasets tended to underestimate the cropland
area, except for GL. This discrepancy suggests that the accuracy of cropland distribution
data is influenced not only by the definitions of cropland within the classification systems
but also by other significant factors.

From the perspective of remote sensing image resolution, a comparison of the over-
lapping results between the 10 m and 30 m resolution cropland data showed that the
proportion of high-consistency pixels was higher in the 10 m resolution data than in the
30 m resolution data (Table 3; Figure 5), with the distribution being more concentrated.
This suggests that with increased spatial resolution, some pixels identified as cropland in
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the 30 m data were reclassified as other land types. Therefore, spatial resolution is likely a
key factor influencing the spatial consistency of cropland data. Additionally, discrepancies
in the overlapping results may have been caused by different processing methods applied
to remote sensing images by the various products during the registration process. However,
during the registration process, discrepancies in the methods used by different products to
process remote sensing imagery may introduce uncertainty in the overlapping results.
From the mechanism of classification methods, this study categorized the classifica-
tion methods used by the six cropland data products into two types: traditional machine
learning and deep learning. Traditional machine learning methods simply extract features
based on the samples and require fewer samples, whereas deep learning methods can
perform deeper feature extraction but need a large number of samples for support. Among
the 10 m resolution cropland distribution data, only WC employed traditional machine
learning methods, whereas LC and AIEC used deep learning classification schemes. Using
the same series of satellite remote sensing images, the performance of these three cropland
distribution data products in extracting cropland did not show significant differences
between the two sub-study areas. This indicates that cropland extraction did not show
notable differences between the traditional machine learning and deep learning methods.
However, for the 30 m resolution cropland distribution data, GL, GLC, and CLCD all used
traditional machine learning classification methods and nearly identical series of satellite
remote sensing images. While GL's classification performance did not show significant dif-
ferences between the two sub-study areas, GLC and CLCD extracted a relatively complete
range of cropland distribution in the Hehuang Valley (Figure 8) but performed poorly in
the YZR area (Figure 9). Although GL used a different classifier than GLC and CLCD, nu-
merous studies indicate that the differences in classification performance between various
traditional machine learning classifiers are not very pronounced [33-35]. This suggests that
in addition to differences in the classification method, differences in training samples and
environmental factors in the sub-study areas may influence the classification results.
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Figure 8. Pixel distribution of cropland distribution data in the Hehuang Valley. (a) WC (10 m),
(b) LC (10 m), (¢) AIEC (10 m), (d) GL (30 m), (e) GLC (30 m), and (f) CLCD (30 m).
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(10 m), (¢) AIEC (10 m), (d) GL (30 m), (e) GLC (30 m), and (f) CLCD (30 m).

Cropland pixels River

From the perspective of training samples, among the 10 m resolution cropland distri-
bution data products, LC gathered tens of billions of training samples during production.
Although AIEC has not explicitly disclosed information about its training samples, its
performance in both study areas was generally consistent with that of LC (Figures 8 and 9).
Given that LC and AIEC use deep learning, which still requires a massive amount of
training samples, the training samples likely covered the two study areas well, leading to
generally consistent evaluation results (Figures 8 and 9). In the 30 m resolution cropland
distribution data, GL primarily relied on expert visual interpretation. GLC has built a spa-
tiotemporal spectral library with training samples mainly derived from the GlobCover2009
and CCI_LC datasets, whereas CLCD training samples are largely randomly drawn from
the invariant areas of China’s Land Use/Cover Datasets (CLUDs). Since the samples were
obtained from large-scale datasets, this study examined these source datasets and the train-
ing sample sets of GLC and CLCD. Because of the lack of effective classification of cropland
in the YZR area in these source datasets, cropland sample points were not included in
the training sample sets of GLC and CLCD. This could be attributed to issues with the
sampling strategy because the relatively small cropland area in the study area may have
resulted in few or no sample points being allocated. Therefore, by comparing the extraction
of cropland by LC, AIEC, GL, GLC, and CLCD in the two sub-study areas, this study
concluded that when using the same resolution remote sensing imagery and classification
methods, although the impact of the classification method cannot be completely ruled out,
the training samples will likely represent the determining factor for the differences in the
classification results within the study area.

4.3. Factors Driving Spatial Consistency Results

Previous studies have demonstrated a strong correlation between cropland distri-
bution and terrain factors, such as slope, elevation, and surface complexity [16]. In this
context, this study examined the relationship between the spatial consistency of cropland
data and terrain factors.

An analysis of the proportion of overlapping cropland data at different slopes for
the two spatial resolutions (Figures 10a,b and 11a,b) revealed that as the slope increased,
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the proportion of high-consistency pixels gradually decreased, while the proportion of
low-consistency pixels gradually increased. This finding is consistent with the conclusions
of other studies [14].
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Figure 10. Area proportion of pixels with different consistencies in different terrain factor ranges in
the Hehuang Valley region. (a) Proportion of consistent pixels among the 10 m cropland distribution
data products at different slope ranges. (b) Proportion of consistent pixels among the 30 m cropland
distribution data products at different slope ranges. (c) Proportion of consistent pixels among the
10 m cropland distribution data products at different elevation ranges. (d) Proportion of consistent
pixels among the 30 m cropland distribution data products at different elevation ranges.
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Figure 11. Area proportion of pixels with different consistencies among the different terrain factor
ranges in the YZR area. (a) Proportion of consistent pixels among the 10 m cropland distribution
data products at different slope ranges. (b) Proportion of consistent pixels among the 30 m cropland
distribution data products at different slope ranges. (c) Proportion of consistent pixels among the
10 m cropland distribution data products at different elevation ranges. (d) Proportion of consistent
pixels among the 30 m cropland distribution data products at different elevation ranges.
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However, an analysis of the proportion of overlapping cropland data at different
elevations (Figures 10c,d and 11c,d) revealed that in the Hehuang Valley area, for the
10 m resolution overlapping results, the proportion of high-consistency pixels initially
decreased, and the proportion of low-consistency pixels increased with the increasing
elevation. However, within the elevation range of 2600-3100 m, the proportion of high-
consistency pixels increased, and the proportion of low-consistency pixels decreased. For
the 30 m resolution overlapping results, although less pronounced, the proportion of
low-consistency pixels also decreased within the 2600-3100 m elevation range, whereas
the proportion of medium-consistency pixels increased, and high-consistency pixels only
slightly decreased. A similar phenomenon was observed in the YZR area. For the 10 m
resolution overlapping results, within the elevation range of 2650-3900 m, the proportion
of high-consistency pixels increased, and low-consistency pixels decreased. This finding is
inconsistent with previous studies [16]. This study suggests that in addition to topographic
factors, other driving factors also influence the extraction results of croplands.

A plausible explanation for this is that although low-altitude areas have better natural
conditions that are more suitable for crop cultivation, human activities are more frequent
in these areas. Increased urbanization and non-agricultural activities have led to more
common land use changes from cropland to other types, resulting in a lower proportion of
high-consistency pixels between different datasets owing to the complexity of surface types.
In contrast, in mid-altitude areas, natural conditions worsen with increasing elevation,
although human activities are relatively less frequent, which reduces the occurrence of land
use changes from croplands to other types. Therefore, the stability of the surface cover led
to a higher proportion of high-consistency pixels. As the altitude increases, the natural
conditions for crop growth deteriorate, and farmers are more likely to plant forage to meet
their livestock feed needs (Figure 12). This results in more regular textures in these areas.
Additionally, differences in cropland definitions and spectral confusion may have led to
the misidentification of these areas as cropland, causing a decline in the spatial consistency
of cropland classes. In summary, the extraction results of cropland distribution data were
significantly influenced by topographic factors as well as the frequency of human activities
and variations in cropland definitions. The interactions of these elements across various
altitude ranges created intricate patterns of spatial consistency in cropland classification.
Future research should focus on further exploring and quantifying these driving factors to
enhance the accuracy and reliability of cropland distribution data extraction.

Figure 12. Forage fields with cultivated grain at high elevations.

4.4. Applicability of Existing Cropland Distribution Data

This study evaluated the quality of six cropland distribution data products in three
dimensions: area consistency, spatial pattern analysis, and sample accuracy. For the
10 m resolution cropland distribution data, all three data products performed well in
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both study areas, although LC and AIEC did not perform as well as WC. For the 30 m
resolution cropland distribution data, GLC and CLCD performed worse than GL and
showed significant discrepancies between the two study areas, making them unsuitable for
application in alpine agricultural regions. Overall, cultivated land distribution data at a
10 m resolution generally provide more detailed information compared to 30 m resolution
data and are preferable for single-period analysis. However, since these products are
typically derived from Sentinel-2 imagery, their temporal coverage is limited, making them
less suitable for long-term time-series analysis, particularly as WC only covers 2020 and
2021. In contrast, 30 m resolution data are based on Landsat imagery, offering sufficient
temporal coverage for time-series analysis. Nevertheless, its accuracy may be inferior to
that of the 10 m resolution data.

While WC and GL showed good performance, they also presented certain issues.
For example, WC performed poorly in low-consistency areas in Hehuang Valley, and GL
significantly overestimated cropland areas. In general, the 10 m resolution WC and 30 m
resolution GL can be used under the current conditions. In practice, however, a single set
of cropland distribution data may not be highly suitable and reliable for both agricultural
regions to meet the needs of precision agricultural management. Therefore, to support the
increasingly sophisticated alpine agricultural production management needs, high-quality
localized cropland distribution data must be developed for detailed applications.

4.5. Innovations and Limitations

The novelty of this study lies in several key aspects. First, previous studies [36] often
resampled high spatial resolution products to match lower spatial resolution products be-
fore conducting comparisons. They demonstrated that, across different scales, even when
the 10 m product was resampled to match the 30 m product for comparison, the superior
accuracy and stability of the 10 m product, due to the higher spatial resolution of its corre-
sponding remote sensing data, remained evident. Moreover, the 10 m product consistently
exhibited finer detail. Resampling did not fully negate the advantages conferred by the
higher resolution of the 10 m product. Our comparison revealed that the 10 m product
demonstrated significantly greater spatial stability compared to the 30 m product. For
example, some 30 m products showed substantial differences between the two study areas.
Moreover, our discussion on the applicability of existing cultivated land distribution data
suggested that when opting for single-period products, 10 m resolution products should
be prioritized, whereas for long-term series, 30 m products are more appropriate. Thus,
conducting separate comparisons for the two resolutions is undeniably a more effective
strategy, as it allows for a more comprehensive demonstration of differences between prod-
ucts at the same spatial resolution. Additionally, the cultivated land distribution products
selected for this study are of relatively recent production years, rendering the evaluation
results more aligned with current data selection requirements.

Nevertheless, this study also presents several limitations. First, while the six products
selected each covered multiple periods, only 2020 served as the common overlap. Thus,
2020 was chosen as the baseline year. However, relying on the evaluation results from a
single year to represent each product may result in occasionality. Second, validation sample
points were acquired through visual interpretation. Although this process incorporated a
comprehensive analysis of remote sensing imagery from the 2020 growing season (Landsat
8, Sentinel-2, and Google Earth), DEM data, ground survey samples, and other cultivated
land distribution data to ensure interpretative accuracy, the presence of rotational farming,
fallowing, and phenomena, such as ‘same object, different spectra” or ‘different objects,
same spectrum’, may still result in misclassification. This could potentially influence the
accuracy assessments of certain products. Moreover, the cultivated land reference data for
some counties within the YZR area were unavailable, as only partial data could be obtained.
This limitation could result in potential deviations between the current R?> and RMSE eval-
uation results and the actual values. Lastly, this study hypothesized that training samples
may serve as the key factor influencing classification results. However, we only compared
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classification systems, remote sensing image resolutions, and classification methods in-
dependently, without investigating the interactive effects of these factors. Additionally,
as none of the products explicitly disclosed the training sample data they employed, we
could only infer sample quantity based on their classification methods and estimate sample
quality from their production processes, making it impossible to definitively determine
whether sample quantity or quality is the crucial factor.

5. Conclusions

Based on the support of the GEE, this study evaluated the accuracy, spatial consis-
tency, and area consistency of six high-resolution cropland distribution datasets from both
domestic and international sources generated in 2020 for the Hehuang Valley of Qinghai
Province and the YZR area of the Tibet Autonomous Region. Additionally, the factors that
influenced the classification results were analyzed. The results indicated that:

(1) In terms of area consistency, WC performed best among the 10 m resolution cropland
distribution data in terms of both similarity and deviation from the statistics, while
GL performed the best among the 30 m resolution data in terms of similarity, although
it also showed a higher degree of deviation and led to the most serious overestimation
of cultivated land area. Therefore, from the perspective of area consistency, the
WC product may be the most suitable cultivated land distribution data product for
this region.

(2) In terms of spatial pattern overlap, the proportion of low-consistency pixels was
the highest among all overlaid cropland distribution data. In the Hehuang Valley
area, high-consistency pixels were primarily concentrated in the northern area along
the northern bank of the Datong River and central Huangshui River Basin, whereas
medium- and low-consistency pixels were mainly found in the central Huangshui
River Basin and southern Yellow River Basin. In the YZR area, high-consistency pixels
were mainly concentrated in the northeastern Lhasa River basin and eastern Yarlung
Zangbo River and Nianchu River valleys, whereas medium- and low-consistency
pixels were relatively widespread. For the 10 m resolution cropland distribution
data, AIEC performed the best, followed by WC, although the difference between the
two was not significant. For the 30 m resolution cropland distribution data, CLCD
performed the best in the Hehuang Valley area, while GL performed the best in the
YZR area.

(3) In terms of positional accuracy, WC showed the best overall performance among
the 10 m resolution cropland distribution data across various accuracy indicators,
while GL showed the best overall performance among the 30 m resolution cropland
distribution data.

In summary, GL and WC may be the best-performing cropland distribution data
products in the alpine agricultural areas of the Qinghai-Tibet Plateau; however, a single
cropland distribution dataset was not able to provide the best performance across all
evaluation metrics for both agricultural regions. Therefore, when conditions permit, high-
quality cropland distribution data should be further developed to support the evolving
needs of high-altitude agricultural production management.
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