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Abstract: Near-surface air temperature (Ta) estimation by geostationary meteorological satellites is
mainly carried out under clear-sky conditions. In this study, we propose an all-weather Ta estimation
method utilizing FY-4A Advanced Geostationary Radiation Imager (AGRI) and the Global Forecast
System (GFS), along with additional auxiliary data. The method includes two neural-network-based
Ta estimation models for clear and cloudy skies, respectively. For clear skies, AGRI LST was utilized
to estimate the Ta (Ta,clear), whereas cloud top temperature and cloud top height were employed
to estimate the Ta for cloudy skies (Ta,cloudy). The estimated Ta was validated using the 2020 data
from 1211 stations in China, and the RMSE values of the Ta,clear and Ta,cloudy were 1.80 ◦C and
1.72 ◦C, while the correlation coefficients were 0.99 and 0.986, respectively. The performance of the
all-weather Ta estimation model showed clear temporal and spatial variation characteristics, with
higher accuracy in summer (RMSE = 1.53 ◦C) and lower accuracy in winter (RMSE = 1.88 ◦C). The
accuracy in southeastern China was substantially better than in western and northern China. In
addition, the dependence of the accuracy of the Ta estimation model for LST, CTT, CTH, elevation,
and air temperature were analyzed. The global sensitivity analysis shows that AGRI and GFS data
are the most important factors for accurate Ta estimation. The AGRI-estimated Ta showed higher
accuracy compared to the ERA5-Land data. The proposed models demonstrated potential for Ta

estimation under all-weather conditions and are adaptable to other geostationary satellites.

Keywords: all-weather; air temperature; AGRI; GFS; neural network

1. Introduction

Near-surface air temperature (Ta) is a key parameter for characterizing the near-
surface atmospheric environment [1,2]. It is one of the basic types of observation data
at meteorological stations. Ta has been widely used in hydrology, ecology, climatology,
epidemiology, environmental science, and residential energy consumption [3–5]. Moreover,
it serves as a key variable in land surface processes and climate models [6,7]. Ta with high
spatiotemporal resolution is of great significance for better understanding and modeling
complex surface processes [8].

Generally, the Ta varies greatly in time and space [9,10]. A variety of factors, such as
radiation, elevation, latitude, cloud cover, land surface type, and soil moisture, can influence
Ta [11]. At present, the Ta is mainly obtained by routine observation at meteorological
stations. Station observations can provide high temporal resolution and accurate Ta,
but it only represents discrete point data [12]. In general, the distribution of sites is
usually spatially heterogeneous due to the influence of the economy, population, and
topography [13]. For example, the stations in southeastern China are dense, while those
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in western China are sparse. About 90% of the national-level automatic weather stations
managed by the China Meteorological Administration are located in eastern China, with
low elevation (i.e., <2000 m), while there are few stations in areas above 5000 m [14,15].

Although two-dimensional Ta values can be obtained by interpolating station data, the
accuracy of this method is typically influenced by meteorological station density, landscape,
and terrains and conditions [16,17]. As a result, it is difficult to obtain high-precision Ta
spatial distribution by interpolation, especially in complex terrain areas with few stations.
Reanalysis and numerical weather prediction models can provide seamless global Ta
data [13,18]. This is crucial for regions lacking meteorological stations [19]. These data
typically have coarse spatial (e.g., 0.25◦–0.5◦) and temporal resolutions (e.g., 3 h) [14].
Coarse spatial resolution makes it difficult to provide fine Ta spatial variation and may
bring larger uncertainty to applications at local scales [20]. Although NWP models cannot
provide fine Ta data, they can significantly enhance Ta estimation accuracy integrated with
satellite data [21].

Satellite-derived land surface temperature (LST) is extensively utilized for estimating
Ta because of its high correlation with the Ta [16,22]. Currently, Ta estimation methods
based on meteorological satellite data can be classified into statistical methods, temperature–
vegetation index (TVX) methods, and energy balance methods [23]. Statistical methods
typically incorporate multiple predictors, including LST and elevation in the Ta estimation
model, employing multiple linear regression or nonlinear models to estimate Ta [24–26].

Machine learning models such as neural network (NN) and random forests can better
express the complex relationships between predictors and Ta. Therefore, they usually have
higher accuracy [27]. The TVX method is unsuitable for regions with sparse vegetation or
bare land [22,28,29]. As a physical method, the energy balance method demands numerous
inputs, many of which are typically not directly obtainable via satellite data [30,31].

Zhang et al. [32] utilized LST data from the FY-4A satellite to estimate hourly surface
air temperature under clear-sky conditions. In short, the current Ta estimation methods
typically rely on LST and supplementary parameters. Infrared radiation cannot penetrate
clouds due to its short wavelength [33]. Therefore, LST is only available from infrared
observations under clear sky, and the previous methods were mainly restricted to Ta
estimation for clear-sky conditions (Ta,clear). However, more than 60% of the Earth’s surface
is covered by clouds [34]. This makes Ta estimation under cloudy skies (Ta,cloudy) an urgent
issue to address. Liu et al. [35] employed geostationary meteorological satellite data to
propose a high-spatial-resolution (i.e., 250 m) all-weather near-surface air temperature
estimation method. However, their study was limited to the Hunan Province, and is yet
to be broadly validated in other regions. Li et al. introduced an approach for Ta,cloudy
estimation using cloud top height and temperature (CTH and CTT) data from the Visible
Infrared Imaging Radiometer (VIIRS) onboard NPP [36]. This approach is primarily derived
from the atmospheric lapse rate (ALR) principle, and the RMSE of the estimated Ta,cloudy was
~1.95 ◦C. This provides a possible approach for Ta,cloudy estimation using satellite-derived
cloud products.

It is important to make spatially continuous all-weather Ta with a high temporal
resolution. Fengyun-4A (FY-4A) can continuously observe China and its surrounding
regions with enhanced temporal and spatial resolution [22,37,38]. Since 1 August 2019,
FY-4A LST, CTT, and CTH products have been available, which enhance the potential for
all-weather Ta estimation at high temporal and spatial resolutions.

This research aims to establish a method for all-weather instantaneous Ta estimation
using FY-4A and other auxiliary data over China. As far as we know, this is the first
attempt to conduct all-weather Ta estimation utilizing geostationary satellite products. The
structure of this paper is organized as follows: Section 2 outlines the datasets and the
modeling approach used for all-weather Ta estimation. The data matching and prediction
factor selection for Ta estimation are also shown in this section. Section 3 details the results
and provides an error analysis of AGRI-derived Ta under both clear and cloudy conditions.
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The comparisons with ERA5-Land and how model accuracy depends on various prediction
factors are also addressed. Finally, the conclusions are summarized.

2. Materials and Methods
2.1. Data

The data used primarily consisted of (1) Ta at meteorological stations; (2) AGRI Level-
2 LST, CTT and CTH products; (3) GFS Ta forecast field; (4) ERA5-Land Ta data; and
(5) additional auxiliary data, including elevation, longitude, latitude, NDVI, and time
information (i.e., Julian day (JD) and hour).

2.1.1. Station Data

The hourly Ta of 2423 national-level automatic weather stations over China in 2020
were used. The dataset was downloaded through China Meteorological Data Service Centre
(CMDC). The Ta datasets had undergone strict quality control measures such as regional
boundary-value checks, climatological boundary-value checks, spatial and temporal con-
sistency checks, achieving an availability of ~99.9% [39]. According to the installation
specification document of CMA, the thermometers were installed in the shelter about 1.5 m
above the ground. Thus, the station Ta used in this study represents air temperature at
1.5 m. The topography and geolocation of the stations used are presented in Figure 1.
Stations in eastern China are relatively dense, while those in the west (e.g., Qinghai–Tibet
Plateau) are relatively sparse.
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Figure 1. Geolocation of the stations used in this study over China. The sites of training and validation
data for the near-surface air temperature (Ta) estimation model are marked in blue and red colors.

Table 1 presents the station numbers at various elevation intervals, with >75% of
stations located at lower elevation (i.e., <1 km), ~20% of stations at 1–3 km, and only
86 stations (~3.55%) at >3 km. The purpose of this study is to estimate the Ta in the
area without meteorological stations. We are inclined to think that half of the stations for
modeling and other half of the stations for evaluation can better evaluate the applicability
of the model. One half of the station data was used to build the models, while the other
half was used to validate them.
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Table 1. The distributions of the meteorological stations at different elevation intervals.

Elevation (km) Sites Number Percent (%)

<0.0 1 0.04
0.0–1.0 1831 75.57
1.0–2.0 427 17.62
2.0–3.0 78 3.22
3.0–4.0 63 2.60
4.0–5.0 23 0.95

2.1.2. FY-4A/AGRI Data

The Advanced Geostationary Radiation Imager (AGRI), a key instrument aboard the
FY-4A satellite, demonstrates better performance than its predecessors [2]. It is equipped
with 14 spectral channels covering a range from 0.55 to 13.8 µm. Compared to the im-
agers on the FY-2 series, AGRI offers a broader array of spectral channels, faster imaging
capabilities, and improved spatial resolution [2].

AGRI can perform full-disk scans in 15 min and can cover China and its neighboring
regions within 5 min. It is comparable with Himawari-8 and GOES-R imagers [40]. Cur-
rently, AGRI has LST, CTT, CTH, and cloud mask products available. The LST products
from AGRI are retrieved using split-window channel observations. Dong evaluated the
applicability of nine candidate split-window LST algorithms to AGRI data [41]. The Ulivieri-
and-Cannizzaro method was selected as the AGRI operational LST retrieval algorithm,
which was consistent with the LST algorithm of GOES-R [41,42].

CTT and CTH were derived using the measurements from AGRI 11.2, 12.4, and
13.3 µm, combined with numerical forecast data using an iterative optimal estimation
calculation [43]. AGRI CTT and CTH were extracted for each cloud pixel, following a
method with the GOES-R CTT and CTH algorithms [44]. The AGRI cloud mask product
(CLM) has four flags, including clear, cloud, probably clear, and probably cloud. The Ta
estimation were performed only for clear and cloudy pixels in this study (CLM = 0 and 3).

2.1.3. GFS Data

The operational GFS provides 0.25◦, 0.5◦, and 1◦ gridded Ta data at global scale. The
forecast output is produced hourly for the first 120 h, and then three-hourly for hours
120 to 384 (days 5–16). It is updated every 6 h. However, GFS historical data were available
only at 3 h intervals. Thus, this study utilized three-hourly GFS Ta forecasts at a 0.25◦

grid for the year 2020. These historical data were obtained from the National Center for
Atmospheric Research (NCAR), which maintains a comprehensive archive of GFS forecasts.
Real-time GFS Ta forecasts can be accessed from the NCEP Products Inventory.

2.1.4. ERA5-Land Data

To further analyze the performance of AGRI Ta model, ERA5-Land Ta were utilized for
comparison. ERA5-Land represents a new generation of reanalysis data, offering enhenced
spatiotemporal resolution and accuracy over its predecessors [45]. ERA5-Land provides
hourly surface variables at a 0.1◦ grid spacing. This data set was produced by rerunning
land component of ERA5 climate reanalysis. The ERA5-Land hourly 2 m Ta (Ta,ERA5) from
2020 were used.

2.1.5. Auxiliary Data

Studies have demonstrated that auxiliary data can improve Ta estimation [4]. Table 2
shows the primary predictors used in this study. The three-arc-second Shuttle Radar
Topography Mission elevation (i.e., SRTM3) was utilized.
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Table 2. The main characteristics of the primary data.

Abbreviation Units Spatial Resolution Temporal Resolution Source

LST K 4 km 15 min NSMC
CTT K 4 km 15 min NSMC
CTH m 4 km 15 min NSMC

GFS Ta K 0.25◦ 3 h UCAR
elevation m 3 arc-s - NASA

NDVI - 250 m 16 days NASA
Latitude - 4 km - NSMC

Ta
◦C Site 1 h CMDC

Latitude and time information were taken from AGRI geolocation data. The MODIS
16-day NDVI product (i.e., MOD13Q1) was also used. MOD13Q1 is a level-3 gridded NDVI
measured at 250 m resolution every 16 days. The elevation and NDVI data were then
spatially resampled for alignment with AGRI and GFS grid data. The main characteristics,
such as the temporal and spational resolution and data sources, are detailed in Table 2.

2.2. Methods
2.2.1. Ta,clear Estimation Model

Previous researchers developed an approach for estimating Ta,clear using AGRI obser-
vations, GFS water vapor, relative humidity, and additionalauxiliary parameters [46]. Their
findings indicated that GFS water vapor and humidity significantly enhanced the Ta,clear
estimation accuracy.

Given that GFS provides Ta forecast products, the GFS Ta forecast field (Ta,gfs) was
directly used instead of PWV and RH in this study. To simplify, elevation, longitude,
and latitude are denoted as ELE, Lon, and Lat respectively. Assuming that Ta,clear can be
predicted by these variables, Ta,clear is formulated as follows:

Ta,clear = f
(
LST, Ta,gfs, ELE, NDVI, Lat, Lon, JD, Hour

)
(1)

f () represents the non-linear function for the Ta,clear estimation model.

2.2.2. Ta,cloudy Estimation Model

AGRI can only provide LST under clear sky. Therefore, the Ta estimation approach
using LST is not applicable for Ta,cloudy estimation. Li et al. developed a approach for Ta,cloudy
estimation in China, utilizing VIIRS CTT and CTH combined with other predictors [36]. The
method is derived from the atmospheric lapse rate (ALR) principle, according to which, in
the troposphere, air temperature typically decreases with altitude [47]. The air temperature
(T) at a specific height (H) is determined as follows:

T = Ta,cloudy + ALR × (H − Hsta
)

(2)

where Ta,cloudy is station Ta under cloudy conditions, and Hsta is the station’s elevation. If T
and H are assumed as CTT and CTH, Ta,cloudy is then derived as follows:

Ta,cloudy = CTT − ALR × (CTH − Hsta
)

(3)

Considering that the ALR is steeper in summer, the applicability to other seasons
requires further evaluation. In our study, we established an NN model for Ta,cloudy estima-
tion using AGRI CTT and CTH products. Subsequently, the Ta,cloudy can be estimated as
shown below:



Remote Sens. 2024, 16, 3612 6 of 20

Ta,cloudy = f
(
CTT, CTH, Ta,gfs, ELE, Lat, Lon, NDVI, JD, Hour

)
(4)

where f () represents the non-linear function for Ta,cloudy estimation model. Unlike in
Li et al.’s approach, this study used the AGRI cloud products rather than polar satellite [36].
Furthermore, datasets from more stations (i.e., 2423 stations over China) for a longer period
(i.e., the entire year of 2020) were used. This is crucial for assessing the applicability of the
Ta estimation method under cloudy conditions.

2.2.3. Data Processing

The spatial resolutions of GFS (0.25◦ × 0.25◦) and AGRI (4 km × 4 km) were different,
and the elevations in GFS grid and AGRI pixels were usually inconsistent. Thus, it was
necessary to correct GFS Ta according to the elevation difference. Generally, we can
perform Ta correction using the ALR. However, the ALR is easily influenced by season,
latitude, elevation, and relative humidity [48,49]. For example, the ALR during summer
is more significant than in winter, and temperature inversion may occur in winter [49].
There are obvious differences in ALR between eastern and western China due to the
topographic characteristics [50]. Therefore, air temperature correction based on specific
ALR (i.e., −0.67 ◦C/100 m) values may introduce large errors, especially for temperature
inversion conditions in winter.

In this study, we did not use ALR to correct GFS Ta. Instead, the GFS and AGRI
elevations, as well as GFS Ta, were used as inputs for the NN model. It was expected that
the NN model would correct the Ta difference caused by the elevation difference through
training processes. A nearest neighbor approach was utilized to match the predictor data
with the station Ta dataset. Specifically, we identified the closest GFS grid and AGRI
pixel to each station location and extracted the corresponding meteorological variables for
model training and validation. Finally, 4,943,142 spatiotemporal matching datasets were
obtained. These datasets were categorized into clear (2,033,012) and cloudy (2,910,130) sky
datasets according to AGRI CLM. Data from half of the stations randomly selected were
utilized for constructing Ta estimation model, and the remaining data were utilized for
model validation.

2.2.4. Neural Network Model

The NN model has been extensively employed in geophysical parameter estima-
tion [15]. The multilayer feedforward NN was employed to construct the Ta,clear and
Ta,cloudy models. These models were individually trained and evaluated based on the
collocated clear and cloudy sky datasets.

To develop an effective neural network model, we selected a two-layer network
structure. Experimental analysis determined that a configuration of 128 neurons per
layer achieved a good balance between model convergence and computational efficiency.
Hyperparameters were tuned using cross-validation, leading to the selection of an optimal
learning rate (i.e., 0.001), number of hidden layers, and neuron count. The Adam optimizer
was employed to ensure fast and stable convergence during training. To prevent overfitting,
we implemented cross-validation and other techniques to ensure the model’s generalization
ability across different data subsets.

Figure 2 illustrates the flowchart for all-weather Ta estimation approach. In the process
of Ta estimation, AGRI pixels were divided into clear and cloudy sky based on the CLM
products. The clear and cloudy sky match-ups were input into the Ta,clear and Ta,cloudy NN
estimation models, respectively. Next, the AGRI-derived Ta,clear and Ta,cloudy were combined
to produce the Ta for all-weather conditions.
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2.2.5. Statistical Metrics

The correlation coefficient (R), root mean square error (RMSE), and bias were used to
evaluate the Ta estimation models, as detailed below:

R =
∑N

i=1
(
Ta − Ta

)(
Tsta − Tsta

)√
∑N

i=1
(
Ta − Ta

)2
∑N

i=1
(
Tsta − Tsta

)2
(5)

RMSE =

√
1
N ∑N

i=1(Ta − Tsta)
2 (6)

Bias =
1
N ∑N

i=1(Ta − Tsta) (7)

where Ta represents the estimated air temperature, Tsta is the in situ air temperature, and N
is the overall count of samples.

3. Results
3.1. Overall Error Analysis

The AGRI Ta estimation model was assessed for clear and cloudy skies using station
Ta, respectively. Figure 3 presents the 2D histograms comparing the estimated Ta,clear
and Ta,cloudy with station data. Overall, the estimated Ta,clear and Ta,cloudy showed good
agreement with station Ta. The performance of Ta,cloudy was slightly better than that of
Ta,clear. The correlation coefficients (R) for AGRI Ta,clear and Ta,cloudy were 0.990 and 0.986,
with RMSE values of 1.78 ◦C and 1.67 ◦C, respectively. The biases for Ta,clear and Ta,cloudy
were within ±0.03 ◦C, suggesting that the estimated Ta values for clear and cloudy sky
were neither overestimated nor underestimated.

The estimated Ta of the two models became relatively discrete with in situ data when
the Ta was lower than −20 ◦C. This means that the accuracy of the two models decreased
slightly for low-Ta conditions, which might have been due to the fact that there were fewer
samples at the boundary of the training data.

Figure 4 shows the Ta difference (AGRI Ta–in situ Ta) histograms for Ta,clear and Ta,cloudy.
The errors of both models showed a normal distribution, and most of the Ta differences
were within ±2.5 ◦C (i.e., >80.95% samples). The samples with Ta differences of less than
2.0 ◦C accounted for 72.04% and 74.88% of the total for clear and cloudy sky, while those
with less than 1.5 ◦C accounted for 60.65% and 64.01%, respectively. Satellite-derived Tair
is typically regarded as ‘accurate’ when its accuracy range lies between 1 and 2 ◦C [51].
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This indicates that the proposed models can accurately estimate Ta,clear and Ta,cloudy in
most scenarios.
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versus in situ Ta.

3.2. Spatial Distribution of Ta Error

The Ta,clear and Ta,cloudy estimation errors at each site were analyzed to comprehensively
evaluate the Ta estimation models. Figure 5 depicts the spatial patterns of R, RMSE, and
bias for Ta,clear and Ta,cloudy. The Ta,clear and Ta,cloudy models both showed similar and clear
spatial distribution patterns of errors. Both models performed better in eastern China than
in western China, with lower RMSE and higher R values. The performance of the Ta,clear
model was comparable to that of the Ta,cloudy model for most sites.

The correlation coefficient of the Ta,clear and Ta,cloudy models mainly varied from
0.97 to 0.99, while RMSE values spanning from 1.0 ◦C to 2.5 ◦C. The biases of the Ta,clear and
Ta,cloudy models were mainly within ±1 ◦C for most sites. The RMSE values of the Ta,clear
and Ta,cloudy model at ~45.22% and ~44.78% of the sites were less than 1.5 ◦C, while those at
~82.19% and ~83.58% of the sites were less than 2.0 ◦C, respectively. The RMSE values of
the Ta,clear and Ta,cloudy models at most stations over southeast China were less than 1.7 ◦C,
while those in northwest China were mainly 2.0–2.5 ◦C. These results could be attributed
to several factors: (1) the influence of topography; (2) the density of the weather stations;
and (3) the spatial distribution errors in the GFS Ta data.
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Ta,cloudy (right).

Compared to eastern China, western China features higher elevation and more in-
tricate topography. This could lead to higher Ta heterogeneity, and a more complicated
relationship between Ta and LST. Furthermore, the ALR in high-elevation and complex-
topography areas is more complex than that in plain areas [49,50]. This makes it challenging
to estimate the Ta using CTT and CTH in western China [36]. The weather stations in
eastern China are dense, while those in western China are sparse. This makes the model
constructed with data from all stations more applicable to eastern China. Previous studies
have also shown that there is an obvious negative correlation between the RMSE of the
estimated Ta and the number of stations [15,52]. Therefore, the low density of stations was
another possible reason for the poor accuracy in western China.

As one of the key inputs for the Ta model, GFS Ta can significantly impact the model’s
performance. The GFS Ta error in western China was greater than that in eastern China.
This might be a possible reason for the large error in the Ta estimation model in western
region [21]. Additionally, factors such as variations in land cover types, vegetation ef-
fects, and differences in spatial scale between satellite and station measurements can also
influence the spatial distribution of errors [53].
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3.3. Seasonal Variation of Ta Estimation Error

Figure 6 shows the monthly RMSE variation of the Ta,clear and Ta,cloudy, as well as the
corresponding GFS Ta. The RMSE values for the AGRI and GFS Ta,clear and Ta,cloudy both
exhibited distinct seasonal patterns. The RMSE was lowest during summer and peaked
in winter. The maximum RMSE for the AGRI-estimated Ta,clear was observed in January
(~2.03 ◦C), after which it gradually declined, reaching a minimum value (~1.30 ◦C) in
August. From September to December, the errors progressively increased.
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The RMSE variation trend of the AGRI-estimated Ta,cloudy was similar to that of the
Ta,clear, but the highest RMSE of the Ta,cloudy occurred in February (~1.98 ◦C), and the lowest
in September (~1.42 ◦C). The RMSE of the AGRI-estimated Ta,clear in summer was smaller
than that of Ta,cloudy, while that of the AGRI Ta,clear in winter was larger than that of Ta,cloudy.

The RMSE trends of the GFS Ta,clear and Ta,cloudy were similar to that of the AGRI-
estimated Ta, but that of the AGRI Ta was 0.5–1.0 K smaller than that of the GFS. This
indicates that GFS Ta has an important influence on the accuracy of the model. It is worth
noting that the accuracy rates of the GFS Ta,clear and Ta,cloudy in July and August were
comparable, and the accuracy of the GFS Ta,cloudy in other months was better than that of
the GFS Ta,clear. Comparatively, the AGRI Ta,clear exhibited higher accuracy than Ta,cloudy
from April to August.

In general, the AGRI-estimated Ta demonstrated higher accuracy during summer
compared to other seasons, which may have been due to the following reasons: (1) The
dynamic variation range of summer Ta (e.g., diurnal variation) was smaller than in other
seasons, which made the summer Ta estimation more reliable [54]. (2) The RMSE of the
GFS Ta in summer was smaller than in other seasons. (3) The ALR was more obvious in
summer, which improves the accuracy of summer Ta,cloudy compared to other seasons.

The temporal variations of the AGRI-estimated all-weather Ta versus the instantaneous
Ta measurements at 3 h intervals at four meteorological stations (randomly selected) in
2020 are shown in Figure 7. The station’s latitude ranged from 25.6◦N to 40.86◦N, with the
elevation ranging from 185.2 to 860.0 m. The Ta at these stations showed clear seasonal
variation characteristics. The Ta values at these stations were higher during the summer
and lower during the winter. The dynamic range of the Ta in summer was smaller than
in other seasons. In general, the estimated Ta had a good agreement with the station data
across different seasons for each site, with RMES values between 1.33 and 1.84 ◦C. The
AGRI-estimated Ta could capture the seasonal and diurnal variation characteristics of air
temperature. In addition, it was also shown that the Ta,clear and Ta,cloudy estimation models
had good consistency.
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Figure 7. Time series of in situ and AGRI-derived all-weather Ta at 3 h intervals at four stations in 2020.

3.4. Comparisons with GFS/ERA5

Table 3 shows the validation results of the GFS, ERA5-Land, and AGRI Ta at different
elevation intervals (i.e., 0–5.0 km with 1 km intervals). In general, the RMSE of the Ta,clear
and Ta,cloudy of the three datasets increased with the elevation, and the accuracy rates of the
GFS- and AGRI-estimated Ta,cloudy were better than that of Ta,clear. This might have been
due to the fact that the dynamic variation range of Ta,cloudy is smaller than that of Ta,clear,
which makes the prediction accuracy of Ta in cloudy sky better than in clear sky.

The AGRI-estimated Ta was consistently more accurate than GFS across all elevation
intervals. The RMSE of the AGRI Ta,clear was 0.75–1.15 ◦C lower than that of the GFS,
while that of Ta,cloudy was 0.22–0.56 ◦C lower than that of the GFS. This indicated that the
contribution of AGRI data to the Ta,clear model was greater than the contribution to the
Ta,cloudy model. This might be because the relationship between LST and Ta was stronger
than that between cloud products and Ta. Furthermore, the RMSE difference between the
GFS- and AGRI-estimated Ta showed a clear dependence on elevation, with the RMSE
difference increasing with the elevation.
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Table 3. Summary statistics of validation for GFS-, ERA5-Land-, and AGRI-estimated Ta for different
elevation intervals with in situ observations for the period between 1 Jan 2020 and 31 Dec 2020.

Elevation (km) Number
GFS ERA5-Land AGRI Ta

R RMSE
(◦C)

Bias
(◦C) R RMSE

(◦C)
Bias
(◦C) R RMSE

(◦C)
Bias
(◦C)

Clear sky

0.0–1.0 730,560 0.98 2.38 0.40 0.99 2.12 −0.29 0.99 1.62 −0.03
1.0–2.0 207,110 0.97 3.17 0.81 0.97 2.68 −0.01 0.99 2.02 −0.01
2.0–3.0 32,973 0.96 2.94 0.39 0.96 3.04 −0.57 0.98 2.17 0.17
3.0–4.0 33,997 0.94 3.42 0.18 0.92 4.36 −1.67 0.97 2.38 −0.12
4.0–5.0 11,866 0.94 3.43 0.37 0.95 3.55 −1.77 0.97 2.44 −0.06

All 1,016,506 0.98 2.62 0.47 0.98 2.39 −0.31 0.99 1.81 −0.02

Cloudy sky

0.0–1.0 1,131,100 0.98 1.88 0.14 0.99 1.86 −0.21 0.99 1.54 0.01
1.0–2.0 237,650 0.97 2.41 0.36 0.98 2.38 −0.37 0.98 1.97 0.04
2.0–3.0 39,787 0.97 2.22 −0.09 0.95 3.49 −0.82 0.97 2.01 0.11
3.0–4.0 35,615 0.95 2.84 −0.54 0.92 4.47 −2.79 0.97 2.28 −0.17
4.0–5.0 10,913 0.95 3.09 −0.22 0.95 3.71 −2.08 0.96 2.62 0.24

All 1,455,065 0.98 2.01 0.15 0.98 2.15 −0.32 0.98 1.72 0.01

The performance of the AGRI-estimated Ta was also superior to that of the ERA5-Land
Ta. The RMSE of the AGRI Ta,clear was 0.50–1.98 ◦C smaller than that of the ERA5-Land Ta,
while that of Ta,cloudy was 0.34–2.19 ◦C smaller than that of the ERA5-Land. In a manner
similar to the GFS data, the RMSE difference between the ERA5-Land- and AGRI-estimated
Ta also increased with elevation. In addition, the accuracy values of the ERA5-Land Ta,clear
and Ta,cloudy were slightly better than those of the GFS when the elevation was <2 km, and
worse than those of the GFS when the elevation was >2 km. This showed that GFS can
provide effective Ta information, and it was appropriate to take GFS Ta as one of the inputs
for the model. The constraints of the AGRI and GFS data made the Ta estimation more
accurate and reliable.

Figure 8 illustrates the spatial distribution of the all-weather Ta estimated by GFS,
ERA5-Land, and AGRI at 12:00 UTC on 15 January, April, July, and October 2020. The Ta in
China exhibited clear seasonal variation, characterized by higher Ta during summer and
lower Ta during winter. In general, three datasets at four times showed similar Ta gradient
distributions in most regions. It was clear that latitude and elevation have important
influence on Ta distribution, with Ta decreases with the latitude and elevation. The Ta in
southeast China at low-elevation areas was usually higher than in other areas (e.g., western
China) for different seasons. The surface types also had an important impact on the
Ta distribution. For example, the elevation of the Taklimakan desert (i.e., 36.5–41.2◦N,
76.8–89.9◦E) can reach up to 0.8–1.5 km. This region exhibited higher Ta values than other
regions at the same elevation or latitude due to its surface type.

Overall, the datasets demonstrated consistent Ta distribution trends across various
regions. However, there were also obvious Ta differences in some regions, such as the
Tibetan Plateau, at 00 UTC on 15 January 2020. Specifically, the AGRI-estimated Ta was
higher than those of the GFS and ERA5-Land over the Tibetan Plateau. The ERA5-Land
and AGRI Ta at four times (Figure 9) were also individually validated with station data.
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The AGRI Ta accuracy at four times was better than that of the ERA5-Land, char-
acterized by small RMSE and large R values. The RMSE of the AGRI Ta ranged from
1.55 to 2.11 ◦C, while that of the ERA5-Land ranged from 1.83 to 2.72 ◦C. It is worth noting
that ERA5 showed an obvious negative bias when the Ta was less than −10 ◦C for 00 UTC
on 15 January (i.e., DOY 15), suggesting that the Ta values over the Tibetan Plateau were
underestimated. This also indicated that the AGRI-estimated Ta was more reliable than
the ERA5-Land data. Additionally, the low spatial resolution of ERA5 and GFS may hin-
der their ability to accurately capture complex terrain and local temperature variations,
resulting in larger temperature estimation errors.

In addition, AGRI Ta could show more details about Ta due to the higher spatial reso-
lution, especially for complex terrain areas. As an example, Figure 10 shows a comparison
of GFS-, ERA5-Land-, and AGRI-estimated all-weather Ta values over Sichuan province,
China, at 12:00 UTC on 15 July 2020. Sichuan province, located in the southwest of China,
has a complex and diverse terrain. From the west to the east of Sichuan, the terrain grad-
ually decreases, with a huge terrain drop of nearly 7000 m. The western Sichuan region
is dominated by plateau and mountain terrain, with an elevation of more than 3000 m.
Eastern Sichuan is dominated by a basin (i.e., the Sichuan Basin) and hills, with an elevation
of 500–2000 m.
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Influenced by topography, there were clear Ta differences between the eastern and
western parts of Sichuan province. The Ta in the Sichuan Basin reached 30 ◦C at 00 UTC on
15 July 2020, while the Ta in the western plateau was lower than 0 ◦C. The AGRI model can
better capture the spatial distribution details of air temperature (Figure 10), which gives it
obvious advantages in Ta-related research and applications over complex-terrain areas. In
addition, it can also provide finer data for studies of Ta diurnal variation characteristics
and urban heat island effects.

3.5. Model Sensitivity Analysis

The contribution and sensitivity of each input to the Ta,clear and Ta,cloudy model were
first analyzed using Simlab 2.2 software. Figure 11 shows the normalized total sensitivity
index of each predictor for the Ta,clear and Ta,cloud estimation models.
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Figure 11. Normalized total sensitivity indexes for predictors of Ta,clear (a) and Ta,cloud (b) estimation
models.

In general, the AGRI data, GFS Ta, elevation, and latitude had higher total sensitivity
index than the other inputs. For clear sky, AGRI LST showed the largest total sensitivity
index (~28%). The total sensitivity indexes for GFS Ta, elevation, and latitude were 26%, 21%
and 18%. In contrast, the total sensitivity indexes of longitudes, JD, and hour were generally
less than 4%. For cloudy sky, GFS Ta showed the highest total sensitivity index, with a
value of 35%. The total sensitivity indexes of AGRI CTT and CTH were about 13% and
11%. The sensitivity indexes of elevation and latitude in the cloudy model were 24% and
12%, respectively. This indicates that AGRI, GFS, elevation, and latitude play an important
role in Ta estimation in clear and cloudy conditions. Furthermore, the contribution of
GFS in high-elevation areas (i.e., ELE > 1000 m) is less than that in low elevation areas
(i.e., ELE < 1000 m). This is understandable because the GFS accuracy in high-altitude areas
is lower than that in low-elevation areas. In contrast, the contributions of AGRI LST at
different elevations are comparable.

It is worth mentioning that the errors in the latitude, longitude, JD, and hour in the
model are usually negligible, so their contributions are relatively stable. In contrast, the
total sensitivity index of the AGRI and GFS data is more closely related to their precision.
If the accuracy of GFS Ta is higher than that of AGRI LST, we believe that the contribution
of GFS will be larger than that of AGRI LST for Ta estimation. At present, the contribution
of the AGRI is slightly larger than that of the GFS Ta in the clear-sky model. In comparison,
the contribution of the GFS Ta is larger than that of the AGRI in the cloudy-sky model,
which may be related to the higher accuracy of GFS Ta in cloudy sky. With the improvement
in the accuracy of AGRI and GFS products, their contributions will also be improved. It is
necessary to improve the accuracy of satellites and GFS to obtain higher-precision Ta.

Furthermore, the model sensitivity analysis was performed regarding elevation, Ta,
LST, and CTT for different intervals. The elevation intervals were set to 0.2 km, while those
of Ta, LST, and CTT were set to 5.0 ◦C. Figure 12 shows the dependence of RMSE and bias
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on the elevation and Ta. The RMSE for both two models increased with elevation, while it
decreased with Ta. The RMSE values were mainly <2.0 ◦C when the elevation was <2.0 km,
while they reached up to 3.0 ◦C when the elevation was >4.0 km.
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The RMSE values for the clear and cloudy models were mainly <2.0 ◦C when Ta >−5.0 ◦C.
The RMSE increased obviously with the decrease in Ta when Ta < −5.0 ◦C, and it reached
up to 3.0 ◦C and 5.0 ◦C for clear and cloudy sky when the Ta was <−25 ◦C. The biases were
within ±0.5 ◦C when the Ta ranged from −10.0 to 35.0 ◦C. However, the model showed
obvious overestimation (i.e., bias >1.0 ◦C) when Ta < −10.0 ◦C.

Generally, the models produced a large error in low-Ta conditions (i.e., <−10 ◦C). This
might have been due to the following reasons: (1) the low Ta mainly occurred in winter
over western and northeastern China, which have fewer stations than other areas (Figure 1).
Therefore, the applicability of the model to low-Ta conditions was worse due to the smaller
number of training datasets. (2) The accuracy of the GFS Ta in winter was generally worse
than in other seasons (Figure 6). As one of the key input factors of the model, this might
result in relatively poor estimation accuracy under low-Ta conditions.

The RMSE values of the clear- and cloudy-sky models also showed a clear dependence
on LST and CTT (Figure 13). The RMSE values of Ta,clear and Ta,cloudy decreased with LST
and CTT, respectively. This indicated that the estimated Ta was more accurate at higher LST
and CTT. The higher LST mainly occurred in summer, and the sensitivity analysis aligned
with the seasonal characteristics of the model errors. High CTT mainly corresponded with
warm low clouds, which indicated that the Ta,cloudy estimation had better accuracy under
warm low clouds. This was also consistent with the seasonal variation of the Ta,cloudy error
characteristics and previous studies [36].
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4. Discussion

The proposed temperature estimation model offers significant advancements over
previous approaches. By incorporating all-weather conditions, it extends beyond clear-sky
models to estimate temperatures under both clear and cloudy conditions using separate
neural networks for each scenario. Additionally, the integration of GFS temperature fore-
cast data enhances the model’s accuracy across diverse weather situations. The model’s
reliability is further supported by its training and validation on independent datasets
from 2423 stations, ensuring robust performance evaluation. These improvements make
the model more versatile and reliable for temperature estimation under varying atmo-
spheric conditions.

Additionally, the model exhibits temperature estimation errors during winter and
in high-altitude regions. This may be attributed to the larger temperature fluctuations
in winter and the model’s suboptimal performance under extremely low temperatures.
In high-altitude areas, complex terrain and elevation differences complicate temperature
variation, and uncertainties in the environmental lapse rate further increase the difficulty
of accurate estimation. Moreover, GFS data errors in these regions are higher compared to
lower altitudes, contributing to the inaccuracies in temperature estimation. Future research
will focus on improving the model by incorporating additional data to enhance temperature
estimation accuracy in these areas.

Although the model proposed in this study has improved Ta estimation accuracy
and data availability, there are still some uncertainties, and further research is needed to
improve the results. Uncertainties in AGRI products may propagate through Ta estimation
models. As AGRI LST, CTT, and CTH are critical inputs, their precision significantly affects
model outcomes. However, the lack of dependable data makes it challenging to evaluate
the accuracy of LST, CTT, and CTH. The errors’ effects on the Ta estimation model require
further investigation. The distribution of the stations used for the model’s construction was
uneven. Introducing more regional weather stations could enhance accuracy, particularly
in western China. Since there are no LST, CTT, and CTH data available in the AGRI’s
probable clear-sky and probable cloudy-sky pixels, the Ta at these pixels is not estimated.
The pixels can be filled with GFS in practical applications. The proposed algorithm can also
be adapted for other geostationary satellites, like Himawari-8/9 and GOES-16/17.

For regions with complex terrain, such as the Tibetan Plateau and Sichuan Basin,
further optimization of the model is needed to improve temperature estimation accuracy.
Future research will focus on incorporating additional meteorological station data from
these areas, adding terrain features like slope and surface roughness. These measures are
expected to enhance the model’s performance in high-altitude and complex-terrain regions
and improve its adaptability to varying climate conditions.

5. Conclusions

An all-weather Ta estimation method was proposed using the AGRI and GFS products
and additional parameters. The RMSE of the estimated Ta was less than 1.8 ◦C, demonstrat-
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ing superior accuracy compared to the ERA5-Land data. This indicated that all-weather
Ta can be estimated using AGRI and auxiliary data. This proposed model can be applied
to other geostationary satellites. This study offers a new insight into the all-weather Ta
estimation from satellite observations.

The neural-network-based model was established and validated using the data from
2423 stations in China during 2020. The Ta estimation model errors exhibited clear spa-
tiotemporal variation characteristics, with higher accuracy during summer and poor accu-
racy during winter. The performance of the model in southeastern China was substantially
better than that in western China. This might be related to topography, station density,
the dynamic range of Ta changes, and GFS error characteristics. The accuracy of the
AGRI-estimated Ta was surpassed that of the ERA5-Land, particularly for areas with high
elevation. This also showed the good potential and robustness of the proposed models
for all-weather Ta estimation. A global sensitivity analysis of the inputs for the Ta esti-
mation model was performed. AGRI and GFS data are the most important factors for
accurate Ta estimation. It is necessary to improve the accuracy of satellites and GFS to
obtain higher-precision Ta.
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