A New Robust Lunar Landing Selection Method Using the Bayesian Optimization of Extreme Gradient Boosting Model (BO-XGBoost)
Abstract
:1. Introduction
- To develop a machine learning-based predictive model for future lunar landing site selection from an engineering safety perspective and conduct a landing suitability assessment.
- To provide insights into the key factors and feature representations that significantly enhance both landing exploration safety and the overall predictive accuracy of the model.
- To evaluate the performance of the proposed model against established criteria and expert-driven methods, as well as compare it with other models such as the CNN model.
2. Materials and Methods
2.1. Engineering Dataset
Name | Initial Resolution (ppd) | Source | |
---|---|---|---|
1 | LRO LOLA SLDEM | 512 | https://pgda.gsfc.nasa.gov/products/54, accessed on 7 July 2024 |
2 | LRO LOLA Slope | 512 | https://imbrium.mit.edu/DATA/SLDEM2015_SLOPE/, accessed on 7 July 2024 |
3 | LRO LOLA Hillshade | 512 | https://trek.nasa.gov/moon/TrekWS/rest/cat/metadata/fgdc/html?label=LRO_LOLAKaguya_ClrHillshade_60N60S_512ppd, accessed on 7 July 2024 |
4 | LRO Diviner Rock Abundance | 128 | https://dataverse.ucla.edu/dataset.xhtml?persistentId=doi:10.25346/S6/LFAVXU, accessed on 7 July 2024 https://pds-geosciences.wustl.edu/lro/urn-nasa-pds-lro_diviner_derived1/data_derived_gdr_l3/, accessed on 7 July 2024 |
5 | LRO LOLA Roughness | 256 | https://pds-geosciences.wustl.edu/lro/lro-l-lola-3-rdr-v1/lrolol_1xxx/data/lola_gdr/, accessed on 7 July 2024 |
6 | Clementine UVVIS OMAT | 512 | [25] |
2.2. Data Standardization and Preprocessing
2.3. Prediction Model Construction
- The original data from various datasets had good coverage for this region, providing a comprehensive and reliable training dataset for the model.
- This area has been frequently chosen as a landing site for lunar missions, such as in Apollo, Surveyor, Luna, and Chang’e 3 programs, indicating its suitability for successful landings.
- Extensive research and landing activities in this region suggest favorable engineering conditions, allowing the model to learn from previous explorations and improve its understanding of optimal landing site selection.
2.3.1. XGBoost Algorithm
2.3.2. Bayesian Optimization Algorithm
Algorithm 1 Main steps of Bayesian optimization process. |
1. Initialize the hyperparameter vector . |
2. For the iteration step : a. Select the next “most promising” evaluation point by maximizing the acquisition function: b. Evaluate the target function at the selected point: c. Update the dataset: , and update the probabilistic proxy model. |
3. End for. |
2.3.3. Evaluation Metrics
2.3.4. Feature Importance
2.3.5. Baseline Methods
3. Results
3.1. Model Performance
3.2. Analysis of Feature Importance
3.3. Predictions Results
3.3.1. Lunar-Wide Prediction
3.3.2. Evaluation of Recommended Landing Zones
3.4. Comparative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.; Yang, W.; Zhang, H.; Hui, H.; Hu, S.; Xiao, L.; Liu, J.; Xiao, Z.; Yue, Z.; Zhang, J.; et al. Return to the Moon: New perspectives on lunar exploration. Sci. Bull. 2024, 69, 2136–2148. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Liu, J.; Wang, Q.; Kang, Y.; Zou, Y.; Zhang, H.; Zhang, Y.; He, H.; Wang, Q.; Yang, R.; et al. Overview of lunar exploration and international lunar research station. Chin. Sci. Bull. 2020, 65, 2577–2586. [Google Scholar] [CrossRef]
- Canup, R.M.; Righter, K.; Dauphas, N.; Pahlevan, K.; Ćuk, M.; Lock, S.J.; Stewart, S.T.; Salmon, J.; Rufu, R.; Nakajima, M.; et al. Origin of the Moon. Rev. Mineral. Geochem. 2023, 89, 53–102. [Google Scholar] [CrossRef]
- Jolliff, B.L. Introduction to special section: New Views of the Moon II, a series of papers related to the lunar science initiative New views of the moon enabled by combined remotely sensed and lunar sample data sets. J. Geophys. Res. Planets 2000, 105, 20275–20276. [Google Scholar] [CrossRef]
- Li, C.; Wang, C.; Wei, Y.; Lin, Y. China’s present and future lunar exploration program. Science 2019, 365, 238–239. [Google Scholar] [CrossRef]
- Li, C.; Hu, H.; Yang, M.F.; Pei, Z.Y.; Zhou, Q.; Ren, X.; Liu, B.; Liu, D.; Zeng, X.; Zhang, G.; et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 2021, 9, nwab188. [Google Scholar] [CrossRef]
- Ye, P.; Huang, J.; Sun, Z.; Yang, M.; Meng, L. The process and experience in the development of Chinese lunar probe. Sci. Sin. Technol. 2014, 44, 543–558. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, X.; Li, C.; Ren, X.; Yan, W.; Tan, X.; Zhang, X.; Chen, W.; Wei, Z.; Liu, Y.; et al. Landing site selection and overview of China’s lunar landing missions. Space Sci. Rev. 2021, 217, 1–25. [Google Scholar] [CrossRef]
- Qiao, L.; Liu, X.; Zhao, J.; Wei, Y.; Xiao, L. Geological investigations of Luna 17, Apollo 15 and Chang’E-3 landing sites at Mare Imbrium of the Moon. Sci. Sin. Phys. Mech. Astron. 2016, 46, 029603. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Y.; Michael, G.G.; Ma, J.; Cai, W.; Qin, N. Chronological sequence of Chang’E-4 landing zone within Von Kármán crater. Icarus 2021, 354, 114086. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, T.; Zhang, H.; Jia, Y.; Zhang, H.; Chen, J.; Wu, X.; Shen, Z. The technical design and achievements of Chang’E-3 probe. Sci. Sin. Technol. 2014, 44, 331–343. [Google Scholar] [CrossRef]
- Xu, X.; Angelopoulos, V.; Wang, Y.; Zuo, P.; Wong, H.; Cui, J. The energetic particle environment of the lunar nearside: SEP Influence. Astrophys. J. 2017, 849, 151. [Google Scholar] [CrossRef]
- Chen, X.; Gao, F.; Wu, F.; Zhang, Y.; Wang, T.; Liu, W.; Zou, D.; Deng, F.; Gong, Y.; He, K.; et al. Large-scale array for radio astronomy on the farside (LARAF). Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2024, 382, 20230094. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Di, K.; Wan, W.; Liu, Z.; Gou, S.; Liu, B.; Peng, M.; Wang, Y.; Jia, M.; Liu, J.; et al. Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples. Nat. Astron. 2022, 6, 541–545. [Google Scholar] [CrossRef]
- Wu, B.; Li, F.; Ye, L.; Qiao, S.; Huang, J.; Wu, X.; Zhang, H. Topographic modeling and analysis of the landing site of Chang’E-3 on the Moon. Earth Planet. Sci. Lett. 2014, 405, 257–273. [Google Scholar] [CrossRef]
- Lemelin, M.; Blair, D.M.; Roberts, C.E.; Runyon, K.D.; Nowka, D.; Kring, D.A. High-priority lunar landing sites for in situ and sample return studies of polar volatiles. Planet. Space Sci. 2014, 101, 149–161. [Google Scholar] [CrossRef]
- Preethi, P.; Mamatha, H.R. Region-based convolutional neural network for segmenting text in epigraphical images. Artif. Intell. Appl. 2022, 1, 119–127. [Google Scholar] [CrossRef]
- Zeng, X.; Mu, L. Lunar spatial environmental indicators dynamically modeling based exploration area selection. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 91–96. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Liu, J.; Zeng, X.; Wang, J. Selection of whole-moon landing zones based on weights of evidence and fractals. Remote Sens. 2022, 14, 4623. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, L.; Wang, X.; Guo, N.; Wan, G. Selection of lunar south pole landing site based on constructing and analyzing fuzzy cognitive maps. Remote Sens. 2022, 14, 4863. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Di, K.; Peng, M.; Wan, W.; Liu, Z. A generative adversarial network for pixel-scale lunar DEM generation from high-resolution monocular imagery and low-resolution DEM. Remote Sens. 2022, 14, 5420. [Google Scholar] [CrossRef]
- Tao, Y.; Muller, J.-P.; Conway, S.J.; Xiong, S.; Walter, S.H.G.; Liu, B. Large area high-resolution 3D mapping of the Von Kármán crater: Landing site for the Chang’E-4 lander and Yutu-2 rover. Remote Sens. 2023, 15, 2643. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Approximating XGBoost with an interpretable decision tree. Inf. Sci. 2021, 572, 522–542. [Google Scholar] [CrossRef]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Haruyama, J.; Smith, D.E. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef]
- Rosenburg, M.A.; Aharonson, O.; Head, J.W.; Kreslavsky, M.A.; Mazarico, E.; Neumann, G.A.; Smith, D.E.; Torrence, M.H.; Zuber, M.T. Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter. J. Geophys. Res. Planets 2011, 116, E02001. [Google Scholar] [CrossRef]
- Powell, T.M.; Horvath, T.; Robles, V.L.; Williams, J.P.; Hayne, P.O.; Gallinger, C.L.; Greenhagen, B.T.; McDougall, D.S.; Paige, D.A. High-resolution nighttime temperature and rock abundance mapping of the Moon using the Diviner lunar radiometer experiment with a model for topographic removal. J. Geophys. Res. Planets 2023, 128, e2022JE007532. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Ghent, R.R.; Vasavada, A.R.; Paige, D.A.; Lawrence, S.J.; Robinson, M.S. Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. J. Geophys. Res. Planets 2011, 116, E00H02. [Google Scholar] [CrossRef]
- Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Mazarico, E.; Lemoine, F.G.; Head Iii, J.W.; Lucey, P.G.; Aharonson, O.; Robinson, M.S.; Sun, X.; et al. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit. Icarus 2017, 283, 70–91. [Google Scholar] [CrossRef]
- Lucey, P.G.; Blewett, D.T.; Taylor, G.J.; Hawke, B.R. Imaging of lunar surface maturity. J. Geophys. Res. Planets 2000, 105, 20377–20386. [Google Scholar] [CrossRef]
- Feng, Y.; Li, H.; Tong, X.; Li, P.; Wang, R.; Chen, S.; Xi, M.; Sun, J.; Wang, Y.; He, H.; et al. Optimized landing site selection at the lunar south pole: A convolutional neural network approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1–18. [Google Scholar] [CrossRef]
- Jia, Y.; Zou, Y.; Ping, J.; Xue, C.; Yan, J.; Ning, Y. The scientific objectives and payloads of Chang’E−4 mission. Planet. Space Sci. 2018, 162, 207–215. [Google Scholar] [CrossRef]
- Li, C.; Mu, L.; Zou, X.; Liu, J.; Ren, X.; Zeng, X.; Yang, Y.; Zhang, Z.; Liu, Y.; Wei, Z.; et al. Analysis of the geomorphology surrounding the Chang’e-3 landing site. Res. Astron. Astrophys. 2014, 14, 1514. [Google Scholar] [CrossRef]
- Flahaut, J.; Carpenter, J.; Williams, J.P.; Anand, M.; Crawford, I.A.; van Westrenen, W.; Füri, E.; Xiao, L.; Zhao, S. Regions of interest (ROI) for future exploration missions to the lunar South Pole. Planet. Space Sci. 2020, 180, 104750. [Google Scholar] [CrossRef]
- Foody, G.M.; McCulloch, M.B.; Yates, W.B. The effect of training set size and composition on artificial neural network classification. Int. J. Remote Sens. 1995, 16, 1707–1723. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, R.; Zhan, J.; Li, S.; Shama, A.; Zhan, R.; Wang, T.; Lv, J.; Bao, X.; Wu, R. Wildfire risk assessment in Liangshan prefecture, China based on an integration machine learning algorithm. Remote Sens. 2022, 14, 4592. [Google Scholar] [CrossRef]
- Liu, X.; Tang, H.; Zhang, X.; Chen, M. Gaussian process model-based performance uncertainty quantification of a typical turboshaft engine. Appl. Sci. 2021, 11, 8333. [Google Scholar] [CrossRef]
- Zheng, H.; Yuan, J.; Chen, L. Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation. Energies 2017, 10, 1168. [Google Scholar] [CrossRef]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Duan, Y.; Li, H.; Zhang, K.; Zhang, S.; Wu, S. Channel-spatial attention network for lunar image super-resolution. In Proceedings of the 2022 5th International Conference on Image and Graphics Processing, Beijing, China, 7–9 January 2022; pp. 333–338. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- De Rosa, D.; Bussey, B.; Cahill, J.T.; Lutz, T.; Crawford, I.A.; Hackwill, T.; van Gasselt, S.; Neukum, G.; Witte, L.; McGovern, A.; et al. Characterisation of potential landing sites for the European Space Agency’s Lunar Lander project. Planet. Space Sci. 2012, 74, 224–246. [Google Scholar] [CrossRef]
- Djachkova, M.V.; Litvak, M.L.; Mitrofanov, I.G.; Sanin, A.B. Selection of Luna-25 landing sites in the South Polar Region of the Moon. Sol. Syst. Res. 2017, 51, 185–195. [Google Scholar] [CrossRef]
- Hashimoto, T.; Hoshino, T.; Tanaka, S.; Otsuki, M.; Otake, H.; Morimoto, H. Japanese moon lander SELENE-2—Present status in 2009. Acta Astronaut. 2011, 68, 1386–1391. [Google Scholar] [CrossRef]
- Amitabh, S.; Srinivasan, T.P.; Suresh, K. Potential Landing Sites for Chandrayaan-2 Lander in Southern Hemisphere of Moon. In Proceedings of the 49th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1 March 2018; p. 1975. [Google Scholar]
- Niu, R.; Zhang, G.; Mu, L.; Lin, Y.-T.; Liu, J.; Bo, Z.; Dai, W.; Qin, Z.; Zhang, P. Scientific objectives and suggestions on landing site selection of Manned Lunar Exploration Engineering. Adv. Astronaut. Sci. Technol. 2024, 7, 37–50. [Google Scholar] [CrossRef]
- Jawin, E.R.; Valencia, S.N.; Watkins, R.N.; Crowell, J.M.; Neal, C.R.; Schmidt, G. Lunar science for landed missions workshop findings report. Earth Space Sci. 2019, 6, 2–40. [Google Scholar] [CrossRef]
- Xiao, L.; Qiao, L.; Xiao, Z.; Huang, Q.; He, Q.; Zhao, J.; Xue, Z.; Huang, J. Major scientific objectives and candidate landing sites suggested for future lunar explorations. Sci. Sin. Phys. Mech. Astron. 2016, 46, 029602. [Google Scholar] [CrossRef]
- Ling, Z.; Zhang, J.; Wu, Z.; Sun, L.; Liu, J. The compositional distribution and rock types of the Aristarchus region on the Moon. Sci. Sin. Phys. Mech. Astron. 2013, 43, 1403. [Google Scholar] [CrossRef]
- Mustard, J.F.; Pieters, C.M.; Isaacson, P.J.; Head, J.W.; Besse, S.; Clark, R.N.; Klima, R.L.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; et al. Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data. J. Geophys. Res. Planets 2011, 116, E00G12. [Google Scholar] [CrossRef]
- Zisk, S.H.; Hodges, C.A.; Moore, H.J.; Shorthill, R.W.; Thompson, T.W.; Whitaker, E.A.; Wilhelms, D.E. The Aristarchus-Harbinger region of the Moon: Surface geology and history from recent remote-sensing observations. Moon 1977, 17, 59. [Google Scholar] [CrossRef]
- Lucey, P.G.; Hawke, B.R.; Pieters, C.M.; Head, J.W.; McCord, T.B. A compositional study of the Aristarchus region of the Moon using near-infrared reflectance spectroscopy. J. Geophys. Res. Solid Earth 1986, 91, 344–354. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Neumann, G.A.; Nimmo, F.; Kiefer, W.S.; Taylor, G.J.; Melosh, H.J.; Phillips, R.J.; Solomon, S.C.; Andrews-Hanna, J.C.; Asmar, S.W.; et al. The crust of the moon as seen by GRAIL. Science 2013, 339, 671–675. [Google Scholar] [CrossRef]
- Thaisen, K.G.; Head, J.W.; Taylor, L.A.; Kramer, G.Y.; Isaacson, P.; Nettles, J.; Petro, N.; Pieters, C.M. Geology of the Moscoviense Basin. J. Geophys. Res. Planets 2011, 116, E00G07. [Google Scholar] [CrossRef]
- Whitten, J.; Head, J.W.; Staid, M.; Pieters, C.M.; Mustard, J.; Clark, R.; Nettles, J.; Klima, R.L.; Taylor, L. Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1. J. Geophys. Res. Planets 2011, 116, E00G09. [Google Scholar] [CrossRef]
- Ling, Z.; Jolliff, B.L.; Wang, A.; Li, C.; Liu, J.; Zhang, J.; Li, B.; Sun, L.; Chen, J.; Xiao, L.; et al. Correlated compositional and mineralogical investigations at the Chang’e-3 landing site. Nat. Commun. 2015, 6, 8880. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, F.A.; Saganti, P.B. Radiation Environment of the Moon. In Encyclopedia of Lunar Science; Cudnik, B., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 997–1006. [Google Scholar]
- Carpenter, J.D.; Fisackerly, R.; De Rosa, D.; Houdou, B. Scientific preparations for lunar exploration with the European Lunar Lander. Planet. Space Sci. 2012, 74, 208–223. [Google Scholar] [CrossRef]
- Salman, H.; Kalakech, A.; Steiti, A. Random forest algorithm overview. Babylon. J. Mach. Learn. 2024, 2024, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, G.; Partsinevelos, P. Lunar ground segmentation using a modified U-net neural network. Mach. Vis. Appl. 2024, 35, 50. [Google Scholar] [CrossRef]
Data | Grade | Suitability Level | Score |
---|---|---|---|
SLDEM | [−9127, −5930) | Slightly Unsuitable | 2 |
[−5930, 533) | Highly Suitable | 10 | |
[533, 1102) | Suitable | 9 | |
[1102, 3166) | Moderately Suitable | 3 | |
[3166, 10,772] | Unsuitable | 1 | |
Slope | [0.001, 3.2) | Highly Suitable | 10 |
[3.2, 7.9) | Suitable | 9 | |
[7.9, 12.8) | Moderately Suitable | 3 | |
[12.8, 19.9) | Slightly Unsuitable | 2 | |
[19.9, 81] | Unsuitable | 1 | |
Hillshade | [1, 76.4) | Slightly Unsuitable | 2 |
[76.4, 134) | Slightly Unsuitable | 2 | |
[134, 164.7) | Highly Suitable | 10 | |
[164.7, 184) | Suitable | 9 | |
[184, 254] | Unsuitable | 1 | |
Rock Abundance | [0.001, 0.015) | Highly Suitable | 10 |
[0.015, 0.031) | Suitable | 9 | |
[0.031, 0.13) | Moderately Suitable | 3 | |
[0.13, 0.36) | Slightly Unsuitable | 2 | |
[0.36, 2.29] | Unsuitable | 1 | |
Roughness | [0.003, 0.008) | Slightly Unsuitable | 2 |
[0.008, 0.13) | Suitable | 9 | |
[0.13, 0.25) | Highly Suitable | 10 | |
[0.25, 035) | Slightly Unsuitable | 2 | |
[0.35, 1.06] | Unsuitable | 1 | |
Optical Maturity | [1, 62) | Slightly Unsuitable | 2 |
[62, 103) | Highly Suitable | 10 | |
[103, 114) | Suitable | 9 | |
[114, 176) | Slightly Unsuitable | 2 | |
[176, 254] | Unsuitable | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, S.; Wang, Y.; Gong, Q.; Liu, J.; Kang, X.; Liu, H.; Chen, R.; Zhu, K.; Zhang, S. A New Robust Lunar Landing Selection Method Using the Bayesian Optimization of Extreme Gradient Boosting Model (BO-XGBoost). Remote Sens. 2024, 16, 3632. https://doi.org/10.3390/rs16193632
Wen S, Wang Y, Gong Q, Liu J, Kang X, Liu H, Chen R, Zhu K, Zhang S. A New Robust Lunar Landing Selection Method Using the Bayesian Optimization of Extreme Gradient Boosting Model (BO-XGBoost). Remote Sensing. 2024; 16(19):3632. https://doi.org/10.3390/rs16193632
Chicago/Turabian StyleWen, Shibo, Yongzhi Wang, Qizhou Gong, Jianzhong Liu, Xiaoxi Kang, Hengxi Liu, Rui Chen, Kai Zhu, and Sheng Zhang. 2024. "A New Robust Lunar Landing Selection Method Using the Bayesian Optimization of Extreme Gradient Boosting Model (BO-XGBoost)" Remote Sensing 16, no. 19: 3632. https://doi.org/10.3390/rs16193632
APA StyleWen, S., Wang, Y., Gong, Q., Liu, J., Kang, X., Liu, H., Chen, R., Zhu, K., & Zhang, S. (2024). A New Robust Lunar Landing Selection Method Using the Bayesian Optimization of Extreme Gradient Boosting Model (BO-XGBoost). Remote Sensing, 16(19), 3632. https://doi.org/10.3390/rs16193632