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Abstract: Land surface temperature (LST) is important in a variety of applications, such as urban
thermal environment monitoring and water resource management. In this paper, eleven candidate
split-window (SW) algorithms were adapted to Thermal Infrared Sensor-2 (TIRS-2) data of the Landsat
9 satellite for estimating the LST. The simulated dataset produced by extensive radiative transfer
modeling and five global atmospheric profile databases was used to determine the SW algorithm
coefficients. Ground measurements gathered at Surface Radiation Budget Network sites were used to
confirm the efficiency of the SW algorithms after their performance was initially examined using the
independent simulation dataset. Five atmospheric profile databases perform similarly in training
accuracy under various subranges of total water vapor. The candidate SW algorithms demonstrate
superior performance compared to the radiative transfer equation algorithm, exhibiting a reduction
in overall bias and RMSE by 1.30 K and 1.0 K, respectively. It is expected to provide guidance for the
generation of the Landsat 9 LST using the SW algorithms.

Keywords: Landsat 9; LST; split-window; SURFRAD

1. Introduction

Land surface temperature and emissivity (LST&E) are the key parameters to control
the water and energy budget balance and have been identified as important Earth System
Data Records (ESDRs) by the National Aeronautics and Space Administration (NASA) and
many other international organizations [1–5]. The LST product generated from thermal
infrared (TIR) remote sensing provides a unique opportunity to obtain the LST at regional
and global scales and has been widely used in hydrology, meteorology, and surface energy
balance [6–8].

With the launch of Landsat 9 on 27 September 2021, the Landsat series of satellites
have been providing TIR observations for 40 years, thus constituting a highly valuable
data resource for the generation of LST records [9–11]. The integration of the Landsat 9 and
Landsat 8 satellites will facilitate cooperative observations with an eight-day revisit period.
Landsat 9 is equipped with the TIR Sensor-2 (TIRS-2), which features two TIR channels
similar to the TIRS on Landsat 8. However, the TIRS-2 has significantly reduced stray
light, thereby enabling more accurate LST [12,13]. Researchers have studied the accuracy of
Landsat 9 LST products produced by the radiative transfer equation (RTE) algorithm since
the United States Geological Survey (USGS) made these products available. In comparison
to ground measurements, the average bias and root mean square error (RMSE) were found
to be 0.24 K and 3.42 K, respectively. Additionally, the Landsat 9 LST product showed
good agreement with the Landsat 7/8 LSTs [10]. The ground campaign conducted by
the Rochester Institute of Technology (RIT) also indicated that Landsat 9 is exhibiting
consistent behavior with Landsat 8, the ground reference, and unmanned aircraft system
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(UAS) measurements [9]. It should be noted that the LST differences between Landsat 8
and Landsat 9 are typically more pronounced in barren desert regions and areas with a
high concentration of built-up land [14].

Since 1 March 2023, the Landsat 9 Collection 2 data from the first year of operation
have been reprocessed to incorporate calibration updates identified by the USGS/NASA
calibration and validation team. Using accurate ground measurements as a reference, Niclòs
et al. performed vicarious calibrations on the originally calibrated and reprocessed Landsat
9 TIRS-2 data and assessed the impact of the reprocessing on the LST retrieval [15]. No
significant calibration errors were observed, and both single-channel and split-window (SW)
algorithms can provide LST with uncertainties around 1 K. Theoretically, the split-window
algorithm performs better than the single-channel algorithm over global conditions without
needing high-precision atmospheric profiles [16–18]. The researchers also developed SW
and ensemble learning algorithms for Landsat 9 LST retrieval [11,19,20]. For example,
a radiance-based split-window (RBSW) algorithm was proposed to retrieve Landsat 9
LST and the validation result indicated that a reduction of about 0.8 K in RMSE was
achieved compared to the official LST product [11]. Taking full advantage of the ensemble
learning method, a new algorithm is proposed to retrieve LST directly from the Landsat
9 top-of-atmosphere brightness temperature without requiring external parameters [20].
Compared to ground measurements, the algorithm achieves a bias and RMSE of −0.465 K
and 2.508 K, respectively.

Over the past 30 years, various SW algorithms have been developed to perform LST
retrieval using different TIR sensors. Among the published SW algorithms, which one is
the most reliable and accurate is unclear because every sensor has a different filter response
and central wavelength. Extensive investigations are needed to validate the accuracy of
Landsat 9 LSTs derived from various SW algorithms. In this paper, we adapted eleven
published SW algorithms to TIRS-2 data and evaluated their performance using ground
measurements. This paper has the following structure. In Section 2, we describe the SW
algorithms, the land surface emissivity estimation, the simulation dataset, and the ground
LST estimation. The results and analysis are presented in Section 3. The discussion and
conclusions are given in Sections 4 and 5.

2. Datasets and Methods
2.1. Split-Window LST Algorithms

After conducting a comprehensive review of LST algorithms, we selected eleven SW
algorithms from the literature as candidate algorithms for the TIRS-2, which were also
summarized in previous research [21–23]. Table 1 presents the formulas for the eleven
candidate LST algorithms, which utilize the land surface emissivity and the brightness
temperatures of two TIRS-2 bands centered at 11 and 12 µm, respectively. Although
the total water vapor (TWV) can be explicitly considered in the SW algorithm, it is not
considered here. On the one hand, the uncertainty in the TWV will affect the accuracy of
the retrieved LST. On the other hand, previous research suggested that this led to only
minor enhancements in the accuracy of SW algorithms [15,24]. Additionally, the TIRS-2
has a near-zero view zenith angle, so the path length correction term is not necessary for
the SW algorithms [25].

In this study, we utilized both Landsat 9 Collection 2 (C2) Level-1 (L1) and Level-2 (L2)
products obtained from https://earthexplorer.usgs.gov (accessed on 1 June 2024) for LST
retrieval. The brightness temperatures of channels 10 and 11 were calculated from digital
numbers provided in the Landsat 9 C2 L1 product. The Normalized Difference Vegetation
Index (NDVI) was calculated using the land surface reflectance (LSR) product included in
the Landsat 9 C2 L2 product. To eliminate the impact of clouds and cloud shadows, the
quality assessment (QA) band was employed.

https://earthexplorer.usgs.gov
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Table 1. Summary of the eleven candidate LST algorithms used, including names, formulas, and references.

Name Formula References

SW 1 Ts = C0 +
(

C1 + C2
1−ε

ε + C3
∆ε
ε2

)
T10+T11

2 +
(

C4 + C5
1−ε

ε + C6
∆ε
ε2

)
T10−T11

2
[7,26]

SW 2 Ts = C0 +
(

C1 + C2
1−ε

ε + C3
∆ε
ε2

)
T10+T11

2 +
(

C4 + C5
1−ε

ε + C6
∆ε
ε2

)
T10−T11

2 + C7(T10 − T11)
2 [27]

SW 3 Ts = C0 + C1T10 + C2(T10 − T11) + C3ε10T10 + C4(1 − ε10)(T10 − T11) + C5T11∆ε [28]
SW 4 Ts = C0 + C1T10 + C2(T10 − T11) + C3ε + C4ε(T10 − T11) + C5∆ε [29]
SW 5 Ts = C0 + C1

T10
ε + C2

T11
ε + C3

1−ε
ε

[30]
SW 6 Ts = C0 + C1T10 + C2(T10 − T11) + C3(1 − ε) + C4∆ε [31]
SW 7 Ts = C0 + C1T10 + C2(T10 − T11) + C3

1−ε
ε + C4

∆ε
ε2 [32]

SW 8 Ts = C0 + C1T10 + C2(T10 − T11) + C3ε [33]
SW 9 Ts = C0 + C1T10 + C2(T10 − T11) + C3ε + C4

∆ε
ε [34]

SW 10 Ts = C0 + C1T10 + C2(T10 − T11) + C3(1 − ε10) + C4∆ε [35]
SW 11 Ts = C0 + C1T10 + C2(T10 − T11) + C3(T10 − T11)

2 + C4(1 − ε10) + C5∆ε [36]

Note: C0 − C7 are the split-window algorithm coefficients; T10 and T11 are the brightness temperatures of channels
10 and 11, respectively; ε = 0.5 ∗ (ε10 + ε11), ∆ε = ε10 − ε11, ε10, and ε11 are the emissivity values of channels 10
and 11, respectively.

2.2. Land Surface Emissivity Estimation

Taking into account the emissivity increment from the cavity effect caused by the
multiple scattering in the pixel, the Landsat 9 LSE can be calculated from the improved
NDVI threshold method, which can be expressed by the following equation [37–39]:

εi =

 a1i +
7
∑

j=2
ajiρj NDVI < NDVIs

εviPv + εsi(1 − Pv) + 4dεPv(1 − Pv) NDVIs ≤ NDVI
(1)

Pv =

(
NDVI − NDVIs

NDVIv − NDVIs

)2
(2)

dε = εvi(−0.435εsi + 0.4343)/0.985 (3)

where εi is the Landsat LSE of channel 10 or 11, εvi and εsi are the vegetation and soil
component emissivities, and ρj is the LSR of the Operational Land Imager 2(OLI-2) channel
j. According to the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) spectral library, εvi and εsi are set to 0.9847 and 0.9706, 0.9854 and 0.9769 for
channels 10 and 11, respectively. The coefficients aji used to calculate the soil emissivity for
Landsat 9 channels 10 and 11 are shown in Table 2, with corresponding root mean square
errors (RMSEs) of 0.0043 and 0.0029 for channels 10 and 11, respectively.

Table 2. The regression coefficients for the emissivity calculation.

Channel a1 a2 a3 a4 a5 a6 a7

10 0.9766 −0.1068 0.1524 −0.0398 −0.0568 0.0791 −0.0712
11 0.9820 0.0265 −0.0565 0.0574 −0.0663 0.0761 −0.0603

2.3. Simulation Dataset

We utilized the moderate spectral resolution atmospheric transmittance model version
5.2 (MODTRAN5.2), global atmospheric profiles, and the ASTER/MODIS spectral library
to build a comprehensive simulation database for deriving coefficients essential for the
mentioned SW algorithms. The specific process was as follows:

1: Global atmospheric profiles and the spectral response functions of TIRS-2 channels
were input into the MODTRAN5.2 to obtain three atmospheric parameters (atmo-
spheric upward radiance L↑

i , downward radiance L↓
i , and transmittance τi) for TIRS-2

channels [40,41]. In previous research, the global atmospheric profile databases such
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as Thermodynamic Initial Guess Retrieval (TIGR) [42], Global Atmospheric Profiles
from Reanalysis Information (GAPRI) [43], SeeBor V5.0 training database of global
profiles (SeeBor for simplicity as follows) [44], and Cloudless Land Atmosphere Ra-
diosounding (CLAR) [45] were frequently utilized to compute the SW algorithm
coefficients for thermal sensors onboard different satellites [46–52]. Recently, the
comprehensive clear-sky database based on the European Centre for Medium-Range
Forecast (ECMWF) version-5 reanalysis (ERA5 for simplicity as follows) [53] was
also used to calculate atmospheric parameters [54]. This research utilized the five
atmospheric profile databases mentioned above to calculate the SW algorithm coef-
ficients. Additionally, the radiosounding profiles collected from global radiosonde
stations [40,55] were used independently for validation purposes.

2: Emissivity spectra selected from the ASTER/MODIS spectral library were convolved
with the spectral response function of TIRS-2 channels to obtain the channel-integrated
LSE (εi). In total, 110 emissivity spectra were selected for simulation, including
19 vegetation types, 39 soil types, 5 snow/water types, 35 rock types, and 12 manmade
material types [24].

εi =

∫ λ2
λ1 ε(λ) fi(λ)dλ∫ λ2

λ1 fi(λ)dλ
(4)

where εi is the channel-integrated LSE of channel i, ε(λ) is the measured emissivity
spectra of various types, and fi(λ) is the spectral response function of TIRS-2 channel i.

3: The top-of-atmosphere radiation observed by TIRS-2 channels (LTOA
i ) can be calcu-

lated from the following radiative transfer equation:

LTOA
i = τi

(
εiBi(Ts) + (1 − εi)L↓

i

)
+ L↑

i (5)

where L↑
i , L↓

i , and τi are the atmospheric upward radiance, downward radiance, and
transmittance of channel i, respectively. Bi is the channel-averaged Planck’s radiance
function of channel i. Ts is the LST used for the simulation. We followed the method
described in [16] and set the Ts as T0 − 5, T0, T0 + 5, T0 + 10, T0 + 15, and T0 + 20, with
T0 representing the air temperature at the first layer of the atmospheric profiles [56].

4: The brightness temperatures of TIRS-2 channels (Ti) can be calculated using the
inversion of the Plank function [57]:

Ti =
hc
kλi

1

ln
(

2hc2λ−5
i /LTOA

i + 1
) (6)

where h, c, and k are Plank’s constant, the light speed, and Boltzmann’s constant,
respectively. λi is the central wavelength of channel i. For the TIRS-2 channels, the
values are 10.8 and 12.0 µm, respectively [58].

5: The SW algorithm coefficients in Table 1 are determined by ordinary least squares
linear regression. The candidate SW algorithm coefficients obtained from the SeeBor
databases are given in Appendix A. Distribution of the air temperature at the first
layer and the total water vapor of the six atmospheric profile databases are given in
Appendix B.

2.4. Ground Measurements

The estimated Landsat LST was validated using ground measurements from the
Surface Radiation Budget Network (SURFRAD), which is extensively used in evaluating
LST and surface longwave radiation products [59–62]. Specific information on each in situ
site is shown in Table 3. With an uncertainty of about 5 W/m2 and an effective footprint of
about 70 × 70 m2, the pyrgeometer measures upward and downward longwave radiances
at 3-minute intervals before January 2009 and every minute after that [63,64]. The in situ
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LSTs were calculated from the site-measured upward and downward longwave radiation
using the following equation [65]:

Ts =

[
F↑ − (1 − εb)F↓

εbσ

] 1
4

(7)

where Ts is the surface LST, F↑ is the measured upward longwave radiation, F↓ is the
measured downward longwave radiation, σ is Stefan–Boltzmann’s constant (5.67 × 10−8

W/m2/K4), and εb is the BBE, which can be calculated from the in situ measured emissivity
or the five ASTER spectral emissivities using the following equation [66]:

ε = 0.197 + 0.025ε10 + 0.057ε11 + 0.237ε12 + 0.333ε13 + 0.146ε14 (8)

Table 3. Detailed information on seven SURFRAD sites.

Site Abbreviation Latitude Longitude Land Cover Path/Row Landsat Period Path/Row

Bondville BND 40.052 −88.373 cropland 023/032

2021/10~2024/05

023/032
GoodwinCreek GWN 34.255 −89.873 grassland 023/036 023/036

Penn. State Univ. PSU 40.720 −77.931 cropland 016/032 016/032
Sioux Falls SXF 43.734 −96.623 grassland 029/030 029/030
Fort Peck FPK 48.308 −105.102 grassland 035/026 035/026

TableMountain TBL 40.126 −105.238 grassland 033/032 033/032
Desert Rock DRA 36.623 −116.020 shrubland 040/035 040/035

3. Results and Analyses
3.1. SW Algorithm Training

Figure 1 illustrates the performance of the eleven candidate SW algorithms under
different TWV subranges. As illustrated in Figure 1, when the TWV is below 1.5 g/cm2,
the SW algorithms show similar performance, with RMSEs ranging between 0.24 and
0.44 K, except for the SW5 and SW8 algorithms. The SW algorithms trained using five
atmospheric profile databases also show consistent performance in uncertainty. When the
TWV is between 1.5 and 3.0 g/cm2, the SW algorithms trained using the CLAR database
exhibit the best results, with RMSEs of about 0.80 K for the SW5 and SW8 algorithms
and less than 0.50 K for the other algorithms. The GAPRI, SeeBor, and TIGR databases
demonstrate similar RMSEs in various SW algorithms, while the ERA5 database shows
slightly inferior results with RMSEs greater than 0.52 K for all the algorithms. When the
TWV is between 3.0 and 4.5 g/cm2, the SW algorithms trained using the CLAR database
exhibit the best results, followed by the SeeBor, GAPRI, and ERA5 databases. The TIGR
database produces the least favorable results, with RMSEs ranging from 0.70 to 0.94 K.
When the TWV exceeds 4.5 g/cm2, the GAPRI database comes from behind and performs
best, with RMSEs of the SW algorithms between 0.65 and 0.84 K. The RMSE values for
the eleven SW algorithms trained using the TIGR database are all above 1.26 K. With the
increase in the TWV, SW5 and SW8 demonstrate comparable performance to other SW
algorithms, with an RMSE difference of less than 0.1 K. Without classification of the TWV,
the Seebor database has the highest simulation accuracy, followed by the GAPRI and TIGR
databases. The SW2 and SW11 algorithms, which utilize coefficients simulated from the
SeeBor database, demonstrate superior performance compared to other SW algorithms that
employ coefficients simulated from alternative databases.
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The above-mentioned results show that most SW algorithms demonstrate slight de-
viations in training accuracy when operating under specific TWV subranges. The SW1,
SW2, SW3, and SW4 algorithms have been found to demonstrate slightly superior training
accuracy across all four TWV subranges. In contrast, the SW5 and SW8 algorithms have
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been identified as exhibiting less optimal training accuracy. In the event that the TWV is
less than 4.5 g/cm2, any of the five atmospheric profile databases may be employed for
simulation purposes, as they yield comparable results. Conversely, the GAPRI database is
recommended for simulation when the TWV is above 4.5 g/cm2.

3.2. Sensitivity Analysis

The sensor noise, LSE, and TWV represent three principal sources of uncertainty that
contribute to errors in LST retrieval [7,24]. To address this, we conducted an assessment of
the sensitivity of the candidate SW algorithms to these three variables. The eleven candi-
date SW algorithm coefficients, calculated from the CLAR database, were tested with an
independent dataset simulated using radiosounding profiles. Normal distributed random
noise with a mean of 0 and a standard deviation of 0.07, 0.15, and 0.40 K was incorporated
into the simulated TIRS-2 brightness temperature [58]. Furthermore, uncertainties of 0.005,
0.01, and 0.015 (unitless) and 0.5, 0.8, and 1.0 g/cm2 were added to the LSE and TWV
datasets, respectively [19]. Figure 2 shows the performance of the eleven candidate SW
algorithms before and after the addition of random noise under different TWV subranges.
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As illustrated in Figure 2a,d, the SW5 and SW8 algorithms exhibit the least sensitivity
to emissivity uncertainty, while the SW10 and SW11 algorithms demonstrate the second-
least sensitivity. In contrast, the SW1 and SW2 algorithms exhibit the greatest sensitivity
to emissivity uncertainty. The LST uncertainty increases as the emissivity noise increases.
This increase is more pronounced for lower TWV than for higher TWV. For example, when
the emissivity uncertainty is 0.01, the RMSE of the SW2 algorithm increases from 0.27 K to
2.22 K and from 1.04 K to 1.41 K when the TWV is less than 1.5 g/cm2 and greater than
4.5 g/cm2, respectively. This suggests that the uncertainty in the emissivity has a more
significant impact on the retrieval of the LST under dry atmospheric conditions, such as in
northwest China and western Australia.

As shown in Figure 2b,e, when the uncertainty in the brightness temperature is equal
to 0.15 K, the increase ratio of the RMSE is less than 0.5% for the majority of algorithms, with
values above 1.0% for the SW1 and SW2 algorithms under a lower TWV subrange. Further-
more, as the TWV increases, the ratio of the increase declines. Based on the performance
of on-orbit calibrations, the noise level in both channels of TIRS-2 is below 0.1 K [15,67].
Therefore, the uncertainty in the brightness temperature has a slight impact on the retrieval
of the LST, both in dry and humid atmospheric conditions.

As indicated in Figure 2c,f, when the uncertainty in the TWV is less than 1.0 g/cm2,
the increase ratio of the RMSE is less than 0.6% for the eleven candidate algorithms. In other
words, the uncertainty in the TWV has a negligible effect on the retrieval of the LST. But as
indicated in previous research [24,68], the incorrect selection of the TWV subrange led to a
significant increase in LST retrieval. For example, when the TWV were below 1.5 g/cm2,
the bias and RMSE for the SW2 algorithm were 0.0 K and 0.41 K, respectively. However,
when a subrange of coefficients spanning 1.5–3.0 g/cm2 was employed, the values shifted
to −0.66 K and 0.79 K, respectively.

3.3. T-Based Validation Results

Figure 3 presents the bias and RMSE between the retrieved Landsat 9 LST and the
in situ LST for all the matchups at the SURFRAD sites. After removing invalid matchups
affected by clouds and cloud shadows based on the Landsat level-2 pixel quality channel,
234 matchups were obtained at the SURFRAD sites. In addition, the official Landsat 9 LST
that was retrieved by the RTE algorithm was also validated. As illustrated in Figure 3,
the Landsat 9 LSTs retrieved using the SW algorithm achieved a lower RMSE than those
retrieved using the RTE algorithm when compared to the ground measurements, except for
the PSU site. The GWN and SXF sites had a root mean square error (RMSE) of approximately
1.3 and 1.6 K, followed by the BND, PSU, and DRA sites with an RMSE ranging between
2.0 and 2.7 K. The FPK and TBL sites achieved an RMSE above 5.0 K for most of the SW
algorithms. The RTE algorithm performed slightly better than the SW algorithm regarding
the RMSE at the PSU station and provided consistently worse results at the other stations.
In terms of the average difference (bias) between the retrieved Landsat 9 LST and the in
situ LST, the Landsat 9 LST retrieved from the SW algorithm were underestimated at the
PSU, GWN, and DRA sites. Conversely, the corresponding LSTs were overestimated at the
BND, SXF, TBL, and FPK sites. However, the RTE algorithm underestimated the LST at the
PSU site and overestimated it elsewhere.

The validation results above indicate that the candidate SW algorithm is suitable
for estimating the LST from the Landsat 9 TIR data. There was no significant difference
between the eleven candidate SW algorithms, with overall biases and RMSEs ranging
from 1.44 to 1.61 K and 3.50 to 3.73 K, whereas these values were 2.82 K and 4.69 K for the
RTE algorithm.
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4. Discussion

Since March 2023, Landsat 9 Collection 2 data have been reprocessed based on the
initial calibration results, which may affect the accuracy of the retrieved LST. Based on
the research of Niclòs et al. [15], the official LST product retrieved with the original and
reprocessed TIRS-2 data have similar accuracy in Valencia, but a systematic difference of
about −0.6 K was observed for the SW LST. We also calculated the statistics between the
official Landsat 9 LST product and the in situ LST obtained at the SURFRAD sites. The
bias (RMSE) for the original and reprocessed TIRS-2 data were 1.44 (2.94) K and 1.42 (2.93)
K. The validation result in Section 3 indicates that the SW algorithm can achieve a more
accurate LST than the RTE algorithm, which is consistent with previous conclusions [11,19].
The uncertainty of the LST algorithm at the DRA, FPK, and TBL sites was greater than
2.5 K, which can be explained by the spatial heterogeneity in the cover types [64]. After
excluding three sites with high spatial heterogeneity, the overall biases (RMSEs) of the
Landsat 9 LSTs were between −0.18 (1.65) and 0.07 (1.71) K for the SW algorithms, while
the bias and RMSE were 1.06 K and 2.38 K, respectively, for the RTE algorithm.

To assess the accuracy of the retrieved Landsat 9 LSTs at the FPK and TBL sites, we used
the MODIS LSTs produced by the Temperature-Emissivity Separation (TES) algorithms
as a reference for evaluating the performance of the retrieved LSTs. Figure 4 presents the
cross-validation result for Landsat 9 LST at the FPK and TBL sites. It can be seen that the
retrieved Landsat 9 LSTs have higher uncertainties during the summer months. The RMSEs
range from 3.00 to 3.30 K at the FPK site and from 2.36 to 2.71 K at the TBL site for the SW
algorithms, while the values are 3.96 K and 3.00 K for the RTE algorithm. As for the bias,
the values are between −0.72 K and 0.37 K for the SW algorithms, but the biases are 3.08 K
and 2.34 K for the RTE algorithm. It seems that the imprecise LSE could be the reason for
the poor performance of the official Landsat 9 LST. Because the official LSEs at the FPK
and TBL sites were invariant with the change in the NDVIs, they were unable to accurately
reflect the changes in the vegetation cover over time [69,70]. In contrast to the summer,
the validation results for the different algorithms show similar accuracy in the autumn,
with an RMSE of about 1.20 K. Figure 5 shows the spatial distribution of the difference
between the retrieved Landsat 9 LST and the MODIS LST at the FPK site (Figure 5a–d) and
the TBL site (Figure 5e–h). As shown in Figure 5, the discrepancies between the MODIS
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LST and the Landsat 9 LST retrieved by the SW1 and SW3 algorithms exhibit a comparable
spatial distribution. Conversely, the differences between the MODIS LST and the Landsat
9 LST retrieved by the SW5 (RTE) algorithm are more pronounced than those retrieved
by the SW1 and SW3 algorithms in most regions. The 25th (75th) percentiles of the LST
discrepancy between the MODIS LST and the Landsat 9 LST retrieved from the RTE, SW1,
SW3, and SW5 algorithms are 0.28 (1.52), −0.66 (0.80),−0.78 (0.69), and −1.13 (0.27) K,
respectively, whereas the corresponding values are −0.17 (0.94), −0.72 (0.65),−0.84 (0.54),
and −0.57 (0.80) K for Figure 5e–h. The statistical results show that the SW algorithms can
achieve more accurate Landsat 9 LSTs than the RTE algorithm compared with the MODIS
LST, which is also consistent with previous research [11,15,19].
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5. Conclusions

The LST is one of the key parameters in the Earth’s surface energy on regional and
global scales. In this paper, we have adapted eleven candidate SW algorithms for LST re-
trieval from Landsat 9 TIRS-2 data. First, the coefficients of the SW algorithms were derived
from the simulation dataset constructed using MODTRAN, emissivity spectra, and differ-
ent global atmospheric profiles. Simulated data sets derived from CLAR, ERA5, GAPRI,
SeeBor, and TIGR were used to calculate the coefficients, while the radiosonde profiles
collected from global radiosonde stations were used independently for validation purposes.
The NDVI threshold method was then used to estimate the Landsat 9 LSE to facilitate
LST retrieval. Finally, the effectiveness of the SW algorithms was assessed using ground
measurements collected from SURFRAS sites. The main findings are summarized below:

(1) Any of the five atmospheric profile databases can be used for simulation when the
TWV is less than 4.5 g/cm2. However, the GAPRI profile is recommended for simu-
lation when the TWV is greater than 4.5 g/cm2. The SW5 and SW8 algorithms that
do not depend on the emissivity difference exhibit the least sensitivity to emissivity
uncertainty but with larger uncertainty in LST retrieval than other SW algorithms.

(2) At the SURFRAD sites, the candidate SW algorithms exhibit comparable performance,
with overall bias (RMSEs) ranging from 1.44 (3.50) to 1.61 (3.73) K compared to 2.82 K
and 4.69 K for the RTE algorithm. As most of the TWVs at the SURFRAD sites
were below 3.0 g/cm2, more ground measurements with higher TWVs are needed
to characterize the performance of the SW algorithms under different atmospheric
conditions.

(3) The consistency of the differences between the MODIS and Landsat LSTs indicates
the stability of the SW algorithms over the seasons. The cross-validation results also
indicated that the SW algorithms can achieve more accurate Landsat 9 LSTs than
the RTE algorithm. This study provides an alternative method for the estimation of
Landsat 9 LSTs.
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Appendix A

Table A1. The candidate SW algorithm coefficients obtained from the SeeBor databases
when TWV ≤ 1.5 g/cm2.

TWV Algorithm C0 C1 C2 C3 C4 C5 C6 C7

TWV ≤ 1.5

SW1 −1.149 1.005 0.171 −0.321 3.242 9.788 3.352
SW2 −1.206 1.005 0.171 −0.318 3.168 9.973 1.656 0.017
SW3 −1.171 1.209 1.24 −0.205 −0.017 −0.225
SW4 53.516 1.015 3.4 −57.882 −2.328 −90.52
SW5 −1.485 1.237 −0.23 −216.696

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html
https://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html
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Table A1. Cont.

TWV Algorithm C0 C1 C2 C3 C4 C5 C6 C7

TWV ≤ 1.5

SW6 −4.331 1.015 1.136 57.644 −87.958
SW7 −4.198 1.016 1.128 48.251 −80.916
SW8 63.866 1.04 0.18 −74.749
SW9 52.035 1.015 1.137 −56.323 −83.669

SW10 −4.331 1.015 1.136 57.644 −59.136
SW11 −4.263 1.015 1.183 −0.027 58.247 −60.984

Table A2. The candidate SW algorithm coefficients obtained from the SeeBor databases when TWV is
between 1.5 and 3.0 g/cm2.

TWV Algorithm C0 C1 C2 C3 C4 C5 C6 C7

1.5 < TWV ≤ 3.0

SW1 2.027 0.991 0.162 −0.289 4.502 4.982 −0.142
SW2 1.559 0.993 0.159 −0.277 4.081 6.371 −4.287 0.045
SW3 2.079 1.19 1.821 −0.199 0.309 −0.209
SW4 56.517 1 3.842 −57.249 −2.089 −91.909
SW5 −3.718 2.272 −1.259 −219.879
SW6 −0.739 1 1.815 58.767 −90.927
SW7 −0.625 1 1.811 49.136 −83.873
SW8 77.291 1.042 1.317 −89.949
SW9 56.715 1 1.815 −57.416 −86.403

SW10 −0.739 1 1.815 58.767 −61.544
SW11 −0.719 1 1.823 −0.002 58.821 −61.623

Table A3. The candidate SW algorithm coefficients obtained from the SeeBor databases when TWV is
between 3.0 and 4.5 g/cm2.

TWV Algorithm C0 C1 C2 C3 C4 C5 C6 C7

3.0 < TWV ≤ 4.5

SW1 7.006 0.97 0.125 −0.179 5.825 5.607 −6.667
SW2 7.033 0.971 0.121 −0.17 5.427 6.546 −8.647 0.029
SW3 6.948 1.117 2.434 −0.147 3.202 −0.135
SW4 45.468 0.976 7.065 −40.462 −4.666 −65.858
SW5 4.467 3.253 −2.274 −227.672
SW6 4.645 0.977 2.531 50.085 −65.413
SW7 4.718 0.977 2.529 42.2 −60.659
SW8 73.407 1.008 2.349 −77.837
SW9 53.789 0.977 2.531 −49.123 −62.135

SW10 4.645 0.977 2.531 50.085 −40.371
SW11 4.646 0.976 2.585 −0.009 50.221 −40.409

Table A4. The candidate SW algorithm coefficients obtained from the SeeBor databases when TWV <
4.5 g/cm2.

TWV Algorithm C0 C1 C2 C3 C4 C5 C6 C7

4.5 < TWV

SW1 16.303 0.931 0.066 −0.05 7.549 7.287 −12.614
SW2 16.673 0.93 0.064 −0.047 7.284 7.655 −13.198 0.015
SW3 16.242 0.988 3.279 −0.057 5.908 −0.071
SW4 27.655 0.934 10.517 −12.201 −7.256 −40.622
SW5 21.031 4.247 −3.333 −235.971
SW6 14.683 0.934 3.468 37.12 −40.894
SW7 14.763 0.934 3.467 31.48 −38.14
SW8 67.998 0.942 3.431 −55.77
SW9 51.22 0.934 3.468 −36.523 −38.835

SW10 14.683 0.934 3.468 37.12 −22.334
SW11 14.304 0.934 3.596 −0.016 37.204 −22.263
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Table A5. The candidate SW algorithm coefficients obtained from the SeeBor databases when TWV is
between 0.0 and 10.0 g/cm2.

TWV Algorithm C0 C1 C2 C3 C4 C5 C6 C7

0.0 < TWV ≤ 10.0

SW1 5.329 0.98 0.161 −0.334 5.254 −8.199 12.475
SW2 −2.056 1.009 0.158 −0.196 2.47 −2.851 −14.001 0.243
SW3 5.429 1.183 2.229 −0.204 −8.078 −0.251
SW4 62.613 0.988 −5.971 −60.013 8.151 −99.067
SW5 7.088 2.573 −1.599 −196.261
SW6 2.419 0.99 1.919 54.979 −103.642
SW7 2.596 0.99 1.918 45.482 −95.275
SW8 95.857 1.004 1.671 −97.594
SW9 55.894 0.99 1.919 −53.433 −98.498

SW10 2.419 0.99 1.919 54.979 −76.153
SW11 −3.038 1.011 0.932 0.208 50.854 −48.481

Appendix B
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