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Abstract: Droughts have a significant impact on surface water resources, especially in arid and semi-
arid regions. Computational and data handling limitations have constrained previous time-series
analyses. However, advances in cloud computing services and remote sensing technology allow for a
more detailed examination. This study integrates multi-source satellite-derived data with a cloud
computing platform to assess the impact of long-term drought on surface water and water balance in
Iran from 2000 to 2021. Given the varying effects of drought on highlands and lowlands, the analysis
was conducted at three levels: the entire country, the highlands, and the lowlands. The results of this
study reveal imbalances between water balance from 2000 to 2021, with notable disparities observed
during 2000–2007, 2009–2014, and 2016–2019. The results also show varying drought trends (e.g.,
−1.22 in 2000 and −0.73 in 2021), with severe conditions captured in 2008 (SPI: −1.92). Additionally,
our analysis illustrated that lowlands were more impacted by droughts compared to highlands.
Long-term drought and permanent surface water had correlation values of 0.33 across the country,
0.33 in the highlands, and 0.31 in the lowlands. For seasonal surface water, coefficients were 0.18 for
the entire country, 0.16 for the highlands, and 0.18 for the lowlands. Overall, long-term drought
had minimal effect on reducing surface water. These findings show that drought is only part of the
explanation for the decrease in surface water resources.

Keywords: remote sensing; cloud computing; drought; water resources; highlands; lowlands; Iran

1. Introduction

Drought is characterized by a shortage of available water compared to typical con-
ditions, with “normal” being determined by an average set over a specific period or a
defined threshold [1,2]. Drought is a climate-related occurrence manifesting across various
time scales and influencing the hydrological cycle [3]. The intensification of the global
water cycle, driven by both climate change and increased human activities, has accelerated
the escalation of droughts since the 1950s [4]. Increases in precipitation variability and
temperature have resulted in more frequent and severe droughts, affecting larger areas
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around the world [5]. Characterizing drought effects is challenging because they vary
spatially and temporally and have direct or indirect effects [6]. Droughts, regardless of
the form (i.e., agricultural, meteorological, socioeconomic, ecological, and hydrological
droughts), significantly impact socio-economic and ecological systems [7]. Drought also im-
pacts water balance due to drastic decreases in precipitation over an extended period [8,9].
Additionally, drought can affect both water quantity and quality. In the domain of water
quality, reduced flows can lead to a decrease in organic matter, nutrients, and sediment
pathways in surface water streams. The occurrence of droughts also results in limited
water availability to support and sustain various social, environmental, and economic
services [10]. This is crucial as many regions are anticipated to witness more frequent and
severe droughts due to future climate change [11,12]. Consequently, drought monitoring
and mitigation have become major research topics [11].

While drought occurs throughout the world, its frequency and intensity are higher
in arid and semi-arid regions because of the extreme climate variability found in these
areas [13]. Water shortages and low per-capita water allocations are typical characteristics
of arid and semi-arid environments [14]. Iran, which has become drier over the last
60 years with its arid and semi-arid climate [15], has encountered a severe water crisis in
recent decades [16]. For instance, since 2000, the size of Iran’s largest lake, Lake Urmia,
has drastically decreased [17,18]. Significant changes have also occurred over the past
few decades in other Iranian surface water bodies, including Lake Shadeghan in the
southwest [19], Lake Bakhtegan in the center [20], and Lake Hamoun in the east [21].
These significant water losses pose unprecedented challenges and difficulties to sustainable
development and ecosystem health of the country. Consequently, Iran’s drought monitoring
has drawn the attention of numerous scholars [22–25]. However, these studies either did
not investigate the influence of drought on water balance or only focused on local scales
(basin-scale), leaving a research gap concerning how drought has impacted surface water
and water balance in Iran over the past few decades.

Historically, in situ station-based measurements, such as the Palmer drought severity
index [26], were the main approaches used for drought monitoring. A revolutionary change
in drought observation happened towards the end of the twentieth century with the advent
of earth observation and remote sensing technologies, especially with the launch of the
Landsat satellite in 1972 [11]. Satellite-based methods not only record meteorological data
but also track Earth’s surface changes, like surface water extension and dynamics, offering
a wealth of contextual information for drought monitoring [22]. Remote sensing has thus
reshaped the field by enabling the observation and tracking of important drought-related
variables over broader temporal and spatial scales than were previously impossible with
traditional techniques [27]. The literature demonstrates the effective application of remote
sensing data for drought monitoring at all scales, from local to global [22,28,29]. Commonly
employed indices such as the Standardized Precipitation Index (SPI) [30], Standardized
Water-level Index (SWI) [31], and Vegetation Condition Index (VCI) [32] serve to measure
meteorological, hydrological, and agricultural droughts, respectively. The SPI method
focuses solely on precipitation in its computation, offering versatility across various time
scales without statistical constraints [33]. By integrating cumulative precipitation deficits
at different spatiotemporal scales, SPI emerges as a multi-scalar tool [34]. Although SPI
operates under the assumption that rainfall variability predominantly drives droughts,
with other factors such as temperature considered stationary, its capacity to detect drought
across different time scales (1, 3, 6, 12, and 24 months) underscores its utility in monitoring
diverse drought types (meteorological, agricultural, and hydrological) [35]. Given the
objective of this study to examine the nexus between drought and surface water resources,
the SPI emerges as particularly valuable for its adeptness in capturing drought dynamics
across various temporal scales [36,37].

Combining data from multiple remote sensing sources can boost research accuracy
by taking advantage of the strengths of different datasets while minimizing their weak-
nesses [38]. Satellite-derived Moderate Resolution Imaging Spectroradiometer (MODIS)
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time series imagery, along with Landsat and Sentinel-2, are widely used satellite-derived
data for large-scale drought monitoring [39]. MODIS data, despite their lower resolution,
are incredibly useful for large-scale drought monitoring because they offer a high revisit fre-
quency. On the other hand, Landsat and Sentinel-2 provide higher-resolution images (30 m
and 10 m, respectively), making them great for extracting smaller changes. When studying
a large-scale area (e.g., national scale), processing and assessing big remote sensing data is
mandatory [40,41]. GEE is a geospatial processing platform providing free access to large
volumes of remote sensing imagery and pre-processed products, rapid parallel processing,
and advanced machine learning algorithms [42]. Studies have shown that combining multi-
source remote sensing data with GEE can be very effective in environmental monitoring
studies [40,43]. Khan and Gilani [29] used multi-source remote sensing data for global
monitoring of drought based on GEE. Therefore, integrating multi-source satellite-derived
data and cloud computing platforms can enhance our understanding of droughts and their
potential link with surface water area and water balance fluctuations.

Drought status varies not just among regions, but also between lowlands and high-
lands [44,45]. More specifically, drought unquestionably affects both lowlands and high-
lands, but its severity varies between these environments [46]. As a result, the goal of
this research is to not only investigate the drought trend in Iran as a whole but also in
the highlands and lowlands, offering precise information on how droughts occur in Iran.
Overall, the objectives of this study can be described as follows:

1. Track the drought trend in Iran from 2000 to 2021, and assess drought intensity for the
entire country, the lowlands, and the highlands.

2. Examine the possible impact of drought on surface water and water balance changes
in Iran over the last two decades.

3. Determine which is more affected by drought: surface water in highlands or lowlands.

2. Materials and Methods
2.1. Study Area

Iran is one of the most developed and populated countries in Western Asia, covering a
territory of approximately 1,648,195 km2 and extending from 44◦ to 63◦ E and 25◦ to 40◦ N
(Figure 1). The country’s average annual precipitation stands at around 250 mm/year,
showing a decreasing trend in recent years [47]. Precipitation levels vary from 50 mm/year
in hyper-arid low-elevation regions, such as the Kavir and Lut deserts, to 1600 mm/year
in northern areas adjacent to the Caspian Sea [48,49]. Most of Iran experiences an arid
climate characterized by scant rainfall and high potential evapotranspiration. Temperature
fluctuations across Iran are considerable due to its diverse topography. Winters in the
northwest are notably frigid, with temperatures plummeting as low as −20 ◦C, whereas
the southwest endures scorching summers, with temperatures soaring close to 50 ◦C.

Iran’s landscape is characterized by rugged, mountainous terrain enclosing elevated
interior basins and flats. The prominent Zagros Mountains form the primary mountain
chain extending from the northwest to the southeast. Along the Caspian Sea coast lies in
the north another mountain range, the narrow yet lofty Alborz Mountains. At the heart of
Iran lies the Central Plateau, comprising several enclosed basins. The plateau maintains
an average elevation of about 900 m, with towering mountains exceeding 3000 m. To the
east, the plateau is dominated by two salt deserts, the Dasht-e Kavir (Great Salt Desert) and
the Dasht-e Lut. Iran’s lowlands are limited to the southwest with the Khuzestan Plain
and coastal plain to the north with the Caspian Sea. The Persian Gulf coast to the south of
Khuzestan and the Gulf of Oman coast lack significant plains due to the Zagros Mountains
extending to the shoreline [49].
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Figure 1. Location of the study area: (a) In the world, (b) Iran’s river basins, and (c) elevation and
distribution of permanent rivers throughout the country.

2.2. Materials

This study used three types of datasets (Table 1) which are freely available on GEE for
drought monitoring and analysis of its effects on surface water and water balance variations
in Iran between 2000 and 2021. More specifically, the global surface water data (version 1.4)
generated by the Joint Research Center (JRC) were employed to monitor various surface
water bodies, including permanent, seasonal, dams, and lakes, and changes in this study.
We also included the Terra Net Evapotranspiration product of MODIS (MOD16A2GF
Version 6.1) in the water balance computation. These data, which have been available since
2000, are generated by the Penman–Monteith equation logic based on daily meteorological
reanalysis data and other MODIS products like vegetation property dynamics, albedo,
and land cover. Precipitation of CHIRPS product version 2 was also used in this study to
calculate SPI and water balance values across the entire country; its accuracy for Iran was
validated by [50,51]. CHRIPS provides precipitation time series data from 1981 using in
situ station data and satellite imagery.

Table 1. Data used in this study.

Variable Product Spatial Resolution (m) Temporal Resolution Google Earth Engine ID

Surface water JRC Yearly Water Classification
History, v1.4 30 Yearly JRC/GSW1_4/

YearlyHistory

Evapotranspiration MOD16A2GF.061: Terra Net
Evapotranspiration 500 8-day MOD16A2GF Version 6.1

Precipitation
CHIRPS Daily: Climate Hazards

Group InfraRed Precipitation
with Station Data (V2.0)

5566 Daily UCSB-
CHG/CHIRPS/DAILY

2.3. Methodology

The entire process (Figure 2) was executed through the GEE cloud computing platform
and comprised four primary steps: drought monitoring, surface water area change tracking,
water balance change analysis, and examining the possible drought effect on surface water
resources and water balance. Given that the rate and impact of drought varies between
lowlands and highlands, it is important to highlight that we conducted our research at
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three levels: the entire nation, lowlands, and highlands. To separate between lowlands
and highlands, we determined an elevation threshold of 1500 m, categorizing places above
1500 m as highlands and those below as lowlands. It is crucial to note that this threshold
may differ in different parts of the world, as it was determined using the unique elevation
conditions in Iran.
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Figure 2. An overview of the applied methodology for monitoring the long-term drought trends and
their effects on surface water bodies and water balance variations in Iran.

2.3.1. Drought Monitoring

This study employed the well-known Standardized Precipitation Index (SPI) [52] to
track the trend of drought in Iran from 2000 and 2021. This index, introduced by [30], is
designed to evaluate drought severity across various time frames (e.g., 1, 3, 6, 9, 12, 24,
and 48 months). The SPI is closely linked to soil moisture over short timescales, while
over longer periods, it is related to groundwater levels and reservoir storage. The SPI
measures precipitation by comparing observed values to a selected probability distribution,
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quantifying the deviation from the norm. Typically, raw precipitation data are fitted to
a gamma or Pearson Type III distribution and then transformed into a normal distribu-
tion [53]. This technique includes standardizing precipitation data collected over specific
time intervals by fitting them to an appropriate statistical distribution, often the gamma
distribution. Subsequently, the standardized data are transformed into a standard normal
distribution [30]. The probability density function for the gamma distribution is utilized in
this process.

g(x) =
1

βαΓ(α)
xα−1e−x/β (1)

where α represents a shape parameter (α > 0), β indicates a scale parameter (β > 0), x
represents the precipitation value (x > 0), and Γ(α) indicates the gamma function, expressed
as

∫ ∞
0 yα−1e−ydy.
α and β are evaluated based on the following Equation (2):

α =
1 +

√
1 + 4A

3

4A
, β =

x
α

(2)

where A = ln(x)− ∑ ln(x)
n and n is the number of observations in the time series.

Precipitation has a cumulative probability G(x) expressed based on Equation (3):

G(x) =
∫ x

0
g(x)dx =

∫ x
0 xα−1e−x/βdx

βαΓ(α)
(3)

By letting t = x/β, Equation (3) is not a complete gamma function.

G(x) =

∫ x
0 tα−1e−tdt

Γ(α)
(4)

The gamma distribution is not defined for x = 0, thus the cumulative probability of
0 precipitation (q) is considered separately and final cumulative probability is calculated
based on Equation (5):

H(x) = q + (1 − q)G(x) (5)

To assess SPI, the approximation can be employed to transform the cumulative proba-
bility into normal distribution using Equation (6):

SPI = −
(

t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
, 0 < H(x) ≤ 0.5 (6)

where t =
√

ln (1/H(x)2).

SPI = t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3 , 0.5 < H(x) ≤ 1.0 (7)

where t =

√
ln (1/

[
1 − H(x)2

]
) and the values of various variables are c0 = 2.515517,

c1 = 0.802853, c2 = 0.010328, d1 = 1.43278, d2 = 0.189269, and d3 = 0.001308.

2.3.2. Surface Water Area Change Tracking

The Joint Research Centre (JRC) released global surface water data employing all
available Landsat data in Google Earth Engine (GEE) since 1984 [43]. In this research, we
tracked surface water changes over the research area using the yearly water classification
(version 1.4) produced by JRC. We employed two senior remote sensing experts to conduct
a thorough visual review of the JRC data set since several studies have indicated substantial
noise in the data set for the years prior to 2000. Based on our review, the data set for the
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study area and time period was error-free. Then, based on the objectives of this study, we
calculated yearly variations in seasonal and permanent surface water areas across Iran
from 2000 to 2021. Once data for the entire nation were acquired, the same procedure
was repeated for both highlands and lowlands. In this study, permanent water refers to
surface water that is present throughout the entire year, while seasonal water refers to
water sources that are available only during certain times of the year.

2.3.3. Water Balance Monitoring

In this study, we used a simple method to calculate the water balance value where
the water balance for each pixel in the study area was calculated by differentiating precipi-
tation from evapotranspiration. To this end, we first utilized precipitation data from the
CHIRPS product to calculate the precipitation rate on an annual basis. Because the CHIRPS
product is only available for each day, we collected all available CHIRPS products for the
research area between 1 January and 31 December and calculated the aggregated value for
each pixel. Next, to estimate evapotranspiration, we estimated evapotranspiration using
the MOD16A2GF Version 6.1 product. We used the same approach to calculate annual
evapotranspiration for the study area. Finally, we differentiated precipitation from evapo-
transpiration. This approach determines if a specific place experiences a water surplus or
deficit during a given time period.

2.3.4. Statistical Analyses

We applied the Mann–Kendall (MK) non-parametric trend test [54,55] to find sig-
nificant trends (with a significance level of p < 0.05) in the time series dataset. To solve
serial correlation, we used the modified version of the MK test [56]. In this method, a
slope estimator is used to calculate the magnitude of significant trends. Additionally, the
Standard Normal Homogeneity Test (SNHT) [57] was employed to detect abrupt shift
points in the time series. These methods have been utilized in many research studies for
monitoring the impacts of climate variability and changes on hydroclimatology [15,58,59].
Furthermore, Pearson’s correlation coefficient [60] was applied to assess the relationship
between drought and surface water in Iran.

3. Results
3.1. Drought Trend

The analysis of drought revealed several significant patterns and fluctuations in Iran
from 2000 to 2021, as depicted in Figures 3 and 4. According to Figures 3 and 4, from
2000 to 2002, there was an increase in drought severity, with an average decrease in the SPI
value (around −0.13). Notably, the majority of Iran (this includes both highlands such as
the Elburz and Khorasan Mountains, and lowlands like the Kavir and Lut deserts) was
severely affected by drought, excluding southwest and west regions. From 2003 to 2007,
there was a noticeable decrease in drought severity, approximately −0.35; however, in
2008, the drought value abruptly peaked at −1.92, marking the most severe drought in the
study period. In this year, except for the southeast, the entire country experienced severe
drought conditions.
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Figure 3. Drought trends in Iran from 2000 to 2021 estimated using SPI.
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Figure 4. Graph of the drought trend from 2000 to 2021 estimated using SPI.

Following the peak in 2009, drought decreased to −0.08, with the northwest and west,
predominantly highland regions, being the most affected. In 2010, drought significantly
increased again to −1.53, impacting the southern, central, southwestern, and eastern
regions severely. The subsequent year, 2011, saw a slight reduction in the drought value
to around −1.18. From 2011 to 2014, drought exhibited a gradual increase, reaching a
severe point of −1.32 in 2014. In 2015, the severity of drought decreased, but it began to
increase again until 2018, reaching approximately −0.13. The years 2019 and 2020 showed
a decrease in drought severity; however, in 2021, there was an observed increase in drought
once more. The most severe drought conditions were recorded in 2008 (−1.92), followed by
2014 (−1.67) and 2010 (−1.53). Conversely, the years 2009, 2007, and 2011 were identified
as having more moderate drought conditions, with values of −0.08, −0.13, and −0.35,
respectively.

Overall, the results indicate that both the highlands and lowlands across Iran have
been variably affected by drought over the years. The severity of drought has fluctu-
ated, impacting different regions at different times. Nonetheless, all parts of the country
have experienced the adverse effects of drought, underscoring the widespread nature of
this phenomenon.

3.2. Surface Water Variation

The analysis of surface water trends from 2000 to 2021 reveals significant variations in
both permanent and seasonal surface water resources across Iran, as depicted in Figures 5–7.
For the entire country, there was a net reduction of 2292 km2 in permanent surface water
from 2000 to 2021. Specifically, between 2000 and 2005, there was a slight increase of
64.2 km2. However, from 2006 to 2015, a significant decrease of 468.5 km2 was observed.
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The trend reversed from 2016 to 2020, showing an increase in permanent surface water;
however, 2021 saw another decrease. In the highlands, permanent surface water increased
by 2.4 km2 over the study period. From 2000 to 2005, there was an increase of 84.4 km2

followed by a significant reduction of 95.4 km2 between 2005 and 2008. Subsequently, there
was a consistent increase of 13.4 km2 s from 2008 to 2021. In the lowlands, permanent
surface water resources decreased by approximately 231.6 km2 from 2000 to 2021. The
variation was minimal from 2000 to 2007; however, a significant reduction of 331.3 km2

occurred from 2008 to 2015. From 2016 onwards, there was a recovery, with permanent
surface water increasing from 764.4 km2 in 2016 to 787.9 km2 in 2021.
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Figure 5. Time series analysis illustrating the yearly fluctuations and trends in surface water bodies,
along with the long-term drought patterns indicated by the SPI.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 19 
 

 

  

  

Figure 5. Time series analysis illustrating the yearly fluctuations and trends in surface water bodies, 
along with the long-term drought patterns indicated by the SPI. 

 
Figure 6. Box plots showing variations in surface water bodies. 

Entire Country (P) Highlands (P) Lowlands (P) Entire Country (S) Highlands (S) Lowlands (S)

0

500

1000

1500

2000

Mean Minimum/Maximum

500

900

1,300

1,700

2,100

2000 2005 2010 2015 2020

En
tir

e 
C

ou
nt

ry
 (S

)

mu1 = 977.472 mu2 = 1540

Sen's slope = 41.25
MK p-value < 0.05

SNHT p-value < 0.05
Change year = 2013

500

700

900

1,100

2000 2005 2010 2015 2020

Lo
w

la
nd

s (
P)

mu1 = 990.991 mu2 = 772.948

Sen's slope = 0.04
MK p-value < 0.05

SNHT p-value < 0.05
Change year = 2008

0

500

1,000

1,500

2,000

2000 2005 2010 2015 2020

Lo
w

la
nd

s (
S)

Sen's slope = 40.33
MK p-value < 0.05

SNHT p-value < 0.05
Change year = 2013

50

100

150

200

250

2000 2005 2010 2015 2020

H
ig

hl
an

ds
 (S

)

Sen's slope = 1.96
MK p-value > 0.05
No significant trend was detected

SNHT p-value > 0.05
No significant change point was detected

Figure 6. Box plots showing variations in surface water bodies.
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Figure 7. The share of permanent and seasonal water resources in Iran from 2000 to 2021.

Seasonal surface water resources generally increased across the country from 2000 to
2021, with a net increase of about 687.34 km2. From 2000 to 2012, there was a steady
increase that accelerated from 2013, reaching a peak of 1984.3 km2 in 2019. A decrease was
observed from 2020 onwards. In the highlands, the volume of seasonal surface water was
175.3 km2 in 2000 but decreased by about 54.2 km2 in 2001. From 2001 to 2004, it increased
by about 46.5 km2 followed by a decrease of 43.3 km2 until 2010. There was a resurgence
from 2011 to 2012, and although 2014 and 2015 saw little change, the level rose to 151.6 km2

in 2016. The highest level was recorded in 2017 at 248.6 km2, while 2018 had the lowest
at 111.7 km2. From 2019 to 2020, seasonal surface water increased, but decreased again in
2021. In the lowlands, seasonal surface water increased by 737.2 km2 from 2000 to 2021.
There was a regular increase of 511.9 km2 from 2000 to 2018, reaching a peak of 1778.6 km2

in 2019; however, there was a decline in 2020 and 2021 compared to 2019.
Overall, permanent surface water resources decreased in the entire country and in

the lowlands from 2000 to 2021, but did not change in the highlands. In contrast, seasonal
surface water resources increased in the entire country and in the lowlands from 2000 to
2021 but decreased in the highlands over the same period. As illustrated in Figure 6 (box
plots), the variability in seasonal surface water is higher than the variability in permanent
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surface water. Figure 7 further indicates that 44% of surface water is permanent and 56% is
seasonal. Among the permanent surface water, 5% is in the highlands and 95% is in the
lowlands. For seasonal surface water, the highlands account for 14%, while the lowlands
represent 86%, indicating the highlands’ seasonal water share is three times greater.

3.3. Relationship between Drought Trend and Surface Water Variation

Analysis of the correlation between the SPI and various hydrological variables pro-
vides important insights into the relationship between drought conditions and water
availability in Iran (Figure 8). This implies that wetter conditions contribute to increased
water availability in the basin, which is a reasonable and expected outcome.
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Figure 8. Correlation between long-term drought and surface water bodies in Iran, analyzed using 
the Pearson technique. 
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water management practices [58]. Iran faces significant challenges in maintaining a sus-
tainable water balance, particularly given the increasing demand for water across various 
sectors such as agriculture, industry, and domestic use. Figure 9 illustrates the fluctuations 

Figure 8. Correlation between long-term drought and surface water bodies in Iran, analyzed using
the Pearson technique.

For permanent surface water, the moderate positive correlation with SPI (0.33 for the
entire country, 0.33 for the highlands, and 0.31 for the lowlands) suggests that improvements
in precipitation conditions positively influence the extent of permanent surface water bodies.
This indicates that drought conditions, as reflected by lower SPI values, have a noticeable
impact on reducing permanent surface water.

In the case of seasonal surface water, the coefficients of correlation with SPI are lower
(0.18 for the entire country, 0.16 for the highlands, and 0.18 for the lowlands). This weaker
positive correlation suggests that while seasonal surface water bodies are affected by
changes in precipitation, the impact is less pronounced compared to permanent surface
water bodies. Seasonal surface water is likely more influenced by short-term precipitation
events and other factors such as temperature and evaporation rates.

3.4. Water Balance

Water balance in Iran is a complex and critical issue due to several factors, including
its arid and semi-arid climate, limited water resources, population growth, and ineffi-
cient water management practices [58]. Iran faces significant challenges in maintaining
a sustainable water balance, particularly given the increasing demand for water across
various sectors such as agriculture, industry, and domestic use. Figure 9 illustrates the
fluctuations in water balance in Iran from 2000 to 2021. There is a noticeable imbalance
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between water precipitation and evapotranspiration throughout this period. The disparity
between evapotranspiration was particularly pronounced from 2000 to 2007; however,
by 2008, water inflows and outflows started to converge, as depicted in Figure 9. From
2009 to 2014, the relationship between water inflows and outflows reverted to a pattern
similar to that observed before 2008. In 2015, there was a significant alignment between
water inflows and outflows in Iran. From 2016 to 2019, the correlation between water
inflows and outflows increased again, reaching an unprecedented level in 2019 compared
to the previous two decades. Since 2020, there has been a trend towards a more balanced
correlation between water inflows and outflows, moving towards a normalized condition.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 19 
 

 

in water balance in Iran from 2000 to 2021. There is a noticeable imbalance between water 
precipitation and evapotranspiration throughout this period. The disparity between evap-
otranspiration was particularly pronounced from 2000 to 2007; however, by 2008, water 
inflows and outflows started to converge, as depicted in Figure 9. From 2009 to 2014, the 
relationship between water inflows and outflows reverted to a pattern similar to that ob-
served before 2008. In 2015, there was a significant alignment between water inflows and 
outflows in Iran. From 2016 to 2019, the correlation between water inflows and outflows 
increased again, reaching an unprecedented level in 2019 compared to the previous two 
decades. Since 2020, there has been a trend towards a more balanced correlation between 
water inflows and outflows, moving towards a normalized condition. 

 
Figure 9. Water balance in Iran from 2000 to 2021. 

4. Discussion 
4.1. Remote Sensing for Drought Monitoring 

Drought conditions can result in decreased water levels in reservoirs, lakes, and 
ponds, as well as diminished streamflow in rivers. This scarcity of water can lead to the 
contraction of wetlands, depletion of groundwater, and potential deterioration of water 
quality due to elevated concentrations of salts and contaminants [61]. Thus, this study 
utilized an integrated approach involving remote sensing and GEE to monitor the impacts 
of prolonged drought on surface water resources in Iran from 2000 to 2021. Our research 
emphasizes the minimal effects of long-term drought on surface water resources. The cor-
relation coefficients illustrate the relationship between drought and surface water re-
sources (Figure 8). Numerous studies have applied remote sensing technology to monitor 
long-term drought and its impacts on water quality and surface water availability 
[6,61,62]. These studies, however, typically assessed the effects of drought on water bodies 
collectively, without distinguishing between various types of water resources like perma-
nent and seasonal rivers, lakes, and dams. In contrast, the present study investigates the 
effects of long-term drought on various surface water resources across different topogra-
phies. 

Moderate Resolution Imaging Spectroradiometer (MODIS) water mask was em-
ployed in previous research for long-term water pattern monitoring. Our study, on the 
other hand, applied the high-resolution Landsat JRC yearly water classification history, 
v1.4. MODIS water mask is limited to 250 m spatial resolution, which may not provide 

-20

0

20

40

60

80

100

1/
1/

20
00

1/
1/

20
01

1/
1/

20
02

1/
1/

20
03

1/
1/

20
04

1/
1/

20
05

1/
1/

20
06

1/
1/

20
07

1/
1/

20
08

1/
1/

20
09

1/
1/

20
10

1/
1/

20
11

1/
1/

20
12

1/
1/

20
13

1/
1/

20
14

1/
1/

20
15

1/
1/

20
16

1/
1/

20
17

1/
1/

20
18

1/
1/

20
19

1/
1/

20
20

1/
1/

20
21

WATER BALANCE
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4. Discussion
4.1. Remote Sensing for Drought Monitoring

Drought conditions can result in decreased water levels in reservoirs, lakes, and
ponds, as well as diminished streamflow in rivers. This scarcity of water can lead to
the contraction of wetlands, depletion of groundwater, and potential deterioration of
water quality due to elevated concentrations of salts and contaminants [61]. Thus, this
study utilized an integrated approach involving remote sensing and GEE to monitor the
impacts of prolonged drought on surface water resources in Iran from 2000 to 2021. Our
research emphasizes the minimal effects of long-term drought on surface water resources.
The correlation coefficients illustrate the relationship between drought and surface water
resources (Figure 8). Numerous studies have applied remote sensing technology to monitor
long-term drought and its impacts on water quality and surface water availability [6,61,62].
These studies, however, typically assessed the effects of drought on water bodies collectively,
without distinguishing between various types of water resources like permanent and
seasonal rivers, lakes, and dams. In contrast, the present study investigates the effects of
long-term drought on various surface water resources across different topographies.

Moderate Resolution Imaging Spectroradiometer (MODIS) water mask was employed
in previous research for long-term water pattern monitoring. Our study, on the other
hand, applied the high-resolution Landsat JRC yearly water classification history, v1.4.
MODIS water mask is limited to 250 m spatial resolution, which may not provide further
details about different types of water resources. Landsat high-resolution JRC product,
however, offers a spatial resolution of 30 m, making it an appropriate choice for detecting
and monitoring diverse surface water resources effectively [43].
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Drought in Iran is mostly characterized by insufficient rainfall [63,64]. Reduction
in the amount of precipitation leads to a negative water balance, causing water deficits
and potential drought conditions. These effects are more intense in most parts of Iran,
specifically in the central, northwest, and eastern parts of the country. Reduction in the
volume of water entering rivers, aquifers, and lakes further diminishes water resources,
with lakes Urmia and Hamoun serving as good examples of these effects in Iran over the
last decades.

4.2. Effects of Long-Term Drought on Permanent Surface Water in Highlands and Lowlands

According to the findings of this study, there were positive correlation coefficients
of 0.33, 0.33, and 0.31 between long-term drought and permanent surface water in the
entire country, highlands, and lowland regions, respectively. This indicates that decreasing
drought was associated with a decrease in the volume of permanent surface water resources
in these regions. According to Figure 3, the most severe droughts occurred in 2008 and
2014, coinciding with a significant decrease in surface water in these years. Our findings
indicate a decrease in drought severity from 2000 to 2021, with fluctuations during this
period affecting some areas more severely than others.

For clarification, our study exemplified two vital dried lakes situated in the lowlands.
Lake Hamoun was Iran’s largest freshwater body in the southeast over the last decades.
It has now disappeared, causing the emergence of sand storms, which trigger soil ero-
sion in many southeastern villages [65]. Lake Hamoun was affected by both local and
regional rainfall, snowmelt in the Hazarajat Mountains in Afghanistan, and the frequency
of wet/dry spells. The frequency of droughts, inefficient water resource management, and
the expansion of agricultural land are the main factors contributing to changes in water
bodies in the Sistan Plain over the past two decades [66,67]. Similarly, Lake Urmia in
the northwest has experienced the same situation, losing much of its water and nearing
complete desiccation [18]. Both anthropogenic and climatic factors have contributed to the
shrinking of the lake over the last decades [17,58].

4.3. Analysis of the Effects of Long-Term Drought on Seasonal Surface Water in Highlands
and Lowlands

According to the findings of our study, weak positive correlation coefficients of 0.18,
0.16, and 0.18 were found between long-term drought and seasonal surface water in the
entire country, highlands, and lowlands, respectively. It can be concluded that decreasing
drought has little impact on increasing the volume of seasonal surface water. The results
of this study indicated weak impacts of long-term drought on surface water resources
at the national level, while the effects of other factors such as anthropogenic activities
were significant. Additionally, the use of surface water resources for different applications,
including agriculture, providing enough water for an increasing population, and the
industrial sector would be other reasons for the decrease in permanent surface water
volume and the increase in seasonal surface water resources.

In highlands, surface water availability typically follows a seasonal pattern affected by
precipitation cycles, such as wet and dry seasons. Rainfall and snowmelt replenish rivers,
streams, and reservoirs during the wet season, resulting in an abundance of surface water.
Conversely, decreased precipitation and increased evaporation can significantly reduce
surface water levels during the dry season, making these regions susceptible to drought. In
many highland regions of Iran, the accumulation of snowpack during winter acts as a vital
water reserve, which plays a crucial role in sustaining surface water flows in spring and
early summer. However, decreased snowfall or early melting due to high temperatures [68]
can disrupt this balance, causing a shortage of water in the dry season.
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4.4. Limitations of This Study and Future Work

The successful implications of remote sensing data for various environmental studies
have been stated in the literature, but noisy pixels can be an issue when studying large-scale
regions. As a result, users should consider possible noise/error when interpreting remote
sensing data. Compared to the JRC Global Surface Water Mapping Layers v1.4 product, the
JRC Yearly Water Classification History v1.4 provides yearly information for monitoring
surface water at permanent and seasonal levels. However, this product does not account
for changes from permanent to seasonal or from seasonal to permanent surface water,
which could enhance understanding of surface water resource fluctuations. Since a strong
correlation between drought and surface water resources was not established in this study,
future work should investigate the effects of anthropogenic variables (e.g., the increase in
agricultural lands) and climatic factors (e.g., temperature) on surface water resources.

5. Conclusions

This research applied an integrated approach of remote sensing and GEE for mon-
itoring long-term drought effects on surface water resources in Iran from 2000 to 2021.
The results of this study demonstrate a weak correlation between long-term drought and
surface water across the entire country, highlands, and lowlands. Specifically, our findings
showed a reduction in permanent surface water and, in contrast, an increase in seasonal
surface water from 2000 to 2021. The results of this research highlight the capability of
remote sensing datasets and the cloud-free platform GEE for long-term monitoring of
Earth’s features on a large scale. The methodology applied in this research demonstrated
strong potential for monitoring and simulating drought and water patterns in semi-arid
and arid regions like Iran. Interestingly, a weak correlation between drought and surface
water resources suggests that factors other than climate variability, particularly human
activities, might play a more significant role in Iran’s water crisis. The overuse of water
resources for industry, agriculture, and domestic purposes likely exacerbates the situation,
overshadowing the impact of drought alone. In summary, the findings of this study would
be valuable for professionals in the domains of hydrology, water management, and drought
monitoring. They highlight the need for integrated water resource management strategies
that consider both natural and human-induced factors to address the ongoing water crisis
in Iran effectively.
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