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Abstract: Combining multiple data sources, Digital Earth is an integrated observation platform based
on air–space–ground–sea monitoring systems. Among these data sources, the Inverse Synthetic
Aperture Radar (ISAR) is a crucial observation method. ISAR is typically utilized to monitor both
military and civilian ships due to its all-day and all-weather superiority. However, in complex
scenarios, multiple targets may exist within the same radar antenna beam, resulting in severe
defocusing due to different motion conditions. Therefore, this paper proposes a multiple-target
ISAR imaging method with the removal of micro-motion connections based on the integration of
joint constraints. The fully motion-compensated targets exhibit low rank and local similarity in the
high-resolution range profile (HRRP) domain, while the micro-motion components possess sparsity.
Additionally, targets display sparsity in the image domain. Inspired by this, we formulate a novel
optimization by promoting the low-rank, the Laplacian, and the sparsity constraints of targets and
the sparsity constraints of the micro-motion components. This optimization problem is solved by the
linearized alternative direction method with adaptive penalty (LADMAP). Furthermore, the different
motions of various targets degrade their inherent characteristics. Therefore, we integrate motion
compensation transformation into the optimization, accordingly achieving the separation of rigid
bodies and the micro-motion components of different targets. Experiments based on simulated data
demonstrate the effectiveness of the proposed method.

Keywords: Inverse Synthetic Aperture Radar (ISAR); multiple targets; Laplacian regularization; low
rank; sparsity

1. Introduction

Inverse Synthetic Aperture Radar (ISAR) is widely utilized to generate high-resolution
images of military or civilian targets under all-day, all-weather conditions [1–3]. The pulse-
Doppler (PD) radar typically transmits linear frequency-modulated (LFM) signals with a
large bandwidth to achieve high range resolution. The high azimuth resolution is obtained
through the synthetic aperture formed by the relative motion between the target and the
radar. Since the imaging targets are generally non-cooperative, such relative motion may
introduce undesirable range migration. Therefore, many methods have been proposed
in the past few decades to compensate for range migration, thereby achieving excellent
performance [4,5].

However, in the modern situation (e.g., ships moving in a formation), multiple targets
may appear within the same radar antenna beam, impairing the mono-target assumption.
Additionally, micro-motion components are widespread among various targets. Induced
by the rotating antennas or propellers, the so-called micro-Doppler effect may cause inter-
ference stripes in the imaging result, significantly degrading the image quality. Under the
multi-target assumption, different targets may be connected by these interference stripes,
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making it difficult to achieve focused images. Therefore, separating and imaging multiple
targets under the micro-Doppler connection is a great challenge.

The existing multi-target ISAR imaging methods typically fall into three categories:
time-frequency (TF)-based [6–14], segmentation-based [15–19], and parameter-based meth-
ods [20–24].

TF-based methods first extract Doppler variation along the cross-range direction.
Then, different targets’ TF curves are filtered in the TF domain according to the estimated
variation. Based on the assumption that different targets possess their own chirp rates, Li
et al. [6] first transformed the signal into the fractional Fourier transform domain. Then,
the CLEAN algorithm was utilized to separate different targets. Zhang et al. [7] integrated
the Radon transform with the Reassigned Smoothed Pseudo Wigner–Ville Distribution
(RSPWVD), achieving significantly improved separation. Xiao et al. [10] first employed the
Short-Time Fourier transform (STFT) on the overlapped echo. Then, different TF curves
were filtered using a mask suitable for different chirp rates. As a result, they applied the
inverse STFT on these curves to reconstruct the finally separated echoes. Nevertheless,
the separation efficiency usually depends on the estimation accuracy. Moreover, many
TF methods, such as Cohen’s classes, suffer from a serious cross term, severely impairing
their effectiveness.

Segmentation-based methods first separate different targets in the image or the high-
resolution range profiles (HRRPs) domain. For the image domain, separated images are
transformed back into the HRRPs domain, where motion compensation and imaging are
further performed. Bai et al. [15] first simultaneously compensated for the range migration
to form a “bulk” image of targets. Then, different targets were segmented through clustering
methods and normalized cuts. Finally, these separated images were transformed back
to the HRRPs domain to achieve the refined compensation, accordingly obtaining the
well-focused targets. For the HRRPs domain, different targets are first separated in the
HRRPs domain to meet the single-target assumption. Following that, the conventional
imaging algorithms are then applied to the separated HRRPs. Kong et al. [16] employed
the modified envelope correlation method and the Radon transform to align the HRRPs.
Then, they separated different targets and further employed the Discrete chirp-Fourier
transform (DCFT) to achieve final imaging. However, overlapping HRRPs and images
limit the application of the segmentation-based and the HRRPs-based algorithms.

As for parameter-based methods, they typically regard the translational motion of each
target as a polynomial. Then, coefficient parameters are searched through various iterative
methods. Liu et al. [20] utilized the particle swarm optimization (PSO) to search coefficients,
consequently compensating for the range curvature. Then, a modified CLEAN technique
was applied to extract different targets. Nevertheless, the parametric methods are usually
sensitive with respect to the searching step as they are all based on the parameter space.

The aforementioned methods achieve outstanding results within their specific assump-
tions. However, the micro-Doppler effect is not considered in their assumptions. The
micro-Doppler effect, caused by micro-motion components, usually creates interference
stripes along the cross-range dimension in imaging results. Over the past few decades,
numerous algorithms have been developed to eliminate this interference [25,26]. Recently,
micro-Doppler removal methods based on Robust Principal Component Analysis (RPCA)
have received increasing attention [27]. Zhou et al. [28] utilized RPCA to decompose the
target into rigid body and micro-motion components. Zhang et al. [29] extended RPCA
based on the adjacent similarity among HRRPs, accordingly achieving excellent separation.

Inspired by these methods, this paper proposes a multiple-target ISAR imaging
method with the removal of micro-motion connections based on the integration of joint con-
straints. First, micro-motion components are roughly filtered out in the image domain, and
then transformed back into the HRRPs domain. Then, we apply the Radon transform to the
micro-motion components to roughly estimate the target’s range migration, further forming
the coarse range migration transformation. Following that, we construct a constrained
cost function consisting of low-rank and sparsity. The cost function is solved using the
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linearized alternating direction method with adaptive penalty (LADMAP) [30] to ensure
convergence, further achieving rough separation of different targets and micro-motion
components. The coarse separated targets are then used to estimate a more accurate range
migration transformation through a correlation-based method. Subsequently, we construct
a tri-constrained cost function consisting of low-rank, sparsity, and local similarity. Finally,
different targets and their micro-motion components are entirely separated. Additionally,
we analyze the periodicity of the micro-motion components to ensure complete separation.

The main contributions of this paper are summarized as follows:

• We formulate a constrained optimization, consisting of the low-rank and the sparsity.
Such optimization is solved by the LAMAP method to achieve the coarse separa-
tion. Consequently, the range migration is accurately estimated by a correlation-
based method.

• We establish a triple-constrained problem especially for the multi-target scenario with
micro-Doppler connections. Specifically, we formulate a constrained optimization, con-
sisting of the low-rank, the sparsity, and the Laplacian constraint. Such optimization
is solved by the LAMAP method to achieve complete separation.

• We modified the mono-target assumption and extended it to a multi-target scenario
with micro-Doppler connections. Under this framework, the micro-Doppler effect
is eliminated, and the targets are separated. In the proposed framework, different
norms correspond to different signal characteristics, which effectively demonstrates
the applicability of our approach.

The remainder of this article is organized as follows: Section 2 models the signal
model of multiple targets under the micro-Doppler scenarios. Section 3 analyzes the signal
characteristics. Section 4 gives a detailed description of the proposed procedure. Section 5
evaluates the performances of the proposed method through the simulated data. Finally,
the conclusions are given in Section 6.

2. Imaging Model

In this section, we will briefly introduce the multi-target ISAR signal model with
micro-Doppler connections.

The imaging geometry model of multiple targets is presented in Figure 1. The PD
radar is located at the origin point O of the XOY coordinate system. Blue lines represent
the radar antenna beam. Moving in various directions, different targets exist within the
same antenna beam, resulting in multiple range migrations along the line of sight (LOS)
of the radar. Collectively referred to as translational motion, these range migrations may
result in severe defocusing in imaging results. Additionally, the target’s orientation rotates
by a certain angle around its rotational center during the imaging interval. This rotation
generates a synthetic aperture, leading to high resolution along the cross-range dimension
of the imaging results.

In ISAR imaging, a target is generally regarded as a cluster of scatterers. Therefore,
the signal reflected from a target is considered as the summation of the signals reflected by
each scatterer. The PD radar transmits linear frequency-modulated (LFM) signals with a
large bandwidth. Hence, the signal received by the radar receiver can be written as

S1(tr, tm) =
Z

∑
i=1

Iirect
(

tr − 2Ri(tm)/c
TP

)
exp

(
j2π fc

(
tr −

2Ri(tm)

c

))

exp

(
jπγ

(
tr −

2Ri(tm)

c

)2
) (1)

where tr and tm represent the fast time and the slow time, respectively. Z denotes the
total number of scatterers. Ii represents the amplitude of the i-th scatterer. fc, γ , and Tp
represent the basic frequency, the chirp rate, and the pulse width of the signal, respectively.
Ri denotes the instantaneous distance between the i-th scatterer and the radar. Typically,
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dechirp processing is employed on the reflected signal to reduce the bandwidth. Therefore,
the echo after dechirp processing can be derived as

S2(tr, tm) =
Z

∑
i=1

Iirect
(

tr − 2Ri(tm)/c
TP

)
exp

(
−j

4πγ

c

(
tr −

2Rref
c

)
∆Ri(tm)

)
exp

(
−j

4π fc

c
∆Ri(tm)

)
exp

(
j
4πγ

c2 ∆R2
i (tm)

) (2)

where Rre f denotes the reference range of the dechirp signal. ∆Ri is the difference between
the instantaneous distance and the reference range of the i-th scatterer. ∆Ri is written as Ri
in the following formula as different scatterers share the same reference range. Applying
the fast Fourier transform along the tr direction to the (2), the HRRPs are written as

S3( fr, tm) =
Z

∑
i=1

Iisinc
[

TP

(
fr + 2

γ

c
Ri(tm)

)]
· exp

(
−j

4π fc

c
Ri(tm)

)
(3)

where fr represents the range frequency of the target. As previously mentioned, the motion
of a target consists of the translational motion and the rotational motion. The overall motion
Ri and its translational and rotational components are written as

Ri(tm) = Rs(tm) + Rl(tm) (4)

Rs(tm) = xi sin(θ(tm)) + yi cos(θ(tm)) (5)

Rl(tm) = R0 + vtm +
1
2

at2
m + . . . +

1
n!

antn
m (6)

where Rs and Rl represent the rotational motion and the translational motion, respectively.
xi and yi denote the abscissa and the ordinate of the i-th scatterer in the target coordinate.
θm is the rotational angle of the target. R0 represents the initial distance between the target
center and the radar. v, a, and an represent the target’s velocity, acceleration, and n-th
order acceleration, respectively. For most non-cooperative targets, the imaging interval is
relatively short, leading to small rotation angles. Therefore, we obtain

Rs(tm) = xiθ(tm) + yi (7)

Rl(tm) = R0 + vtm +
1
2

at2
m (8)

The rotational motion represented by (7) leads to high resolution along the cross-range
dimension, while the translational motion represented by (8) results in severe defocusing.
In addition, this paper focuses on the separation of multiple targets with different motion
characteristics within a smaller range. Under the multi-target assumption, Rl belongs to its
own coordinate systems. Therefore, conventional range alignment methods fail to achieve
unified motion compensation for multiple targets.

In addition to rigid body parts, most non-cooperative targets contain micro-motion
components that rotate at high speeds (e.g., engines in aircraft, propellers, and antennas
on ships). The motion of these micro-motion components is usually superimposed on the
rotation of the rigid body. The Doppler shifts caused by the micro-motion components
are also superimposed on the echoes of the rigid body. This Doppler shift induced by
micro-motion components is known as the micro-Doppler effect. As illustrated in Figure 2,
we place the rotational center of the target’s rigid body at the origin of the XOY coordinate
system. The rotational center of the micro-motion components is set at the origin of the
X′O′Y′ coordinate system, which serves as the motion coordinate system for the micro-
motion components themselves. Additionally, the origin of the X′O′Y′ coordinate system
is set on the rigid body scatterer, meaning that this coordinate system rotates along with
the rigid body.
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Figure 1. The imaging geometry of multiple targets.

Figure 2. The imaging geometry of the micro-motion components.

Suppose that the scatterer K(xk, yk) on the rotating antenna rotates around its own
rotational center with a rotational angle of θ′ and a rotational shaft of rk. The initial angle
of the micro-motion components is θk. The instantaneous distance between the scatterer
and the radar is given as
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RK(tm) = xK sin(θ(tm)) + yK cos(θ(tm)) + rK cos
(

θ
′
(tm) + θk

)
(9)

According to the aforementioned approximation, we obtain

RK(tm) = xKθ(tm) + yK + rK cos
(

θ
′
(tm) + θk

)
(10)

It is seen that the cosine term exhibits multiple periods within the imaging interval as
the variation of θ

′
is much greater than that of θ. These periods result in interference stripes

in the imaging results. In the next section, we will describe the procedure of simultaneously
separating targets and micro-Doppler interferences in detail.

3. Analysis of the Signal Characteristics

In this section, we will analyze the unique characteristics of the micro-motion compo-
nents and the rigid body signal. First, the low-rank property of the rigid body in the HRRPs
domain is theoretically determined by the number of the scattering points. Assuming that
the translational motion of the target has been fully compensated, performing a fast Fourier
transform (FFT) on a single scatterer in (3) along the fr direction yields

s(tr, tm) = I exp(−j
4π(γtr + fc)

c
(xθ(tm) + y)) (11)

which can be discretized as

s(n, p) = I exp
(
−j

4πγ∆tr

c
yn
)
· exp

(
−j

4π fc∆θ

c
xp
)

(12)

where n and p are the index of the range cell and the pulse, respectively. Suppose that the
size of the HRRP matrix is N × P, (12) can be written as

s(n, p) = IaTb (13)

where a = [a1, . . . , aN ] and b = [b1, . . . , bP] with ai = exp(−j4πγyi∆tr/c) and bi =
exp(−j4π fcxi∆tr/c), respectively. For a target composed of U scattering points, its echo
can be expressed as

s(n, p) =
U

∑
u

IuaT
u bu (14)

Based on the properties of rank, the maximum rank of this HRRP matrix does not
exceed U. Thus, an echo with well-compensated motion can be considered low rank.
However, undesirable motion disrupts this characteristic. Therefore, we leverage the
inherent low-rank nature of the echo to separate targets with different motions.

For the sparsity of rigid body signals in the image domain and micro-motion com-
ponents in the HRRPs domain, the sparsity of a rigid body signal in the image domain
is theoretically determined by the number of scatterers. In contrast, micro-motion com-
ponents typically occupy several range cells and form stripes across the entire Doppler
domain in the image domain, resulting in lower sparsity. Conversely, the signal of the micro-
motion components in the HRRPs domain occupies only a few range cells, demonstrating
strong sparsity.

We conducted an experiment to verify such characteristics. Figure 3 shows the range
profiles and the imaging results of the rigid body and the micro-motion components.
Figure 3a,b present the range profiles and the imaging results of the ridge body, while
Figure 3c,d show those for the micro-motion components. In the HRRPs domain, the
rate of non-zero pixels for the rigid body and micro-motion components is 0.22 and 0.02,
respectively, confirming the sparsity of the micro-motion components in the HRRPs domain.
Moreover, the absolute value of the rate of non-zero pixels may be dependent on the selected
range after pulse compression, while the relative value depends on the size ratio between
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the rigid body and the micro-motion components. Therefore, micro-motion components
exhibit a much stronger sparsity in the HRRPs domain compared to the rigid body. In
the image domain, the rate of non-zero pixels for the rigid body and the micro-motion
components is 0.01 and 0.06, respectively, verifying the sparsity of the rigid body in the
image domain.

(a) (b)

(c) (d)

Figure 3. Range profiles and the imaging results of the ridge body and the micro-motion components.
(a) Range profiles of the ridge body. (b) Imaging result of the ridge body. (c) Range profiles of the
micro-motion components. (d) Imaging result of the micro-motion components.

Additionally, rigid body signals exhibit strong similarity in adjacent pulses, with this
similarity weakening as the distance increases. In contrast, micro-motion components do
not possess this local similarity. Figure 4 presents the autocorrelation of the rigid body
and micro-motion components in the HRRP domain. Figure 4a,c show the correlation
coefficients for the rigid body and micro-motion components, respectively. To present this
more clearly, we extracted the correlation coefficients of the 256th pulse and illustrated
them in Figure 4b,d. It can be observed that the HRRP matrix of the rigid body exhibits
strong similarity in a few adjacent pulses, with the similarity diminishing as the pulses
get farther apart. The HRRP matrix of the micro-motion components does not show this
property, further validating the local similarity of the rigid body in the HRRP domain. In
the next section, we will utilize these properties to construct our framework about the
multiple targets separation with removal of the micro-motion connection.
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(a) (b)

(c) (d)

Figure 4. Range profiles and the imaging results of the ridge body and the micro-motion components.
(a) Correlation coefficients of the ridge body. (b) Correlation coefficients of 256th pulse of the ridge
body. (c) Correlation coefficients of the micro-motion components. (d) Correlation coefficients of
256th pulse of the micro-motion components.

4. Multiple Targets Separation Method with Removal of Micro-Motion Connection
Based on Dual Optimization

In this section, we will explain our proposed multiple targets method with removal
of micro-motion connection based on dual optimization in detail. First, we roughly filter
out the micro-motion components in the image domain and transform them back to the
HRRPs domain. Then, we estimate the motion parameters of these filtered micro-motion
components using the Radon transform. These parameters are then utilized to construct
a coarse motion compensation function. Following that, we integrate the coarse range
migration transformation with the dual-constrained optimization model to form a cost
function. This cost function is solved by utilizing LADMAP to coarsely separate targets and
micro-motion components. Subsequently, we employ a correlation-based range alignment
algorithm to measure the motion parameters of the coarsely separated targets. These
parameters are utilized to construct a more precious range migration transformation.
This more accurate range migration transformation is then incorporated into a triple-
constrained optimization model. Similarly, this cost function is solved using LADMAP to
ensure convergence. Finally, different targets and micro-motion components are completely
separated. Figure 5 illustrates the detailed procedure of our proposed algorithm. We will
elaborate on each step of this process in the following subsections.



Remote Sens. 2024, 16, 3647 9 of 24

Figure 5. The procedure of the proposed multi-target separation method.

4.1. Constructing Coarse Range Migration Transformation

First, we transform the multi-target echo with micro-Doppler effects into the image
domain and use a constant threshold to roughly filter out the micro-motion components.
Then, the micro-motion components are transformed back into the HRRPs domain. Since
the micro-motion components and the targets share the same motion, the Radon transform
is allowed to roughly extract the motion parameters of the targets. Based on these motion
parameters, a coarse range migration transformation is constructed.

4.2. Coarse Separating through Double-Constraint Optimization

Motion-compensated targets exhibit low-rank characteristics in the HRRPs domain
and sparsity in the image domain. Micro-Doppler components also exhibit sparsity as they
occupy fewer range cells. Since the rotational speed of the micro-motion components is
generally much higher than that of the rigid body, the low-rank characteristics of the micro-
motion components in the HRRPs domain are weaker than those of the rigid body. Based
on these inherent properties, we construct a dual-constrained cost function as follows:

D

∑
d=1

rank(Ld) +
D

∑
d=1

∥Sd∥0 + ∥SMD∥0

s.t. H =
D

∑
d=1

Rd(Ld) + SMD

Ld = IFFT(Sd)

(15)

where Ld and Sd denote the rigid body in the HRRPs domain and in the image domain
with the target index of d. SMD represents the micro-motion components in the HRRPs
domain. H denotes the original multi-target echo with micro-Doppler effects. Rd is the
range migration transformation of the d-th target. Since (15) is a non-convex problem,
rank(Ld) and ∥Sd∥0 are generally relaxed to ∥Ld∥∗ and ∥Sd∥1. This leads to

D

∑
d=1

∥Ld∥∗ +
D

∑
d=1

∥Sd∥1 + ∥SMD∥1

s.t. H =
D

∑
d=1

Rd(Ld) + SMD

Ld = IFFT(Sd)

(16)
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whose augmented Lagrange function is accordingly written as

L(Ld, Sd, SMD, Yd, YE) =
D

∑
d=1

∥Ld∥∗ +
D

∑
d=1

∥Sd∥1 + ∥SMD∥1

+
D

∑
d=1

⟨Yd, Ld − IFFT(Sd)⟩+
D

∑
d=1

µd
2
∥Ld − IFFT(Sd)∥2

F

+ ⟨YE, H − R1(L1)− R2(L2)− SMD⟩

+
µE
2
∥H − R1(L1)− R2(L2)− SMD∥2

F

(17)

where ∥ · ∥∗, ∥ · ∥1, and ∥ · ∥F denote the nuclear norm, l1-norm, and Frobenius norm,
respectively. < · > denotes the inner product operator. Yd and YE represent the Lagrange
multiplier matrices of the d-th target and the overall summation equation, respectively. Sup-
pose that two targets emerge in the same radar antenna beam (i.e., D = 2), the augmented
Lagrange function is decomposed by the LADMAP into the following sub-problems as

L(k+1)
d = min

Ld
L
(

L1, L2, Y(k)
)

S(k+1)
d = min

Sd
L
(

S1, S2, Y(k)
)

S(k+1)
MD = min

SMD
L
(

L1, L2, Y(k)
)

Y(k+1)
1 = Y(k)

1 + µ1

(
L(k)

1 − IFFT(S1)
)

Y(k+1)
2 = Y(k)

2 + µ2

(
L(k)

2 − IFFT(S2)
)

Y(k+1)
E = Y(k)

E + µE(H − R1(L1)− R2(L2)− SMD)

(18)

where k denotes the iteration index. Through alternately solving the sub-problems in (18),
we make (17) solvable. Furthermore, the LADMAP algorithm decomposes and linearizes
the complex optimization problem into subproblems, ensuring the convergence of the
solution process. To update L1, we fix all variables except L1, and subsequently derive the
augmented Lagrange function as

L(L1) = ∥L1∥∗ + ⟨Y1, L1 − IFFT(S1)⟩+
µ1

2
∥L1 − IFFT(S1)∥2

F

+ ⟨YH , H − R1(L1)− R2(L2)− SMD⟩+
µE
2
∥H − R1(L1)− R2(L2)− SMD∥2

F

(19)

Based on the LAMDAP, we approximate (19) at L1 = L(k)
1 as

L(L1) ≈ ∥L1∥∗ +
〈
∇L1 q

(
L(k)

1

)
, L1 − L(k)

1

〉
+

η

2

∥∥∥L1 − L(k)
1

∥∥∥2

F

= ∥L1∥∗ +
η

2

∥∥∥L1 − L(k)
1 +∇L1 q

(
L(k)

1

)
/η
∥∥∥2

F

(20)

where ∇L1 q
(

L(k)
1

)
is written as

∇q(L1) = Y1 + µ1(L1 − IFFT(S1))− R∗
1(YE)− µER∗

1(H − R1(L1)− R2(L2)− SMD) (21)

Utilizing the singular value shrinkage threshold (SVT) operator, the function has a
closed-form solution as

L(k+1)
1 = ℜ1/η

(
Lk

1 − 1/η∇q(L1)
)

(22)
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where ℜy(x) denote shrinking the singular matrix of x utilizing the soft threshold y [31].
This operator can be specifically written as

ℜy(x) = U
(
ζy(σ)

)
VH (23)

where σ denote the singular matrix, i.e., x = UσVH . U and V denote the unitary matrix
about x. ζy(σ) denotes the soft threshold operator, which can be written as

ζy(σ) = sgn(σ) ∗ max(|σ| − y, 0) (24)

Since the process of updating L1 is the same as L2, we omit it here and derive the
augmented Lagrange function of S1 as

L(S1) = ∥S1∥1 + ⟨Y1, L1 − IFFT(S1)⟩+
µ1

2
∥L1 − IFFT(S1)∥2

F (25)

Similarly, the gradient of a part of (25) is written as

∇q(S1) = −FFT(Y1)− µ1FFT(L1 − IFFT(S1)) (26)

which leads (25) to be approximated as

L(S1) ≈ ∥S1∥∗ +
〈
∇S1 q

(
S(k)

1

)
, S1 − S(k)

1

〉
+

η

2

∥∥∥S1 − S(k)
1

∥∥∥2

F

= ∥S1∥∗ +
η

2

∥∥∥S1 − S(k)
1 +∇S1 q

(
S(k)

1

)
/η
∥∥∥2

F

(27)

Utilizing (24), the close-form solution of (27) is given as

S(k+1)
1 = ℑ1/η

(
Sk

1 − 1/η∇q(S1)
)

(28)

As previously mentioned, we omit the processing of S1.
As for the range profiles of the micro-motion components SMD, the augmented La-

grange function is written as

L(SMD) = ∥SMD∥1 + ⟨YE, H − R1(L1)− R2(L2)− SMD⟩

+
µE
2
∥H − R1(L1)− R2(L2)− SMD∥2

F
(29)

The gradient is also derived as

∇q(SMD) = −YE − µE(H − R1(L1)− R2(L2)− SMD) (30)

The close-form solution is derived as

S(k+1)
MD = ℑ1/η

(
Sk

MD − 1/η∇q(SMD)
)

(31)

Finally, the Lagrange multipliers Y1, Y2, and YE are updated as

Y(k+1)
1 = Yk

1 + µ1(L1 − IFFT(S1)) (32)

Y(k+1)
2 = Yk

2 + µ2(L2 − IFFT(S2)) (33)

Y(k+1)
E = Yk

E + µE(H − R1(L1)− R2(L2)− SMD) (34)

To illustrate more clearly, such a separation model is summarized in Algorithm 1. ε is
set as 1.05 to accelerate the convergence. Additionally, the employed LADMAP algorithm
iteratively refines the Lagrange multipliers and adaptively adjusts during computation.
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Therefore, we initialize the Lagrange multiplier matrix Y1, Y2, and YE as the zero matrix in
Algorithm 1.

Algorithm 1 Double-constraint-based coarse separation

Input: Range profiles H, Coarse motion compensation transformation of target1 R1(·), Coarse
motion compensation transformation of target2 R2(·).

Output: HRRPs of target1 L1, HRRPs of target2 L2, HRRPs of micro-motion components SMD,
Imaging result of target1 S1, Imaging result of target2 S2.

Initialization: L(0)
1 = L(0)

2 = S(0)
1 = S(0)

2 = S(0)
1 = Y(0)

E = Y(0)
1 = Y(0)

2 = 0N×M,
µ1 = µ2 = µE = 10−4, ε = 1.05.

1: while not converged do
2: The update of the rigid body in the HRRPs domain.
3: ∇q(L1) = Y1 + µ1(L1 − IFFT(S1))− R∗

1(YE)
−µER∗

1(H − R1(L1)− R2(L2)− SMD)

4: L(k+1)
1 = ℜ1/η

(
Lk

1 − 1/η∇q(L1)
)

5: ∇q(L2) = Y2 + µ2(L2 − IFFT(S2))− R∗
2(YE)

−µER∗
2(H − R1(L1)− R2(L2)− SMD)

6: L(k+1)
2 = ℜ1/η

(
Lk

2 − 1/η∇q(L2)
)

7: The update of the rigid body in the image domain.
8: ∇q(S1) = −FFT(Y1)− µ1FFT(L1 − IFFT(S1))

9: S(k+1)
1 = ℑ1/η

(
Sk

1 − 1/η∇q(S1)
)

10: ∇q(S2) = −FFT(Y2)− µ2FFT(L2 − IFFT(S2))

11: S(k+1)
2 = ℑ1/η

(
Sk

2 − 1/η∇q(S2)
)

12: The update of the micro-motion components in the HRRPs domain.
13: ∇q(SMD) = −YE − µE(H − R1(L1)− R2(L2)− SMD)

14: S(k+1)
MD = ℑ1/η

(
Sk

MD − 1/η∇q(SMD)
)

15: The update of the the Lagrange multiplier matrices.

16: Y(k+1)
1 = Yk

1 + µ1(L1 − IFFT(S1))

17: Y(k+1)
2 = Yk

2 + µ1(L2 − IFFT(S2))

18: Y(k+1)
E = Yk

E + µE(H − R1(L1)− R2(L2)− SMD)
19: µ1 = εµ1, µ2 = εµ2,µE = εµE
20: k = k + 1;
21: end while

4.3. Constructing Accurate Range Migration Transformation

By solving the coarse cost function, different targets and micro-motion components
are preliminarily separated. Consequently, we employ a correlation-based range align-
ment method to estimate the range migration of different targets. Specifically, we use the
maximum-correlation range alignment (MCRA) algorithm to estimate the precise range
migration of different targets. These parameters are then used to generate more accurate r
range migration transformation.

4.4. Accurate Separating through Triple-Constraint Optimization

As previously mentioned, micro-motion components exhibit high rotational speeds,
significantly reducing their similarity between adjacent pulses. Typically, rigid bodies have
lower rotational speeds, with a rotation angle of 2 degrees within the imaging interval. This
characteristic motivates us to incorporate local similarity into the multi-target optimiza-
tion. Specifically, we integrate Laplacian regularization into the cost function, forming a
triple-constrained cost function as follows:
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D

∑
d=1

(
rank(Ld) + β1Tr

(
LdBLH

d

)
+ ∥Sd∥0

)
+ ∥SMD∥0

s.t. H =
D

∑
d=1

Rd(Ld) + SMD

Ld = IFFT(Sd)

(35)

where β denotes the penalty parameter of the Laplacian regularization. B denotes the graph
Laplacian matrix [32], which is given as

B = D − W (36)

where D and W represent the degree matrix and the weight matrix, respectively. These two
matrices are further given as

Dii = ∑
j

Wij (37)

Wij =


1 i = j
a |i − j| < b
0 otherwise

(38)

where a and b are set as 0.8 and 3. Additionally, the cost function is similarly relaxed as

D

∑
d=1

(
rank(Ld) + β1Tr

(
LdBLH

d

)
+ ∥Sd∥0

)
+ ∥SMD∥1

s.t. H =
D

∑
d=1

Rd(Ld) + SMD

Ld = IFFT(Sd)

(39)

Utilizing the LADMAP, we derive the augmented Lagrange function as

L(Ld, Sd, SMD, Yd, YH) =
D

∑
d=1

(
∥Ld∥∗ + β1Tr

(
LdBLH

d

)
+ ∥Sd∥1

)
+ ∥SMD∥1

+
D

∑
d=1

(
⟨Yd, Ld − IFFT(Sd)⟩+

µd
2
∥Ld − IFFT(Sd)∥2

F

)
+ ⟨YE, H − R1(L1)− R2(L2)− SMD⟩

+
µE
2
∥H − R1(L1)− R2(L2)− SMD∥2

F

(40)

Also, the cost function is decomposed as

L(k+1)
d = min

Ld
L
(

L1, L2, Y(k)
)

S(k+1)
d = min

Sd
L
(

S1, S2, Y(k)
)

S(k+1)
MD = min

SMD
L
(

L1, L2, Y(k)
)

Y(k+1)
1 = Y(k)

1 + µ1

(
L(k)

1 − IFFT(S1)
)

Y(k+1)
2 = Y(k)

2 + µ2

(
L(k)

2 − IFFT(S2)
)

Y(k+1)
E = Y(k)

E + µE(H − R1(L1)− R2(L2)− SMD)

(41)



Remote Sens. 2024, 16, 3647 14 of 24

Fixing all the variables except L1, we derive the augmented Lagrange function of L1 as

L(L1) = ∥L1∥∗ + β1Tr
(

L1BLH
1

)
+ ⟨Y1, L1 − IFFT(S1)⟩+

µ1

2
∥L1 − IFFT(S1)∥2

F

+ ⟨YE, H − R1(L1)− R2(L2)− SMD⟩+
µE
2
∥H − R1(L1)− R2(L2)− SMD∥2

F

(42)

The gradient of a part of (42) at L1 = L(k)
1 is written as

∇q(L1) = β
(

L(k)
1 B + L(k)

1 BT
)
+ Y1 + µ1(L1 − IFFT(S1))

− R∗
1(Y3)− µER∗

1(H − R1(L1)− R2(L2)− SMD)
(43)

Therefore, L1 is reasonably approximated as

L(k+1)
1 = ℜ1/η

(
Lk

1 − 1/η∇q(L1)
)

(44)

Also, the strategy of updating L2 is similar to L1. As for updating S1, S2, SMD, Y1,
Y2, and YE, the rule is the same as Section 4.2. In summary, we give the overall steps
in Algorithm 2. It is noted that we perform 12 multiplications, 22 FFT, and 2 SVD for
Algorithm 1. As for Algorithm 2, we perform 16 multiplications, 22 FFT, and 2 SVD in
each iteration. Suppose that the size of the HRRP matrix is N × N, the computational
complexity in a single iteration is about O

(
N3 + N2 log N

)
. Furthermore, the algorithm

typically converges within 70 iterations, which ensures that it does not impose a significant
computational burden.

Algorithm 2 Triple-constraint-based accurate separation
Input: Range profiles H, Coarse motion compensation transformation of target1 R1(·), Coarse motion compensation transforma-

tion of target2 R2(·).
Output: HRRPs of target1 L1, HRRPs of target2 L2, HRRPs of micro-motion components SMD , Imaging result of target1 S1,

Imaging result of target2 S2.
Initialization: L(0)

1 = L(0)
2 = S(0)

1 = S(0)
2 = S(0)

1 = Y(0)
E = Y(0)

1 = Y(0)
2 = 0N×M , µ1 = µ2 = µE = 10−4, β = 10−8, ε = 1.05.

1: while not converged do
2: The update of the rigid body in the HRRPs domain.

3: ∇q(L1) = β
(

L(k)
1 B + L(k)

1 BT
)
+ Y1 + µ1(L1 − IFFT(S1))

−R∗
1(YE)− µE R∗

1(H − R1(L1)− R2(L2)− SMD)

4: L(k+1)
1 = ℜ1/η

(
Lk

1 − 1/η∇q(L1)
)

5: ∇q(L2) = β
(

L(k)
2 B + L(k)

2 BT
)
+ Y2 + µ2(L2 − IFFT(S2))

−R∗
2(YE)− µE R∗

2(H − R1(L1)− R2(L2)− SMD)

6: L(k+1)
2 = ℜ1/η

(
Lk

2 − 1/η∇q(L2)
)

7: The update of the rigid body in the image domain.
8: ∇q(S1) = −FFT(Y1)− µ1FFT(L1 − IFFT(S1))

9: S(k+1)
1 = ℑ1/η

(
Sk

1 − 1/η∇q(S1)
)

10: ∇q(S2) = −FFT(Y2)− µ2FFT(L2 − IFFT(S2))

11: S(k+1)
2 = ℑ1/η

(
Sk

2 − 1/η∇q(S2)
)

12: The update of the micro-motion components in the HRRPs domain.
13: ∇q(SMD) = −YE − µE(H − R1(L1)− R2(L2)− SMD)

14: S(k+1)
MD = ℑ1/η

(
Sk

MD − 1/η∇q(SMD)
)

15: The update of the the Lagrange multiplier matrices.
16: Y(k+1)

1 = Yk
1 + µ1(L1 − IFFT(S1))

17: Y(k+1)
2 = Yk

2 + µ1(L2 − IFFT(S2))

18: Y(k+1)
E = Yk

E + µE(H − R1(L1)− R2(L2)− SMD)
19: µ1 = εµ1, µ2 = εµ2,µE = εµE
20: k = k + 1;
21: end while

5. Simulated Results and Analysis

In this section, we will validate the effectiveness of our algorithm through simulated
experiments. First, we will introduce the simulation model of the radar and the targets.
The radar is assumed to transmit LFM signals with a central frequency of f0 = 10 GHz
and a bandwidth of B = 200 MHz, respectively. The pulse repetition frequency and pulse
width are PRF = 800 Hz and T0 = 100 µs, as shown in Table 1, respectively. For the
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targets, the scatterer model and antenna model are illustrated in Figure 6. The red scatterers
represent the rigid body of the target, while the blue scatterers represent the micro-motion
components of the target. Due to the generally small size of the antenna, the rotational
radius of the micro-motion components is set as 2 m.

Table 1. System parameters of the simulated radar.

Motion Parameters Value

Central frequency f0 10 GHz
Bandwidth B 200 MHz

Pulse repetition frequency PRF 800 Hz
Pulse width T0 100 µs

Figure 6. The scatterer model and antenna model of targets.

The motion parameters of the rigid body and the micro-motion components are
presented in Table 2. In our assumption, two targets have range overlap along the line
of sight (LOS), further causing overlap in the HRRPs domain. Additionally, we add 0 dB
complex Gaussian noise to the range profiles without loss of generality.

Figure 7 presents the range profiles with micro-Doppler interference and the multi-
target imaging results. It can be seen that under such conditions, the range profiles of
different targets severely overlap. Additionally, different targets are connected by inter-
ference stripes caused by the micro-Doppler effect in the image domain. As mentioned
in Section 4, we first apply a fixed-threshold filter in the image domain to obtain imaging
results of the micro-motion components. Then, these imaging results are transformed back
into the HRRPs domain to allow the Radon transform to estimate the motion parameters
of targets.
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(a) (b)
Figure 7. Range profiles and their imaging results. (a) Range profiles of targets. (b) Imaging result
of targets.

Table 2. Motion parameters of rigid body and micro-motion components.

System
Parameters Target1 Target2 Antenna1 Antenna2

X-direction
position 3000 m 2900 m Same as target1 Same as target2

Y-direction
position 2000 m 2140 m Same as target1 Same as target2

X-direction
velocity −7 m/s 8 m/s Same as target1 Same as target2

Y-direction
velocity 0 m/s 0 m/s Same as target1 Same as target2

Rotational speed 0.02 rad/s 0.02 rad/s 2π rad/s 2.5π rad/s

Figure 8 shows the micro-motion components and their Radon transform results.
Figure 8a displays the filtered micro-motion components in the HRRPs domain. Since
the translational motion of the micro-motion components is consistent with that of the
rigid body, the motion parameters of the rigid body are obtained by estimating the motion
parameters of the micro-motion components. The Radon transform is naturally utilized
to estimate the motion of different targets. Figure 8b shows the result of applying the
Radon transform to Figure 8a. The two peaks circled in red indicate the motion parameters
of these two targets. Based on these motion parameters, we generate range migration
transformation and input them into the algorithm, as shown in Algorithm 1.

(a) (b)
Figure 8. The micro-motion components and their Radon transform results. (a) Filtered micro-motion
components. (b) The Radon transform of the filtered components.
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The results of the preliminary separation are presented in Figure 9. Figure 9a,b show
the range profiles of different targets, while Figure 9c,d present imaging results of these
targets. For clarity, we have magnified several range cells in Figure 9e,f. It can be observed
that the range profiles of different targets still exhibit slight range migration, resulting in
defocusing in the imaging results. Additionally, signals from the micro-motion components
remain in the imaging results. Therefore, further range alignment and target separation are
required.

(a) (b)

(c) (d)

(e) (f)
Figure 9. Results of the coarse separation. (a) Coarse range profiles of target1. (b) Coarse range profiles
of target2. (c) Coarse imaging result of target1. (d) Coarse imaging result of target1. (e) Enlarged
view of target1. (f) Enlarged view of target2.
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The MCRA algorithm is used to accurately estimate the range migration of the targets
to generate range migration transformation. Figure 10 shows the range profiles of different
targets after range alignment and their enlarged views. Figure 10a,d display the range
profiles and the enlarged view of target1, while Figure 10b,d display that of target2. Based
on these range migration corrections, we completely separate different targets and the
micro-Doppler by solving the triple-constraint cost function. The range profiles of different
targets and their imaging results are shown in Figure 11. Figure 11a,b display the range
profiles and the imaging result of target1, while Figure 11a,b display those of target2. It
is clearly visible that different targets are thoroughly separated, and the micro-Doppler
interference is suppressed. The image contrast and the image entropy of different stages
are given in Table 3. It is seen that our proposed method achieves the entire separation
step-by-step.

(a) (b)

(c) (d)
Figure 10. Aligned range profiles and their enlarged views. (a) Aligned coarse range profiles of
target1. (b) Enlarged view of coarse range profiles of target1. (c) Aligned coarse range profiles of
target1. (d) Enlarged view of coarse range profiles of target2.

Table 3. The image contrast and the image entropy in different stages.

Stages Target Index Image Contrast Image Entropy

Original signal All targets 12.9 4.9

Coarse sepration Target1 15.8 3.3
Target2 23.1 9.4

Accurate sepration Target1 43.4 3.3
Target2 41.8 9.4

Additionally, we obtain the rotation period of the micro-motion components by per-
forming an auto-correlation transformation, further validating the effectiveness of the
separation. Figure 12 shows the aligned micro-motion components in the HRRPs domain
and their auto-correlated results. Figure 12a,b indicate the aligned range profiles and the
auto-correlated result of target1, while Figure 12c,d show those of target2. It is seen that
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the differences of the peaks in Figure 12b,d are about 198 and 159. The pulse repetition
interval of the radar is 0.001 s. Therefore, the rotational velocities of these two components
are 15.87 rad/s and 19.75 rad/s. The theoretical rotational velocities are about 15.71 rad/s
and 18.84 rad/s. The estimated periods are close to the theoretical periods, confirming the
effectiveness of our separation procedure.

(a) (b)

(c) (d)
Figure 11. Results of accurate separation. (a) Accurate range profiles of target1. (b) Accurate range
profiles of target2. (c) Accurate imaging result of target1. (d) Accurate imaging result of target2.

To thoroughly evaluate the effectiveness of the proposed framework, we selected
three comparison methods: a TF-based method, a segmentation-based method, and a
parameter-based method. Moreover, to further discuss the effectiveness of our algorithm,
we analyze scenarios where both the rigid body and the micro-motion components of
different targets overlap in the image domain. Figure 13 displays the separation results
using these methods, alongside the outcomes of our proposed method. Figure 13a shows
the separation result using the TF-based method, which is notably affected by cross-term
interference and target overlap, leading to reduced separation performance. Figure 13b
presents the separation result from the segmentation-based method, where performance is
significantly impacted by the broadening and overlapping of targets in the Doppler domain.
Figure 13c demonstrates the parameter-based method’s separation results, revealing that
interference from different targets lowers the parameter estimation accuracy and thus
hampers separation effectiveness. Figure 13d illustrates the separation result using the
proposed method, indicating the effectiveness of the proposed method. Furthermore,
Table 4 summarizes the separation performance of the different methods. Our proposed
method achieves the lowest image entropy and highest image contrast, indicating its
superior ability in target separation.

To evaluate the performance of our algorithm under varying signal-to-noise ratios
(SNRs), Figure 14 illustrates the separation results at −5 dB, 0 dB, 5 dB, and 10 dB SNR
levels. The algorithm achieves satisfactory results within the 0–10 dB range. However, its
effectiveness significantly diminishes when the SNR drops below 0 dB.
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(a) (b)

(c) (d)
Figure 12. Range profiles of micro-motion components of targets and their auto-correlation results.
(a) Aligned range profiles of micro-motion components of target1. (b) The auto-correlation result
of micro-motion components of target1. (c) Aligned range profiles of micro-motion components of
target2. (d) The auto-correlation result of micro-motion components of target2.

(a) (b)

(c) (d)

Figure 13. The separation results of different methods and the proposed method. (a) The separation
result using the TF-based method. (b) The separation result using the segmentation-based method.
(c) The separation result using the parameter-based method. (d) The separation result using the
proposed method.
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Table 4. The image contrast and the image entropy of different methods.

Different Methods Target Index Image Contrast Image Entropy

TF-based method Target1 21.8 8.2
Target2 21.5 10.1

Segmentation-based method Target1 14.8 6.4
Target2 14.3 9.7

Parameter-based method Target1 28.1 7.7
Target2 29.7 10.3

The proposed method Target1 43.4 3.3
Target2 41.8 9.4

(a) (b)

(c) (d)

Figure 14. The separation results under different SNR conditions. (a) The separation result under the
−5 dB SNR condition. (b) The separation result under the 0 dB SNR condition. (c) The separation
result under the 5 dB SNR condition. (d) The separation result using the proposed method.

To demonstrate the impact of the initial value of Yd on the separation performance,
Figure 15 shows the curve related to the separation contrast and the initial value of Yd. The
initial value of the Yd matrix varies from 0 to 10. It is seen that the initial value of Yd has a
minimal influence on the accuracy of the algorithm, demonstrating the robustness of our
framework. Additionally, The variation in the value of the cost function is presented in
Figure 16, which demonstrates that our algorithm exhibits reasonable convergence.
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Figure 15. The curve related to the separation contrast and the initial value of Yd.

Figure 16. The variation in the value of the cost function.

6. Conclusions

This paper proposes a multi-target ISAR imaging method based on joint constraints
with removal of the micro-motion connection. We first estimate the rough translational
motion through filtered micro-motion components, reasonably transforming the micro-
Doppler interference stripes into the motion information. Following that, we construct the
range migration transformation and input this transformation into the double-constraint
optimization, thereby roughly separating the targets and the micro-motion components.
The separated targets are then utilized to measure the accurate motions and to form
the accurate range migration transformation through the MCRA method. Subsequently,
the triple-constraints optimization is employed to entirely separate the targets and the
micro-motion components. The effectiveness of the proposed method is validated by the
simulated experiments.
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