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Abstract: The accuracy of data-driven landslide susceptibility prediction depends heavily on the
quality of non-landslide samples and the selection of machine-learning algorithms. Current methods
rely on artificial prior knowledge to obtain negative samples from landslide-free regions or outside
the landslide buffer zones randomly and quickly but often ignore the reliability of non-landslide
samples, which will pose a serious risk of including potential landslides and lead to erroneous out-
comes in training data. Furthermore, diverse machine-learning models exhibit distinct classification
capabilities, and applying a single model can readily result in over-fitting of the dataset and introduce
potential uncertainties in predictions. To address these problems, taking Chenxi County, a hilly and
mountainous area in southern China, as an example, this research proposes a strategy-coupling
optimised sampling with heterogeneous ensemble machine learning to enhance the accuracy of land-
slide susceptibility prediction. Initially, 21 landslide impact factors were derived from five aspects:
geology, hydrology, topography, meteorology, human activities, and geographical environment. Then,
these factors were screened through a correlation analysis and collinearity diagnosis. Afterwards,
an optimised sampling (OS) method was utilised to select negative samples by fusing the reliability
of non-landslide samples and certainty factor values on the basis of the environmental similarity
and statistical model. Subsequently, the adopted non-landslide samples and historical landslides
were combined to create machine-learning datasets. Finally, baseline models (support vector ma-
chine, random forest, and back propagation neural network) and the stacking ensemble model were
employed to predict susceptibility. The findings indicated that the OS method, considering the
reliability of non-landslide samples, achieved higher-quality negative samples than currently widely
used sampling methods. The stacking ensemble machine-learning model outperformed those three
baseline models. Notably, the accuracy of the hybrid OS–Stacking model is most promising, up to
97.1%. The integrated strategy significantly improves the prediction of landslide susceptibility and
makes it reliable and effective for assessing regional geohazard risk.

Keywords: landslide susceptibility prediction; optimised sampling; stacking ensemble machine-
learning algorithm; reliability of non-landslide samples

1. Introduction

The hilly and mountainous areas of southern China are situated east of the
Qinghai–Tibet Plateau and south of the Qinling Mountains–Huaihe River. It plays a
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major role in the national strategic pattern of ecological security: “two screens and three
belts”. Despite its gross area comprising only 25% of the country’s geographical area, it
is home to 40% of the country’s population and is capable of producing enough food to
sustain nearly half of the country’s population [1]. However, the geological environment
in the region is diverse. Geological disasters such as landslides, influenced by extreme
weather conditions and intensive human engineering activities, occur frequently and have
been characterised by large numbers of cases, wide distribution, and high density. In
addition, landslides often occur secretly and suddenly, seriously endangering the property
and lives of local residents. Therefore, geospatial big-data-based landslide susceptibility
assessments can build up an efficient and practical basis for rational land-use planning,
disaster mitigation, and prevention [2].

Currently, the models applied to predict regional landslide susceptibility have been
classified into three folds: experience-driven, physical-driven, and data-driven models.
The experience-driven models are mainly based on the empirical records and cognition
of experts, such as the weighted linear grouping method and analytical hierarchy process,
which are highly subjective [3,4]. The physical-driven models, including the SHALSTAB,
SINMAP, TRIGRS, and Scoops3D models, are constructed and simulated according to the
physical laws in the process of landslide occurrence. However, it is challenging to expand to
a larger area because the hydrological or geotechnical data are strictly required [5–10]. The
data-driven model has been categorised into two methods: conventional statistical analysis
as well as various machine-learning methods [11,12]. Conventional statistical analysis,
such as frequency ratio, information value, coefficient of certainty, weight of evidence, and
index of entropy, overcome subjective disadvantages of knowledge-driven models based
on mathematical statistics and probability analysis. However, it usually ignores non-linear
or irrelevant problems in diversified types of impacting factors, so assessments of landslide
susceptibility influenced by complex factors are limited. Machine-learning models, e.g.,
supporting vector machine (SVM), logic regression (LR), random forest (RF), and back and
propagation neural networks (BPNNs), have been extensively utilised to assess regional
landslide susceptibility attributed to their strong capability in terms of generalising data.
However, a single machine-learning model always overfits the input dataset and causes
potential uncertainties and other deficiencies in susceptibility predictions.

In recent years, ensemble learning has become a research focus as a new machine-
learning algorithm that integrates the advantages of baseline models to promote the ac-
curacy of outcomes and its generalisation ability by combining several relatively weak
classifiers into a more robust classifier. Ensemble learning fully combines the sample
characteristics of landslides and non-landslides, achieving better prediction models. The
core idea behind ensemble learning is to integrate multiple baseline models through a
specific strategy in order to build a new classifier to complete the learning task, includ-
ing homogeneous and heterogeneous ensemble machine-learning algorithms [13]. The
homogeneous ensemble machine-learning algorithm selects the same model as the base-
line model, and the correlation between the models is significant, such as bagging and
boosting [14,15]. In contrast, heterogeneous ensemble machine-learning algorithms, such
as stacking, select different algorithms as baseline models to extract features from different
data space perspectives, realising the complementary advantages of models and improving
their accuracy [16,17].

The accuracy of predicting landslide susceptibility based on machine learning is highly
dependent on the quality of non-landslide samples. Applying non-landslide sampling
methods introduces uncertainty, leading to notable variations in predicting landslide sus-
ceptibility [9]. So far, five methods are commonly available for non-landslide samples.
(1) Random sampling, where negative samples are randomly selected from locations with-
out landslides or a specific buffer zone away from the known landslides [18–20]. However,
non-landslide samples might be similar to the geo-environment of the landslide area, where
determining the buffer range is entirely subjective. (2) Susceptibility-zoning sampling:
Negative samples could be arbitrarily selected from the low- or very-low-susceptibility
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areas derived from statistical and probability analysis [21–23]. This method improves
the quality of negative sample selection compared with the previous method, but it is
constrained by regional differences and is not enough to reflect the overall characteristics of
non-landslide samples. (3) Slope threshold sampling: Negative samples are randomly se-
lected from locations without landslides whose slope is less than a certain threshold [24,25].
This method depends strongly on slope and ignores the effects of other impact factors.
(4) Self-organising map (SOM)-based sampling: Negative samples are selected through
self-organising feature-mapping networks or clustering methods [26–28]. This method
reduces the degree of manual intervention, but it does not have a definite objective func-
tion and needs to customise a spatial structure, which makes it complex due to various
clustering results. (5) Similarity-based sampling: Negative samples are selected on the
basis of the similarity to the conditions of the non-landslide regions [29–31]. This method
increases the quality of negative samples, but it demands a large sample size, otherwise
it cannot accurately reflect the real situation, resulting in sampling error. Among them,
random sampling and susceptibility-zoning sampling are frequently applied for selecting
non-landslide samples, but both ignore the reliability of those samples and the severe risk
of incorporating the potential landslides, resulting in non-negligible errors in training data.
Therefore, selecting high-quality non-landslide samples is still challenging when applying
machine learning to landslide susceptibility modelling.

This paper presents an optimised method for selecting non-landslide samples by
evaluating the reliability of those samples through assessments of both environmental
similarity and the certainty factor value. To illustrate the proposed methodology, a revised
landslide inventory was obtained for Chenxi County, which is a representative hilly and
mountainous terrain in southern China. An evaluation system was established based
on 21 impacting factors carefully chosen, including elevation, slope, lithology, etc. The
study employed an optimised sampling technique for non-landslide data, along with
three fundamental machine-learning models, e.g., RF, SVM, and BPNN, and the stacking
ensemble algorithm to accurately predict the region’s landslide susceptibility. A relatively
comprehensive comparative analysis was conducted using the random sampling (RS)
approach and the certainty factor-based sampling (CF) approach to construct an accurate
and reliable framework for evaluating landslide susceptibility.

2. Study Region and Sources of Data
2.1. Overview of the Study Region and Source

Chenxi County spans an area of roughly 1976.81 km2 and is located in Huaihua City
Hunan Province among the hilly and mountainous regions of southern China. It is not only
a part of the complex structural stress zone that separates the Dongting Lake Plain from the
Yunnan–Guizhou Plateau, but also a part of the middle–low mountainous region in western
Hunan (Figure 1a), which is one of the key geological disaster-prevention areas with a
fragile ecosystem in China [32,33]. This area is also a geological-disasters-concentrated
region with undulating terrain, diverse geological environment, and changing climate over
time and space [6,34].

The elevation generally ranges from 200 to 300 m, with topographically higher al-
titudes in the southeast and lower altitudes in the northwest. The prominent landform
consists of mountains and hills with intervening plains. Mountains, hills, and plains ac-
count for 61%, 36%, and 3% of the county in total, respectively (Figure 1b). The stratigraphic
age extends from the Qingbaikou system to the Quaternary system, excluding the Silurian
system, and all outcrops in the region are sedimentary rocks.

The southeast monsoon significantly affects the humid subtropical monsoon climate
of the county. There are four distinct seasons and a warm climate with concentrated and
plentiful summer precipitation. According to Chenxi County Meteorological Station and
Chenxi County Hydrological Bureau data, the annual average temperature is 17.0 ◦C. The
mean yearly precipitation and evaporation are 1404.9 mm and 1301.2 mm, respectively. The
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maximum recorded amount of daily rainfall is 235 mm. Yuanjiang River and the Chenshui
River converge in the county (Figure 1b)
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Figure 1. Geographical position of the investigated region and landslide inventory: (a) locations of
the hilly and mountainous terrains in southern China; (b) landslide inventory; (c–f) images depicting
various examples of typical landslides, and red arrows in the images indicating the main slide
direction of the landslides.

In recent decades, under the dual effects of extreme weather such as heavy rainfall
and intense human engineering activities, a higher frequency of geohazards take place in
the county. With the increasingly severe situation of geological disaster prevention in the
study area, attaining a higher accuracy of regional landslide susceptibility assessment and
prediction is urgent.
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2.2. Data Preparation and Analysis
2.2.1. Landslide Inventory

Since the compilation of landslide records provides the basic data, its accuracy and
integrity are critical and vital to susceptibility assessment and prediction. After analysing
the historical landslide records, satellite images, and field investigations, Chenxi County
was ultimately found to have 127 landslides (Figure 1b), the bulk of which were small to
medium in size. The study area has seen a frequent occurrence of geohazards in recent
years. Notably, in 2014, 53 landslides were induced by the summer rainstorm. In terms
of material composition, the accumulation landslides (Figure 1c,d) account for 75.6% of
all landslides; bedrock landslides (as shown in Figure 1e) come in second with 14.2%;
and rubble soil landslides (as shown in Figure 1f) occur the least, accounting for only
10.2%. Out of all the historical landslides, the majority of them were triggered by rainfall,
making up 86.7% of the total. In total, 9.4% of landslides result from the combination
of the influences of rainfall and human activities, while just 3.9% of landslides are due
to either weathering or human activities independently. Regarding slope structure, the
most common are longitudinal and oblique slopes, accounting for 45.7% and 29.1% of all
landslides. The second slopes are the reverse and lateral slopes, accounting for 11.8% and
10.2%, respectively. The gentle slope is the least common type, only contributing 3.2%.

In the landslide modelling process, ArcGIS 10.2 is utilised to determine the centroid of
the landslide polygon, which indicates the actual landslide locations, as most of them in
the study region are less than 10,000 m3. Many landslide investigations have demonstrated
the viability of this approach and its ability to streamline landslide data efficiently [35–37].
Hence, each landslide has been depicted pointwise in this study.

2.2.2. Landslide Impact Factors

Landslides develop as a consequence of the interplay between internal and external
causes. The selection of impacting elements is vital to predicting landslide susceptibility
due to the diverse range of impact factors that can influence landslides and the complicated
nature of their formation mechanism [38–40]. Nevertheless, there have been no set rules
for selecting impact factors. This study introduces 21 factors contributing to landslides
to create an index system for assessing susceptibility. These factors were derived from
five main aspects: geology, hydrology, topography, meteorology, human activities, and
geographic environment. The selection of these factors was primarily on the basis of field
investigations as well as the specific characteristics herein. Topographic elements include
elevation, slope angle, slope aspect, slope curvature, plane curvature, profile curvature,
terrain roughness, terrain ruggedness index (TRI), topographic position index (TPI), and
relief degree of land surface (RDLS). Geological variables encompass the proximity to faults
(e.g., dip, strike, etc.) and the classification of rock formations for engineering purposes.
Meteorological and hydrological parameters include the proximity to rivers, amount of
rainfall, topographic wetness index (TWI), and stream power index (SPI). Human activities
are affected by impact factors, e.g., the proximity to highways, the density of the population,
as well as the types of land utilisation and land cover (LULC). Geographic environmental
elements include soil type and normalised-difference vegetation index (NDVI).

The Digital Elevation Model (DEM) was utilised in this study to access topographic
information, e.g., elevation, slope angle, and slope curvature. Hydrological data, such
as SPI and TWI, were collected using the ASTER satellite, which has a resolution of
30 m. The geological mapping, which was extracted from the China Geological Archives
(accessible at http://www.ngac.cn/, accessed on 2 April 2024), has a scale of 1:50,000
and was used to access information on fault layers and engineering rock groups. The
information regarding rivers and roads was acquired from the Open Street Map (accessible
at http://www.openstreetmap.org/, accessed on 6 April 2024). The soil type and land
cover data were acquired from the Resource and Environmental Science Data Centre
of the Chinese Academy of Sciences (accessible at http://www.resdc.cn/, accessed on
2 April 2024). The mean yearly rainfall data were acquired from the online database offered

http://www.ngac.cn/
http://www.openstreetmap.org/
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by the China Meteorological Data Network (accessible at http://data.cma.cn/, accessed on
2 April 2024). The population density information was acquired from the United States
National Aeronautics and Space Administration (NASA). The NDVI was computed using
Landsat 8 data, resulting in a resolution of 30 m. The comprehensive factors contributing
to landslides can be observed in Table 1.

Table 1. All data sources and factor evaluation systems in the study region.

Groups Factors Descriptions Data Sources

Topography

Elevation ASTER GDEM V2,
30 m resolution

http://www.gscloud.cn/
(accessed on 6 April 2024)

Slope

Obtained by using SAGA 7.0,
30 m resolution

Extracted by DEM

Aspect

Curvature

Plane curvature

Profile curvature

Terrain roughness

TRI

TPI

RDLS

Geology
Distance to faults

Vector data
http://www.ngac.cn/

(accessed on 2 April 2024)Engineering rock group

Meteorology and hydrology

Distance to rivers Vector data
http:

//www.openstreetmap.org/
(accessed on 2 April 2024)

Rainfall Interpolated from the online
database, 1985–2020

http://data.cma.cn/
(accessed on 2 April 2024)

SPI Obtained by using SAGA 7.0,
30 m resolution

Extracted by DEM
TWI

Human activities

Distance to roads Vector data
http:

//www.openstreetmap.org/
(accessed on 6 April 2024)

Population density Reclassify to
30 m resolution

https://www.nasa.gov/
(accessed on 6 April 2024)

LULC 30 m resolution http://www.resdc.cn/
(accessed on 2 April 2024)

Geographic environment

Soil types Reclassify to
30 m resolution

http://www.resdc.cn/
(accessed on 2 April 2024)

NDVI Landsat 8, 30 m resolution https://www.gscloud.cn/
(accessed on 6 April 2024)

2.3. Assessment Units

Most recent studies have commonly employed grid units, administrative units, slope
units, and geomorphic units as the assessment units for landslide susceptibility predic-
tion [41]. According to Yang et al. [42], grid units are generally more effective for complex
calculations and simulation processes than other units. Thus, we used grid units as the
primary evaluation units in this study. Given the size of the research region and the compu-

http://data.cma.cn/
http://www.gscloud.cn/
http://www.ngac.cn/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://data.cma.cn/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
https://www.nasa.gov/
http://www.resdc.cn/
http://www.resdc.cn/
https://www.gscloud.cn/
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tational complexity, we also consulted the empirical formula [43] for determining the grid
cell size:

Gs = 7.49 + 6 × 10−4S − 2 × 10−9S2 + 2.9 × 10−15S3 (1)

where Gs represents the appropriate grid size, and S is the denominator of the map’s
digital scale.

In our study, the scale of detailed survey is 1:50,000, the optimal grid cell is calculated
as 32.853 m, which is convenient for data analysis. This study uses 30 m × 30 m grid cells
as the minimum evaluation unit for a total of 2,191,610 grid cells.

3. Methodology
3.1. Landslide Susceptibility Modelling Process

This study’s methodology flowchart is displayed in Figure 2. The process comprises
six main steps: (I) Acquire the updated landslide datasets to form the landslide inventory.
(II) Establish the impact factors system. (III) Screen the impact factors by eliminating
the factors with high correlation through multicollinearity detection. (IV) Construct the
modelling dataset by merging the recorded landslides and the same number of selected
non-landslide samples and set the ratio of training dataset to validation dataset as 7:3.
(V) Predict landslide susceptibility by applying 12 prediction models. (VI) Validate and
compare the prediction models performances by various evaluating indexes.

3.2. Optimised Sampling Approach for Non-Landslide Samples

Landslide deformation and instability processes are affected by coupled factors, e.g.,
geology, hydrology, topography, meteorology, human activities, as well as geography, be-
cause the environment feature space contains many factors that influence the evolution and
deformation of landslides. If a grid or point (x, y) is more distinctive to the environmental
similarities of the existing landslides, it is less likely to be prone to landslides. Thus, its
selection as a non-landslide sample is more reliable. Hence, a core idea of considering the
reliability of non-landslide data based on environmental similarity is introduced. Mean-
while, the CF model, a conventional statistical method, reflects the probability of future
geohazards based on the same geological circumstances [44]. Therefore, a novel method
that fuses the reliability of non-landslide data and the CF value is proposed to optimise the
selection of negative samples. The flow chart of the procedure is shown in Figure 3.

The implementation of the optimised sampling method involves three primary pro-
cesses. (I) Screened impact factors were divided into two types: continuous and discrete.
Subsequently, the frequency ratio model and kernel density estimation were utilised to
determine the environmental similarity between a specific impact factor and the standard
value for the existing landslides associated with that factor. Subsequently, the reliability of
non-landslide samples was computed for each grid, considering the total environmental
similarity. (II) The CF value for each grid was calculated using the formula of the certainty
factor model. (III) Non-landslide samples were chosen from high- and very-high-overall
score zones. This selection process ensures that the dependability of non-landslide samples
and the CF value are combined and standardised. Here are the details of these procedures.
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3.2.1. Reliability of Non-Landslide Samples
Environmental Similarity of the Discrete Factors

Considering the discrete impact factors, the environmental similarity between a single
factor and the typical value for the existing landslides under the factor was calculated via
the method of frequency ratio. By quantifying the frequency of sample classification, we
can judge the categories of certain impact factors that prominently impact the landslide
incidences. The mentioned statistical model is frequently used to analyse two variables
simultaneously [45–47]. This work utilises the method of frequency ratio to statistically
describe the correlation between every impact factor and the frequency of landslide occur-
rence. The formula for this correlation is given below:

FRi,j =
Fi,j/Ai,j

∑m
j=1 Fi,j/A

(2)

where Fi,j represents the occurrence frequency of the landslides in category j under the ith
factor; Ai,j is the area of the category j under the ith factor; m stands for the number of the
categories of the ith factor; and A is the total area of the investigated region.

To obtain the environmental similarity between the category j of the ith factor and
the typical category of landslides occurring under the ith impact factor, we use the follow-
ing expression:

Si,j =
FRi,j

max(FRi,j)
(3)
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Environmental Similarity of the Continuous Factors

For the continuous impact factors, the estimation of kernel density was applied to the
determination of the environmental similarity between the grids and existing landslide
grids [48,49]. Foremost, suppose there are n cases of landslides under different impact
factors x1, x2, x3, . . ., xn. Thenceforth, the function of probability density expressing the
correlation between the impact factor x and frequency of landslide occurrence is given as
follows [50]:

f (x) =
1

nh

n

∑
i=1

k(
x − xi

h
) (4)

where k is the kernel estimation formula, h stands for the bandwidth, which determines
the smoothness and shape of the estimation curve for kernel density, and x − xi is the
gap between the value of the impact factor x and the value of the impact factor xi at the
actual location of the existing landslide. In this research, we utilise a commonly employed
Gaussian kernel estimation formula to determine the estimation curve for the kernel density
and compute the bandwidth h. The formula frequently used for the purpose is provided
as follows:

f (x) =
1

nh

n

∑
i=1

k(
x − xi

h
) =

1√
2π

e
−
(x − xi)

2

2h2 (5)

h = σ(
4

3n
)

0.2
(6)

where σ stands for the standard deviation for a series of values of the impact factor x where
n landslides are located.

The environmental similarity of the continuous impact factors can be obtained by
normalising the f (x), and the normalisation expression is as follows:

Sx =
f (x)

fmax(x)
(7)

where f (x) stands for the function of probability density expressing the correlation between
the frequency of landslide occurrence and the impact factor x; fmax(x) indicates the maximum
value for f (x).

Comprehensive Environmental Similarity

By integrating the similarity of an impact factor to the typical value of landslide
occurrence under the impact factor, the comprehensive environmental similarity of the
typical landslide can be measured, and the formula is as follows:

CSx,y = f (S1, S2, . . . , Sk, . . . Sn) (8)

where CSx,y is the comprehensive similarity of the environment in the grid at (x, y); Sk is the
environmental similarity between the kth impact factor and the typical value of landslide
occurrence under this factor; f is the integration function, and the mean function, which is
a commonly used function, is selected in this study.

Calculation of Reliability of Non-Landslide Samples

According to the cognition that “samples of the same type are close to each other in the
environmental features, and samples of different types are separated”, the more dissimilar
the area is to the landslide samples in the environmental features, the more likely it is to be
a non-hazard area, that is, a high-reliability area for non-landslide datasets. The reliability
of non-landslide data might be achieved by the subsequent expression:

Rx,y = 1 − CSx,y (9)
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where CSx,y is the comprehensive similarity of the grid at (x, y); Rx,y is the reliability that
this grid is selected as a non-landslide sample.

3.2.2. Calculation of the CF Value

The certainty factor (CF) model is a probabilistic function introduced by Shortliffe
and Buchanan in 1975 [51]. Despite the simplicity of the model evaluation approach,
it achieves a high level of accuracy. To achieve better precision and accuracy at a high
level, it is necessary that the landslides that have already happened and the potential
future geohazards occur under identical conditions. The formula to compute CF could be
given below:

CF =


PPa−PPs

PPs(1−PPa)
(PPa < PPS)

PPa−PPs
PPs(1−PPa)

(PPa ≥ PPS)
(10)

where PPs represents the probability of historical landslides occurring throughout the entire
investigated region, which is defined as the ratio of the number of historical landslides to
the total area of this region, and PPa is the conditional probability of landslides in the impact
factor classification a, which can be determined as the ratio of the number of landslides in
classification a to the classification area.

The CF values vary between –1 and 1. If the values range from 0 to 1, it indicates a
susceptibility to landslides in this particular environment. A greater value of CF indicates a
higher susceptibility of the grid to landslides. Conversely, if the CF values range from –1 to
0, the occurrence of landslides in this environment is improbable.

3.2.3. Unified Scalar Overlay Approach

The reliability of negative samples is capable of characterising environmental dissim-
ilarity to typical landslides in the given region. Landslide susceptibility zoning on the
basis of the CF model can guarantee higher probabilities of selecting negative samples. To
minimise subjectivity in evaluating a single model and to incorporate valuable information
from various models, we incorporated the reliability of negative samples with the CF model
to improve the quality of non-landslide datasets. This could be achieved by utilising the
following formula:

xnorm =
xi − min{x1, x2, . . . , xn}

max{x1, x2, . . . , xn} − min{x1, x2, . . . , xn}
(11)

OS = R(0, 1) + 1 − CF(0, 1) (12)

where xi refers to the raster value in the resulting map (the reliability of negative samples
or the CF); the value after normalisation is represented as xnorm; min{x1, x2, . . ., xn} and
max{ x1, x2, . . ., xn} represent the minimum and maximum values among all raster values.
The normalisation outcomes of the reliability of the negative sample layers and the CF value
layers are indicated by R(0, 1) and CF(0, 1), accordingly. The optimal sampling method
value (OS) is derived from the normalised fusion of the reliability of the negative sample
layers and the CF value layers.

3.3. Machine-Learning Model
3.3.1. Random Forest Model

The random forest (RF) algorithm, which is a machine-learning technique, operates by
randomly selecting a subset of inventory and generating numerous binary decision trees
through bootstrapping. Subsequently, these trees are combined to calculate a categorisation
or prediction [52–55]. The decision tree algorithm was employed to train multiple samples
retrieved from the initial datasets, with replacement, and, subsequently, these decision
trees are aggregated. The ultimate categorisation outcome is determined by the one that
receives the highest number of votes. The operational idea of the RF method is illustrated
in Figure 4. The process can be described in the following three steps: (I) Construct n
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decision trees via the bootstrap method, which involves arbitrarily selecting n new sample
sets with replacement from the original training dataset. (II) For each re-sampling, select
a random set of features and use them to construct n decision trees. (III) Integrate the
generated trees to create an RF, which is then used to categorise newly acquired data. The
final classification outcomes are determined through decision tree voting. When dealing
with intricate data, the RF model demonstrates outstanding accuracy and robust reliability
by using significant variabilities across the individual trees for classification tasks [56].
The current work utilised the RF model for the evaluation of the landslide susceptibility
prediction when taking the benefits mentioned above into account.
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3.3.2. Support Vector Machine Model

The support vector machine (SVM) is a non-parametric machine-learning algorithm
that takes advantage of kernels to perform classification, regression, and prediction tasks
by creating a collection of hyperplanes in infinite-dimensional space [57–60]. SVM excels at
addressing linear and non-linear classification and regression issues by providing compli-
cated and reliable solutions. SVM modelling differs from other discriminant-type methods
by utilising an optimum linear hyperplane to distinguish data patterns. The schematic dia-
gram illustrating the principle of SVM modelling is depicted in Figure 5. Margin refers to
the measurement of the distance between the hyperplane and the closest sample point. The
classifier’s ability to generalise improves as the margin increases [61]. Therefore, the SVM
aims to determine the ideal hyperplane, i.e., the one that maximises the margin. Support
vectors are the locations on the hyperplane that determine the classification border and
are located on each side of the margin. Hence, the SVM performance is mainly dependent
on the adjustment of its hyperparameters. The three primary SVM hyperparameters are
C, γ, and kernel type, where parameter C dominates the balance between the decision
boundary and accuracy by imposing a penalty for each incorrectly classified data item, and
parameter γ is in certain kernel types that are linked to C, and the kernel type is responsible
for mapping the inventory into a feature space, as discussed earlier. When the value of γ is
high, the influence of C is minimalised. If γ is modest, C has a comparable impact on the
model as it does on a linear model.
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marginal area of the hyperplane of support vectors.

3.3.3. Back Propagation Neural Network Model

The back propagation neural network (BPNN) is a multilayer network algorithm
capable of efficiently mapping multidimensional functions and accurately classifying com-
plicated patterns [62]. The BPNN architecture used in the study is schematically plotted in
Figure 6. The system comprises three layers: input and output layers, as well as a hidden
layer. Each layer is linked to the surrounding layers using activation functions. During the
computation, each neuron in a layer utilises the output value of the neuron in the former
layer as input. It then processes this input value based on the weights and thresholds and
outputs the computed result to the neuron in the next layer [63–66]. The BPNN model
has the ability to extract accurate conclusions and calculate the underlying rules from vast
amounts of ambiguous and intricate datasets in a dynamic environment. The data utilised
in the susceptibility assessment procedure predominantly capture qualitative rather than
quantitative information pertaining to landslides. By analysing this ambiguous information,
precise assessment findings can be achieved. Landslide susceptibility evaluation is primar-
ily an investigation that focuses on identifying and analysing patterns. The BPNN model is
extensively used in non-linear modelling, pattern recognition, and pattern classification
thanks to its ability to represent any continuous functions with any degree of accuracy.
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3.3.4. Heterogeneous Ensemble Machine-Learning Model

A heterogeneous ensemble machine-learning model refers to a combination of diverse
machine-learning algorithms through different strategies to build a prediction model with
better performance. The individual algorithms that constitute ensemble learning are called
baseline models or base learners. To train an ensemble learner model, it is necessary to train
several different base models first and then train the ensemble model with the output of
these base models as input to obtain a final output. Because it can ensemble different types
of classifiers, heterogeneous integrators can realise the complementary advantages and
disadvantages of different base models to further eliminate errors and improve prediction
accuracy. In addition, heterogeneous integrators can achieve heterogeneity by integrating a
wide range of baseline models, hence avoiding the difficulty of model selection to some
extent. Heterogeneous ensemble models mainly include stacking, blending, and weighted
average algorithms. In the study, the stacking algorithm was utilised to complete the
ensemble machine learning.

Stacking ensemble machine learning, a classic heterogeneous ensemble learning algo-
rithm, applies a meta-model to combine various baseline models to create a new model that
produces predictions with higher precision [67–69]. As shown in Figure 7, the modelling
dataset is first separated into the training and validation sets as 7:3. Next, the modelling
dataset is input into several baseline models. The prediction information are integrated
into a new one, which is then used by the meta-model to output the final results [70]. The
study employs the logistic regression (LR) method as the meta-model and combines the
baseline models RF, SVM, and BPNN to form a heterogeneous ensemble machine-learning
model known as the stacking ensemble model.
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Logistic regression (LR), an extension of diverse regressions, is a predictive analysis in
which the events are considered the dependent variables, while the predisposing factors
are treated as the independent variables [71]. The discriminant analysis enables logistic
regression to exam predictor variables of diverse forms, including discrete, dichotomous,
and continuous variables, which makes it possible to create non-linear models [72]. A
benefit of LR over linear and log-linear regression is that it does not necessitate a normality
condition. To choose the “best” predictor used in the model step by step, there are multiple
methods available in the LR procedure. The LR equations are listed below:

f (x) = c0 + c1x1 + . . . + cnxn (13)

f (x) = log it(P) = ln
[

P
1 − P

]
(14)

P =
1

1 + e− f (x)
=

1
1 + e−(c0+c1x1+...+cnxn)

(15)

where x1, . . ., xn are referred to as predictor variables, and f (x) represents a linear function
combining these predictor variables, which stands for a linear relationship. Parameter c0
is the model intercept, and parameters c1, . . ., cn are the coefficients of regression, which
ought to be estimated. P is the occurrence likelihood of an event (a landslide), and 1 − P is
the likelihood that an event will not occur. The log it(P) is the symbol for the function f (x).
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When the values of f (x) increase, the probability P also rises. The probability of change
increases in response to the predictor variable, and vice versa, according to a positive sign.

3.4. Validation of Landslide Susceptibility Prediction

The confusion matrix is often applied to assess the precision of model predictions for
geohazards, such as landslides, which are typical binary classification issues. In this study,
the predicted value was evaluated using a threshold of 0.5. It is considered a landslide
(assigned 1), provided that the predicted value is >0.5. Otherwise, it should be classified
as non-landslide data (assigned 0). We selected the following formulas to define precision
(PRE), accuracy (ACC), recall (SST), and F1-score (FS) as the assessment metrics for our
model based on the confusion matrix.

PRE =
TP

TP + FP
(16)

ACC =
TP + TN

TP + FP + TN + FN
(17)

SST =
TP

TP + FN
(18)

FS =
2TP

2TP + FP + FN
(19)

where TP indicates that both the predicted and actual values are positive; TN is utterly
opposite to TP; FN denotes that the predicted and actual values are less than 0 and over 0,
respectively; FP is totally opposite to FN [73]. The values of PRE, ACC, SST, and FS fall into
a range between 0 and 1. The PRE value reaching closer to 1 means a higher proportion of
accurately predicted landslide samples. Similarly, the ACC value approaching closer to 1
signifies a higher overall modelling accuracy. Additionally, when SST turns closer to 1, it
shows a greater predictive capacity of the model for landslides. FS is an index indicating a
combination of precision and recall. A higher value of FS demonstrates a more substantial
output effect of the model [74,75].

When dealing with issues in terms of dichotomous classification, in addition to metrics,
e.g., recall, accuracy, precision, and F1-score, the receiver-operating characteristics curve
(ROCC) is commonly employed as a key indicator in modelling success. The ROCC
effectively assesses the predictive capability of a model by assessing its performance
against a given probability threshold [76]. The x-axis of the ROCC corresponds to the false
positive rate or specificity, while the y-axis corresponds to the genuine positive rate or
sensitivity. The AUC in the range of 0.5~1 represents the area under the ROCC. Models
that exhibit higher AUCs demonstrate superior performance.

4. Results and Analysis
4.1. Impact Factors Classification and Frequency Ratio

In this paper, the continuous factors in the evaluation system include elevation, slope
angle, slope aspect, slope curvature, profile curvature, plane curvature, terrain roughness,
TPI, TRI, TWI, RDLS, SPI, NDVI, rainfall, distance to rivers, distance to faults, distance
to roads, and population density. The natural fracture method is adopted to carry out
classification. Discrete factors include engineering rock groups, soil types, LULC, etc.,
and the natural grouping approach is adopted for classification. The outcomes from the
classification are depicted (see Figure 8).
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Figure 8. Impact factors for landslide susceptibility prediction: (a) Elevation; (b) Slope; (c) Aspect;
(d) Curvature; (e) Plane curvature; (f) Profile curvature; (g) Terrain roughness; (h) TRI; (i) TPI;
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density; (o) LULC; (p) Distance to rivers; (q) Rainfall; (r) SPI; (s) TWI; (t) Soil types; and (u) NDVI.
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Statistical models, specifically the FR and CF models, are employed to compute the
frequency ratio and determination coefficient values for each impact factor across various
classifications. This allows us to determine the degree of impact that each category of
impact factor imposes on landslide susceptibility. These results then serve as input data for
the model to predict landslide susceptibility. Frequency ratios and determination coefficient
values of each factor are displayed in Figure 9.
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(e) Plane curvature; (f) Profile curvature; (g) Terrain roughness; (h) TRI; (i) TPI; (j) RDLS; (k) Distance
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4.1.1. Topography

Topographic factors are the basic variables that influence the distribution of landslides,
and areas with surface fluctuation and significant fragmentation are more susceptible to
landslides [77].

Elevation is a measure commonly applied to evaluate the landslide probabilities.
Landslides in mountainous and hilly environments are influenced via various external
conditions that are directly associated with elevations, e.g., precipitation, vegetation cover,
and human activity. The landslide distributions in the investigated region are primarily
concentrated in areas having low mountains, hilly, as well as valley slopes, where the
elevation is under 350 m from the sea datum. These areas account for 88.98% of the total
landslide numbers. FR values of elevation factors achieve their highest within the range of
66 to 200 m, suggesting a high susceptibility to landslides (see Figures 8a and 9a).

The slope angle is a vital factor that directly impacts the stress field’s distribution and
rainfall’s infiltration process, determining slope stability. The majority of landslides are
found in slopes with an inclination below 30◦, and the occurrence likelihood of landslides
is highest when the slope is between 20◦ and 30◦ (see Figures 8b and 9b).

The slope aspect is crucial in the determination of the amount of surface water runoff
and the intensity of solar radiation, which affects the slope stability and deformation
in turn [78]. The probabilities for triggered landslides are greater in the southeast and
southwest directions in the county, as shown in Figures 8c and 9c. Combined with the local
geological environment, it indicates that the slopes in the above two aspects have greater
evaporation and less soil moisture, shallower and sparser vegetation roots, and larger daily
temperature changes, which are more likely to cause rock weathering, hence the evolution
and development of landslide being affected.

Three geometric factors of a slope, e.g., curvature, profile curvature, and plane cur-
vature, mainly control surface runoff and erosion and indeed have influences on the
occurrence of landslides in turn [79]. The highest number of existing landslides and the
FR values are shown in the investigated areas when the curvature is 0~1.0 (see Figures 8d
and 9d), the plane curvature is 0~0.5 (see Figures 8e and 9e), and the profile curvature is
0~0.5 (see Figures 8f and 9f), indicating that the convex slopes are more prone to landslides.
TRI is a measure of surficial morphology calculated by comparing the terrestrial surface
area to the corresponding projected area of a given region. The probability of landslides is
highest when the TRI falls between 1.0 and 1.05 in the entire county (see Figures 8h and
9h). The proportion of landslides occurring when the terrain roughness is less than 38 m is
96.06%. Additionally, the FR value reaches its maximum when the terrain roughness falls
into the range of 13 to 25 m (see Figures 8g and 9g). When TPI ≤ –1 and TPI ≥ 1 in the
research region, the FR value increases, indicating that landslides are more developed and
distributed in ridge areas or valley slopes (see Figures 8i and 9i).

RDLS is an important factor that quantifies the variation between the minimum
and maximum elevations in a designated region, which has a prominent impact on the
landslides occurrence [80]. Within the investigated region, the proportion of landslides is
95.28% for RDLS ranging from 0 to 20 m (see Figures 8j and 9j).

4.1.2. Geology

The geological setting has exerted effects on the genesis of landslides, including impact
factors: the distance to faults and engineering rock groups. The effects of faults on rock and
soil include interlayer dislocation, structural breakage, etc. Cracks develop near faults, and
rock mass is broken, making it easy to form loose residual slope deposits obversely attached
to bedrock and provide the necessary material for developing sliding slopes. Engineering-
rock groups are the basic material condition for controlling landslide occurrence since they
directly influence the magnitude and type of such disasters. As the formation integrity
worsens, the strength of geotechnical engineering decreases, the geological environment
becomes more unstable, and the likelihood of slope instability increases. The closer the
distance from the faults in the research region, the greater the likelihood of landslides
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occurring (see Figures 8k and 9k). The engineering-rock groups that are prone to landslide
include medium-dense clay and gravel and soft to moderately hard siltstone, sandstone,
and mudstone. The number of landslides and FR value are high in the distribution of the
above two engineering-rock groups (see Figures 8l and 9l).

4.1.3. Human Engineering Activities

The extensive and swift expansion of human engineering activities, including agri-
cultural irrigation, mineral exploitation, and transportation construction, has significantly
disrupted the original stable state of slopes, leading to a substantial increase in landslides.
Crucial indexes, e.g., the population density, distance to roads, and LULC, are typical sym-
bols of human activities. Approximately 77.17% of the landslides in the investigated region
are concentrated in an area within 2000 m of road systems. The likelihood of triggering land-
slides steadily increases as the distance to roads decreases, as shown in Figures 8m and 9m.
Landslides primarily occur in regions characterised by low-elevation mountains, valleys,
and other locations with a population density in a range of 96~248 people/km2. However,
under the background of urbanisation, due to the limitation of construction land and the
intensification of engineering activities such as building houses by cutting slopes, the proba-
bility of landslides is the largest in the area of 409~762 people/km2 (see Figures 8n and 9n).

4.1.4. Meteorology and Hydrology

Meteorological and hydrological conditions such as rainfall and river-flushing will
significantly alter the slope’s internally stable state, which is a key factor triggering landslide
initiation. In the research region, 74.80% of the landslides were found to occur at a distance
of 500 m from the rivers. The landslide possibilities steadily increased as the distance to the
rivers decreased (see Figures 8p and 9p). Landslides are mainly distributed in areas with
TWI ≤ 10, accounting for about 92.13% of the total number, while the TWI with the highest
probability of slope occurrence is between 0 and 5 (see Figures 8s and 9s). The grading
findings indicate that the majority of the sliding slopes are concentrated in the region with
an SPI value ranging from 1.37 to 2.83. These slopes account for approximately 49.61% of
the total number of sliding slopes (see Figures 8r and 9r). In the study region, the landslide
frequency and FR values are both high, with precipitation between 1284~1343 mm/year
(see Figures 8q and 9q).

4.1.5. Geographic Environment

Geographic environmental factors, including NDVI and soil types, are significant
factors that cannot be ignored in terms of affecting slope stability. The higher the NDVI,
the lower the effect of precipitation-induced infiltration on slopes. Meanwhile, the root
system of plant cover has a certain strengthening effect on a slope. The bare vegetation on
the surface of the ground is less covered, and the slope is extremely vulnerable to hydraulic
encroachment and erosion, which leads to landslides. Different types of soil exhibit various
physical and chemical properties, fundamentally determining the source basis of landslide
formation. The number of existing landslides with NDVI between 0.6 and 0.7 accounts
for 39.37% of the study area. When the NDVI is 0.15~0.45, the FR values are the highest,
indicating the possibility of forming landslides is greatest (see Figures 8u and 9u). In total,
62.21% of the landslides are distributed in red soil and yellow soil, and the probabilities of
landslide development in brown soil are the highest (see Figures 8t and 9t).

4.2. Multicollinearity Detection among Factors

The multicollinearity of selected dominant factors will lower the model’s prediction
accuracy and probably cause the model to fail. Thus, it is essential to detect the indepen-
dence of all the impact factors through correlation analysis and collinear diagnosis before
machine learning. Most academics frequently employ Pearson correlation coefficients
(PCCs), tolerance (TOL), and variance inflation factor (VIF) for screening factors. It is
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generally believed that when PCCs > 0.5, the two factors have a relatively high correlation;
when TOL < 0.1 and VIF > 10, the factor does not have multicollinearity [81–83].

As shown in Table 2, the VIF and TOL of the 21 impact factors in our study satisfy the
threshold conditions for non-collinearity. As depicted in Figure 10, the PCCs between the
following groups of factors, namely terrain roughness and slope angle, TRI and slope angle,
TRI and terrain roughness, RDLS and slope angle, and RDLS and TRI, are >0.5, indicating
a series of high correlation, while the correlations between the rest impact factors are
relatively low. Therefore, the factors of terrain roughness, TRI, and RDLS with the highest
VIF values in the above two groups of factors are eliminated. The remaining 18 factors
were substituted into the baseline models and the hybrid models to develop landslide
susceptibility prediction in the county.

Table 2. VIF and TOL of all the impact factors.

Impact Factors TOL VIF Impact Factors TOL VIF

Elevation 0.485 2.062 Distance to Faults 0.718 1.393
Slope angle 0.250 3.502

Engineering-Rock Group 0.669 1.494
Slope aspect 0.651 1.536

Slope curvature 0.509 1.966 Distance to Roads 0.667 1.495
Plane Curvature 0.712 1.404 Population Density 0.774 1.292
Profile Curvature 0.714 1.401 LULC 0.364 2.750

Terrain Roughness 0.245 4.896 Distance to Rivers 0.736 1.357
TRI 0.317 4.398 Rainfall 0.733 1.362
TPI 0.745 1.342 SPI 0.436 2.291

RDLS 0.152 4.972 TWI 0.379 2.637
NDVI 0.375 2.665 Soil types 0.727 1.376
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4.3. Sample Selection Results

A total of 127 positive samples (existing landslides) have been acquired from the
landslide inventory of the research region. In the study, three methodologies adopted to
choose 127 negative samples (non-landslide samples) are as follows: (1) Random sampling
(RS) method: create a buffer zone with a radius of 500 m centred on the known landslide
points, and the negative samples were randomly selected from outside of it (see Figure 11a).
(2) Certainty factor-based (CF) sampling method: employ the CF model to calculate the
CF value for each grid and generate the landslide susceptibility zoning; then, the negative
samples were picked randomly from the very low and low susceptibility zoning areas
(see Figure 11b). (3) OS method: obtain a comprehensive score by fusing the reliability of
the non-landslide samples with CF values for all grids; then, the negative samples were
picked up from those regions with very-low and low corresponding values at random (see
Figure 11c).
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4.4. Machine Learning Parameter Settings

In our study, the Sklearn library of Python language is used for machine-learning
model construction, and parameters are optimised by learning curve and grid search. The
parameters used by each baseline models are set as follows: When the number of random
forest model classifiers increases to 200, the maximum depth of the decision tree reaches at
10, and the score reaches a peak and then becomes stable; the kernel function of the support
vector machine model is a linear kernel function, and the penalty coefficient is 0.1. In the
BP neural network model, the number of neurons in the hidden layer is 100, the activation
function is Tanh, the optimizer is Adam, and the regularisation parameter alpha is 0.001.

4.5. Prediction of Landslide Susceptibility

To evaluate the OS strategy’s reliability and validity for the selection of non-landslide
samples and the heterogeneous ensemble machine-learning model’s generality and re-
silience proposed in our study. We selected negative samples based on the RS, CF, and OS
methods, respectively. After inputting the three abovementioned sample sets, the likeli-
hood of landslide occurrence for all grids was determined through the baseline models (RF,
SVM, BPNN) and the heterogeneous ensemble stacking model. Next, we categorised the
landslide susceptibility into five classifications using the natural fracture technique: very
low, low, moderate, high, and very high. Then, the landslide susceptibility maps generated
by the RS–RF, RS–SVM, RS–BPNN, RS–Stacking; CF–RF, CF–SVM, CF–BPNN, CF–Stacking;
OS–RF, OS–SVM, OS–BPNN and OS–Stacking models will be obtained in sequence (see
Figure 12). These susceptibility maps from the 12 prediction models exhibit almost visually
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identical patterns, with the majority of high-prone areas located in the southeastern and
northeastern part. When comparing the 12 susceptibility maps with the locations of natural
landslides, it is observed that the distribution of landslides is generally accordant. This is
because the areas have complex geological structures, relatively soft technical lithologies,
and traversing river systems. In addition, the areas are increasingly impacted by human
engineering endeavours, such as the construction of transportation facilities and house
building via cutting slopes, heightening the risk of triggering landslides. However, it
is visible that the high-prone zone yielded using the stacking ensemble model is more
concentrated than that by the other baseline models. Furthermore, there is more clumping
in high-prone regions when applying the OS method for selecting the non-landslide data
under the same machine-learning model.
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(b) LSM by RS-SVM model; (c) LSM by RS-BPNN model; (d) LSM by RS-Stacking model; (e) LSM
by CF-RF model; (f) LSM by CF-SVM model; (g) LSM by CF-BPNN model; (h) LSM by CF-Stacking
model; (i) LSM by OS-RF model; (j) LSM by OS-SVM model; (k) LSM by OS-BPNN model; (l) LSM
by OS-Stacking model.

5. Validation of Prediction Models

Evaluating the prediction models is crucial for determining landslide susceptibility
outcomes. The evaluation indexes, including accuracy (ACC), precision (PRE), F1-score
(FS), and recall (SST), along with AUC and ROCC, were applied to conduct a comparison
of the 12 prediction models performances.

According to those evaluation indexes listed in Table 3, the values of accuracy, preci-
sion, F1-score, and recall by the OS–RF, OS–SVM, OS–BPNN, OS–Stacking, CF–RF, CF–SVM,
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CF–BPNN, and CF–Stacking models all exceeded 0.85, with the OS–Stacking model ranking
highest, with a value over 0.9. In contrast, the evaluation indexes of the RS–RF, RS–SVM,
RS–BPNN, and RS–Stacking models were all less than 0.80. It demonstrated that the
quality of non–landslide data chosen by the OS and CF methods was much higher, thus
affecting the model evaluation accuracy. Using the same negative sampling strategy, the
stacking ensemble model outperforms other three baseline models in regard to evaluation
indexes. This indicates that the stacking ensemble machine-learning technique efficiently
and effectively improved the performance and prediction accuracy of the model.

Table 3. Model prediction performance result.

Models Precision Accuracy Recall F1-Score

RS–RF 0.767 0.755 0.768 0.761
RS–SVM 0.736 0.721 0.742 0.723

RS–BPNN 0.739 0.722 0.743 0.726
RS–Stacking 0.778 0.764 0.789 0.772

CF–RF 0.903 0.892 0.905 0.897
CF–SVM 0.878 0.865 0.882 0.866

CF–BPNN 0.881 0.869 0.884 0.874
CF–Stacking 0.911 0.898 0.915 0.902

OS–RF 0.924 0.901 0.927 0.908
OS–SVM 0.892 0.879 0.896 0.881

OS–BPNN 0.898 0.885 0.902 0.890
OS–Stacking 0.933 0.906 0.936 0.912

As the AUC and ROCC of each model are provided in Figure 13, the OS–Stacking
model can achieve the highest AUC of 97.1%. The OS–RF model and CF–RF model had
relatively high AUCs of 96.8% and 96.1%, respectively, followed by the OS–BPNN and
OS–SVM models at 94.5% and 94.2%, yet the RS–SVM model was only 77.5%. The AUC
of each stacking ensemble model can surpass that of the baseline models in the same
approach for choosing the non-landslide data, which proved that the stacking ensemble
machine-learning model could enhance prediction accuracy and model robustness.
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When comparing the average AUC among different sampling methods for selecting
non-landslide data, it was evident that the OS method can achieve the highest average AUC
of 95.7%. The CF method achieved a slightly lower average value of 95.1%, while the RS
method had the lowest AUC of 79.7%, which indicated the OS method stands out with its
effective and reliable ability to select high-quality negative samples. Similarly, comparing
the average AUC within the same model, the stacking ensemble model can outperform the
base models with an average value of 92.2%, while the RF model came in second place with
a value of 91.17%. The value of the BPNN model ranked third at 88.7%, slightly larger than
the value of the SVM model at 88.5%. It showed that all the selected models were relatively
stable, but the stacking ensemble model stood out for its exceptional spatial prediction
capability, which guarantees the dependability of the landslide prediction outcomes based
on the available historical landslide data.

6. Discussions and Reflections
6.1. Feature Importance of Factors

Since each impact factor has a unique mechanism for contributing to landslide de-
formation, it is imperative to evaluate the feature importance of all impact factors. As an
effective feature selection technique, the recursive feature elimination (RFE) approach has
been frequently applied in many academic works to identify and eliminate impact factors
that have a low or irrelevant impact on the performance of models [84–87]. Higher values
of feature importance indicate a more significant number of impact factors that contribute
to prediction models and vice versa. The RFS approach was selected in the study to assess
the feature importance of all impact factors. As shown in Figure 14, eighteen landslide
factors selected by multicollinearity analysis have positive contributions to landslides,
which suggests these filtrated impact factors are suitable for further study. The top 5 crucial
landslide impact factors are engineering rock group, distance to rivers, distance to roads,
rainfall, and slope angle. The ranking result corresponds to the widely accepted notion
that the influence of the facility-sliding strata, extreme rainfall, and human activities can
speed up the deformation process of landslides in southern China’s hilly and mountainous
terrains [8,88–90].
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6.2. Comparison of Susceptibility-Zoning Statistics

Owing to the progress of computer science, the development of remote-sensing tech-
nology (RST) and geographic information system (GIS), the accessibility of software, and
the availability of multi-source datasets, landslide susceptibility prediction has advanced
significantly with many algorithms and modified models [91–94]. Nevertheless, how to
select high-quality samples efficiently and enhance the prediction result effectively are two
main questions for scholars [95–98].

To address these problems, we put forth an integrated strategy combining the opti-
mised selecting method for the non-landslide samples and stacking ensemble machine
learning to achieve better precision and accuracy of landslide susceptibility predictions.
The empirical research conducted in Chenxi County demonstrates that the OS method,
fusing the reliability of non-landslide samples through environmental similarity analy-
sis and low susceptibility zoning by using the certainty factor model, has a substantial
advantage over the CF method and RS method in non-landslide sampling. The stacking
ensemble machine-learning model exerts a superior performance in evaluating landslide
susceptibility, proving its potential to improve the precision and accuracy of predicting
outcomes (see Figure 14).

The excellent prediction models should satisfy two criteria. Firstly, the extent of
coverage in areas where landslides are highly susceptible ought to be minimised. Secondly,
the occurrence of landslides should be concentrated in the high-prone and very-high-prone
areas as much as possible [99,100]. We evaluated a susceptibility-zoning assessment of
the research region using statistical methods. Figure 15a,b are obtained by counting the
coverage of different susceptibility class areas generated by each model and the ratio
of the existing landslides within each class to the total number of historical landslides.
For the very-high-susceptibility class, the area covered by each model is relatively small,
among which the OS–Stacking model accounted for the smallest area in the high- and
very-high-susceptibility areas, which are 7.43% and 6.82%, respectively. In contrast, the
RS–SVM model accounted for the largest with 15.06% in the very-high-susceptibility class,
and the RS–BPNN accounted for the largest with 29.97% in the high-susceptibility class. By
analysing and comparing the proportions of the historical landslides included in very high-
prone areas, the landslide numbers included in the OS–Stacking model in the high-prone
and very-high-prone areas are the largest, which are 22.83% and 58.27%, respectively. The
RS–SVM model is the smallest, with 18.9% and 10.24%, respectively. Through the analysis
of the above two criteria, it can be inferred that the OS–Stacking model, as an integrated
approach to melting the OS method and stacking algorithm, has excellent performance in
predicting regional landslide susceptibility.

In addition, the FR value and landslide density of the landslide susceptibility classes
predicted by each model were computed to further validate the models’ performance
(see Figure 15c,d). The very-high- and high-susceptibility areas had the most significant
FR values (8.54 and 3.07, respectively) for the OS–stacking model. Simultaneously, the
OS–Stacking model’s landslide density was the largest in the areas, with susceptibility
levels classified as very high and high, measuring 0.55 and 0.20 Pcs/km2, respectively. This
demonstrates that the OS–Stacking model is a highly accurate and reliable model that is
worthy of popularisation and application in landslide susceptibility mapping.

6.3. Limitations and Ambiguities in Our Research

While the screened impact factors and proposed strategy exert an excellent perfor-
mance in predicting landslide susceptibility, there are still certain limitations and uncer-
tainties. Initially, there was an inconsistency in the resolution of the original data. For
example, the topographical factors adopted are all sourced from the DEM with a spatial
resolution of 30 m, but the geological factors are derived from the geological map with a
1:50,000 scale. To meet the demand for calculation and analysis convenience, all the layers
of impact factor are processed at a spatial resolution of 30 m. On the basis of an evaluation
of those prediction models, it is feasible to carry out the re-sampling operation in this study,
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which former studies have proven [101,102]. Despite the limited available datasets, it is
more practical and accurate to examine the numerous categories of landslides with diverse
inducing factors over a certain period [103,104].
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Next, the grid as a fundamental evaluation unit often weakens the integrity and
linkage of a single landslide, which is quite common in most data-driven susceptibility-
prediction models for its processing efficiency advantages [105–107]. Within the context of
a single landslide, there may be significantly disparate susceptibility predictions due to the
various influencing attributes of each grid. For instance, some grids are very-low-prone or
low-prone, while there are a lot of very-high-prone grids. Because of this, the predictions
do not match the features of landslide instability or linkage deformation. Thus, the grid
matrix can replace the grid as the fundamental unit for evaluation, and the susceptibility
modelling can also consider the geological environment surrounding the target grid. This
will help establish a quantitative relationship between the target unit’s susceptibility index
and the surrounding geological environment and lessen the error caused by a significant
difference in susceptibility grade within a single landslide’s range.

Moreover, the input dataset ratio was 1:1 between non-landslide and landslide data.
This is due to the unequal number of negative and positive samples impacting the predic-
tion models. To validate the reliability of the optimised sampling approach, we set the ratio
of positive and negative samples at 1:1. However, some academics focus on the impacts of
different dataset ratios on the prediction models [108,109]. In this ensuing study, we intend
to examine an optimal ratio for non-landslide and landslide data to further enhance the
prediction accuracy.

Last but not least, while the methodology is robust and satisfactory in hilly and
mountainous regions, it is still worthy to detect the validation in different topograhic,
geological, and geographic environment.
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7. Conclusions

The prediction of landslide susceptibility serves as the cornerstone for landslide risk
assessment. This work selects Chenxi County, a mountainous and hilly region in southern
China, as a case study. An evaluation system of landslide susceptibility was constructed
based on 21 impact factors in five categories, utilising a combination of field surveys and
previous data research. The PCC and collinearity diagnosis have been applied to screen
the impact factors, and the frequency ratio model has been used to analyse quantitatively
the relationship between the landslide spatial distribution law and the evaluation indexes.
Then, we proposed an integrated approach combining optimised sampling and heteroge-
neous ensemble machine learning for predicting landslide susceptibility. The 12 prediction
models were comparatively analysed from the following aspects: AUC and ROCC, evalu-
ation indexes, and susceptibility-zoning statistics. The research outcomes can be mainly
summarised in the following concluding points:

1. By combining the reliability of non-landslide samples on the basis of environmental
similarity and susceptibility zoning using the CF model, the OS method introduced in
our study significantly enhanced the quality of negative samples. Also, it improved
the accuracy of landslide susceptibility prediction compared with the conventional
sampling methods.

2. The stacking ensemble machine learning proposed in our study outperformed the
baseline models (RF, SVM, and BPNN) in terms of accuracy, precision, recall, AUC, and
F1-score by leveraging the strengths of the selected baseline models and employing
logistic regression strategy to construct a prediction model with better performance.

3. According to the zoning statistics of the landslide susceptibility maps produced by
12 prediction models and a comparative analysis with the historical landslides, the
OS–Stacking model had the lowest coverage of high- and very-high-susceptibility
areas, which was 14.25% only, while the historical landslides were most-distributed
in the above areas, accounting for 81.10%. It was further verified that the integrated
approach, the OS–Stacking model, which combined the OS method and stacking
machine learning, was superior to the other hybrid models in terms of predicting
precision and accuracy.

The research findings in this study can be used to lay a theoretical foundation for
selecting an effective integrated model for landslide susceptibility prediction. In addition,
those findings could also be used to form a valuable reference for mitigating and preventing
landslide disasters in this investigated region.
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