
Citation: Zhou, K.; Zhang, C.; Xu, B.;

Huang, J.; Li, C.; Pei, Y. TE-LSTM: A

Prediction Model for Temperature

Based on Multivariate Time Series

Data. Remote Sens. 2024, 16, 3666.

https://doi.org/10.3390/rs16193666

Academic Editors: Liangxiu Han,

Wenjiang Huang, Yanbo Huang,

Jiali Shang and Stefano Pignatti

Received: 16 August 2024

Revised: 27 September 2024

Accepted: 29 September 2024

Published: 1 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

TE-LSTM: A Prediction Model for Temperature Based on
Multivariate Time Series Data
Kang Zhou, Chunju Zhang *, Bing Xu , Jianwei Huang , Chenxi Li and Yifan Pei

College of Civil Engineering, Hefei University of Technology, Hefei 230009, China;
kangzhou@mail.hfut.edu.cn (K.Z.); bingxu@mail.hfut.edu.cn (B.X.); hjw1028@hfut.edu.cn (J.H.);
2024111596@mail.hfut.edu.cn (C.L.); 2024110759@mail.hfut.edu.cn (Y.P.)
* Correspondence: zhangspring@hfut.edu.cn

Abstract: In the era of big data, prediction has become a fundamental capability. Current prediction
methods primarily focus on sequence elements; however, in multivariate time series forecasting,
time is a critical factor that must not be overlooked. While some methods consider time, they often
neglect the temporal distance between sequence elements and the predicted target time, a relationship
essential for identifying patterns such as periodicity, trends, and other temporal dynamics. Moreover,
the extraction of temporal features is often inadequate, and discussions on how to comprehensively
leverage temporal data are limited. As a result, model performance can suffer, particularly in predic-
tion tasks with specific time requirements. To address these challenges, we propose a new model,
TE-LSTM, based on LSTM, which employs a temporal encoding method to fully extract temporal fea-
tures. A temporal weighting strategy is also used to optimize the integration of temporal information,
capturing the temporal relationship of each element relative to the target element, and integrating it
into the LSTM. Additionally, this study examines the impact of different time granularities on the
model. Using the Beijing International Airport station as the study area, we applied our method to
temperature prediction. Compared to the baseline model, our model showed an improvement of
0.7552% without time granularity, 1.2047% with a time granularity of 3, and 0.0953% when addressing
prediction tasks with specific time requirements. The final results demonstrate the superiority of the
proposed method and highlight its effectiveness in overcoming the limitations of existing approaches.

Keywords: multivariate time series data; temperature forecasting; temporal encoding; time granularity

1. Introduction

In recent years, with the continuous development of internet technology and big data,
people’s functional demands have evolved from merely detecting past events to real-time
monitoring and further to predicting future occurrences [1–5]. By analyzing vast amounts
of data, it is possible to predict the likelihood of events occurring, helping decision makers
formulate practical plans and avoid one-sidedness and errors in decision making. In the
context of expensive experiments or research, predictive analysis models can facilitate
simulation experiments, thereby achieving cost savings. For example, in the machinery
industry, accurate temperature prediction can ensure product quality, improve production
efficiency, and ensure safety. In the field of ecology, sea surface temperature (SST) plays a
crucial role in the energy balance at the Earth’s surface as well as in the exchange of energy,
momentum, and moisture between the ocean and atmosphere [6]. Variations in SST can
influence biological processes such as the distribution and reproduction of marine life; this
has significant impacts on marine ecosystems [7]. In addition, in some industries, certain
phenomena or numerical changes are extremely fast, such as high-precision experiments,
so it is not only necessary to ensure the accuracy of the predicted results, but also to ensure
the accuracy of the prediction method at specific times [8–10].

The core of prediction lies in identifying patterns embedded in time series data that
are closely related to time [11,12]. Typically, data points that are closer in time have a

Remote Sens. 2024, 16, 3666. https://doi.org/10.3390/rs16193666 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16193666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0001-9671-5478
https://orcid.org/0000-0002-0207-8800
https://doi.org/10.3390/rs16193666
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16193666?type=check_update&version=1

Remote Sens. 2024, 16, 3666 2 of 21

greater impact on the results. However, the evolution of patterns within time series data
is not fixed and can vary significantly over different periods [13–15]. Additionally, some
entities undergo slow changes, such as the evolution of geological structures, which require
a long time to capture. This means that if these entities undergo the same change twice, the
magnitude of the change in a particular property value may be small, but the time span of
the change may vary significantly. For example, it took 10 years for the height of a mountain
to drop by 1 cm for the first time, and 20 years for it to drop by 1 cm for the second time.
Thus, incorporating the time can help amplify subtle changes and capture more precise
patterns. These considerations highlight the critical role of time in multivariate time series
prediction tasks and underscore its indispensable nature.

Traditional prediction algorithms include Autoregressive Integrated Moving Average
(ARIMA) [16], Logistic Regression, k-Nearest Neighbors (k-NN) [17], etc. These algorithms
are suitable for simple relationships and small datasets but are not suitable for prediction
tasks in the big data era. With the rapid development of deep learning, time series fore-
casting [18–21] models have shown excellent ability in handling nonlinear, high-frequency
multidimensional, and discontinuous data, such as Recurrent Neural Networks (RNN) for
time-series data modeling [22–24]. Each layer of the network utilizes the information from
the previous layer, making it sensitive to sequence data. It can retain previous information
to better understand the current information, but it cannot solve long-distance dependency
issues. Gated Recurrent Unit (GRU) is based on RNN and also a chain-like neural network
repeating module [25]. GRU adds update gates and reset gates, combining them into one
update gate to control information updating and flow, solving the long-term dependency
problem. Long Short-Term Memory (LSTM) is similar to GRU but includes three gates:
forget gate, input gate, and output gate [26]. It uses a cell state and a hidden state to
transmit information, which can better control what information is forgotten and what is
remembered, thus more accurately controlling the transmission of long-term information.
Bidirectional Long Short-Term Memory (BiLSTM) consists of forward LSTM and backward
LSTM, solving the problem that LSTM can only predict from front to back and cannot
predict from back to front.

The most commonly used methods for time series prediction currently include Recur-
rent Neural Network (RNN) architectures and their variants, particularly the combination
of LSTM and other models. These approaches rely on the sequential order of time series
data for prediction. The bidirectional LSTM-CRF model combines a bidirectional LSTM
network with a Conditional Random Field (CRF) layer, utilizing LSTM to capture contex-
tual dependencies in sequence data and CRF to manage dependencies between output
labels, thereby enhancing the model’s robustness in sequence prediction tasks [12,27].
Mohammadi et al. combined a many-to-many LSTM (MTM-LSTM) and a Multilayer
Perceptron (MLP), using MTM-LSTM to approximate the target at each step and MLP to
integrate these approximations [28]. Wang et al. proposed a Graph Attention Network
(GAT) method based on LSTM for vehicle trajectory prediction, where LSTM was used
to encode vehicle trajectory information, and GAT was employed to represent vehicle
interactions [29]. Ishida et al. integrated one-dimensional Convolutional Neural Networks
(CNN) with LSTM to reduce input data size and improve computational efficiency and
accuracy in hourly rainfall runoff modeling [30]. Wanigasekara et al. applied Fast Mul-
tivariate Ensemble Empirical Mode Decomposition Convolutional LSTM (Fast MEEMD
ConvLSTM) for sea surface temperature prediction [31], where the Fast MEEMD method
decomposed the SST spatiotemporal dataset [32,33]. Xu et al. proposed a novel approach
for retrieving atmospheric temperature profiles using a Tree-structured Parzen Estimator
(TPE) and a multi-layer perceptron (MLP) algorithm [34]. Long Short-Term Memory Neural
Network (LSTNet) leverages CNN to capture short-term patterns and LSTM or GRU to
retain longer-term dependencies [35]. Although these methods combine LSTM with other
architectures, which offer inherent interpretability for sequential data such as language
or speech, they exhibit poor interpretability for temporal data because the dependencies
between time steps in the series are crucial, and the degree of reliance on variables at

Remote Sens. 2024, 16, 3666 3 of 21

each time step varies. Some scholars have addressed this issue by introducing attention
mechanisms. For instance, AT-LSTM assigns different weights to input features at each time
step, effectively selecting relevant feature sequences as inputs to the LSTM neural network,
using trend features for forecasting the next time frame [36]. EA-LSTM uses evolutionary
attention-based LSTM training with competitive random search, where shared parameters
allow LSTM to incorporate an evolutionary attention learning approach [37], which was
ultimately applied to forecast PM2.5 levels and indoor temperatures in Beijing. These
methods focus on enhancing the attention mechanism by quantitatively assigning attention
weights to specific time steps within sequence features, enabling the model to prioritize key
variables rather than time steps, thus addressing the instantaneous dispersion limitations
of traditional LSTM models. However, these methods do not fully utilize temporal infor-
mation, as the attention weights are solely based on the output of each time step, limiting
their ability to explain temporal dependencies between different time steps. While they
can distinguish the importance of various features at different time steps, they fall short
in modeling temporal relationships. The Temporal Fusion Transformer (TFT) combines
Transformers, LSTM, and other technological modules to incorporate time information
as input features [38]. The LSTM module captures short-term dependencies, while the
self-attention mechanism handles long-term dependencies, enabling time information to
influence the model’s predictions. However, TFT does not consider the temporal distance
between elements in the time series data and the target prediction time.

The general approach of these methods using LSTM and its variants is to first sort the
dataset by time, select a fixed-length sequence, and use one or more subsequent elements
as the prediction value for that sequence. For instance, the first thirty elements in a dataset
might be selected as a sequence, with the thirty-first element serving as the prediction value.
Subsequently, the sliding window method is employed to sequentially select sequences and
prediction values according to a set step size. Based on this approach, existing prediction
models are divided into two categories: (1) the vast majority of models do not consider
time and only focus on how to improve the expression of input features in the model, such
as Fast MEEMD–ConvLSTM. However, the time intervals between consecutive elements
are different, and these time intervals can range from a few days to several months. This
approach is clearly inadequate for addressing complex prediction problems in reality. (2) A
small number of models do consider time, but they only use time to strengthen the input
features of the sequence, neglecting the temporal distance between sequence elements and
the predicted target time, a relationship essential for identifying patterns such as periodicity,
trends, and other temporal dynamics. Moreover, the extraction of time features is often
insufficient, and the utilization of time information is not comprehensive, as seen in models
like LSTNet. Therefore, these limitations restrict the model to making predictions solely
based on the order of occurrence, allowing it to only answer questions such as “What will
happen next?”. Consequently, the model performs poorly when tasked with prediction
questions with explicit time, such as “What will happen on 21 May 2024 12:00:00?”

To address these issues, we propose TE-LSTM, an LSTM model that takes into account
the temporal evolution of entities. This model is based on the LSTM model. First, to make
full use of temporal information, we use two forms of time: the original time of the data
and the time intervals between each element and the predicted target. The original time
captures global patterns, while the time intervals capture local patterns. Then, we use FFN
and Time2Vec to encode these two forms of time, fully extracting the temporal features. A
temporal weighted strategy is employed to capture the time relationships between each
element in the sequence and the target to be predicted. During each time step calculation of
the LSTM, the corresponding temporal weights are integrated, replacing the original order
positions to improve prediction accuracy. Finally, we analyze the model’s performance
across different time granularities and validate its ability to answer prediction questions
with explicit time.

Overall, this model incorporates time into the prediction process by combining LSTM
with a temporal weighted strategy. By introducing a temporal weighted strategy, dif-

Remote Sens. 2024, 16, 3666 4 of 21

ferent temporal weights are dynamically calculated for each time step, which improves
the model’s ability to process input sequences while enabling the model to consider the
temporal information corresponding to these time steps and the temporal relationship with
the target to be predicted. This combination not only demonstrates strong performance and
flexibility in handling complex temporal tasks but also improves interpretability, enabling
the model to excel in various tasks that require sequence data processing.

2. Materials and Methods
2.1. Experimental Data

Temperature prediction plays a crucial role in addressing climate change. By forecast-
ing future temperature variations, it helps individuals and governments take proactive
measures, reduce disaster losses, and enhance response capabilities. Therefore, we have
chosen temperature prediction as the primary focus of our research. Additionally, the
design of TE-LSTM incorporates the ability to capture both periodic and non-periodic
patterns. Temperature fluctuations exhibit certain regularities, such as lower temperatures
in the morning, higher temperatures at noon, and lower temperatures at night. Thus,
selecting a temperature dataset provides an effective means to validate the performance
and applicability of TE-LSTM on simple and periodic datasets. In parallel, we also se-
lected the GDELT event dataset, where events are influenced by multiple factors and often
occur unpredictably and suddenly. The GDELT dataset allows us to further assess the
model’s performance on complex datasets characterized by high randomness and to test its
applicability across different types of data.

This research applies the model to temperature prediction using climate data from
the National Oceanic and Atmospheric Administration (NOAA). The NOAA provides
global hourly/sub-hourly observational data for meteorological information. We used
meteorological data from the Beijing Capital International Airport station from 2012 to
2020, comprising a total of 179,111 data points, as shown in Figure 1. The dataset includes
several types of data:

• Total coverage: denotes the fraction of the total celestial dome covered by clouds or
other obscuring phenomena.

• Total lowest cloud cover: represents the fraction of the celestial dome covered by all
low clouds present. If no low clouds are present, it denotes the fraction covered by all
middle-level clouds present.

• Low cloud genus: denotes a type of low cloud.
• Height: lowest cloud base height dimension.
• Mid cloud genus: denotes a type of middle-level cloud.
• High cloud genus: denotes a type of high cloud.
• Atmospheric pressure at the observation point.
• Temperature received from the Automated Weather Observing System (AWOS).
• Dew point received from the Automated Weather Observing System (AWOS).

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 23

Figure 1. Study area. The base map is a street map, showing roads such as S219, G7, and Route 12.

The GDELT project, supported by Google Jigsaw, monitors global broadcasts, print
media, and online news from nearly every corner of every country in over 100 languages.
It identifies the people, locations, organizations, themes, sources, emotions, counts,
quotes, images, and events driving our global society, creating a free and open platform
for computing the entire world. It is the largest, most comprehensive, and highest-resolu-
tion open database of human society ever created, with a total archive spanning over 215
years. For this study, we used events between two countries from the GDELT 1.0 simpli-
fied event database, covering all events from 1 January 1979, to 17 February 2014. There
are a total of 164,255 events, spanning 412 event types. We performed a statistical analysis
of the GDELT event dataset and visualized the results using a word cloud, as shown in
Figure 2. In the word cloud, the font size corresponds to the frequency of events, with
more frequent events represented by larger font sizes.

Figure 2. GDELT event dataset world cloud.

When creating the multivariate time series and predictive target dataset, the data are
first sorted by occurrence time. In this experiment, the sequence length L is set to 30, and
the X-th element after the sequence is selected as the prediction value. The dataset is di-
vided into training, validation, and test sets in a ratio of 90:9:1. The dataset partitioning
details are shown in Table 1.

Figure 1. Study area. The base map is a street map, showing roads such as S219, G7, and Route 12.

Remote Sens. 2024, 16, 3666 5 of 21

We took temperature as the prediction target and used the other types of data as
factors affecting temperature.

The GDELT project, supported by Google Jigsaw, monitors global broadcasts, print
media, and online news from nearly every corner of every country in over 100 languages.
It identifies the people, locations, organizations, themes, sources, emotions, counts, quotes,
images, and events driving our global society, creating a free and open platform for com-
puting the entire world. It is the largest, most comprehensive, and highest-resolution open
database of human society ever created, with a total archive spanning over 215 years. For
this study, we used events between two countries from the GDELT 1.0 simplified event
database, covering all events from 1 January 1979, to 17 February 2014. There are a total of
164,255 events, spanning 412 event types. We performed a statistical analysis of the GDELT
event dataset and visualized the results using a word cloud, as shown in Figure 2. In the
word cloud, the font size corresponds to the frequency of events, with more frequent events
represented by larger font sizes.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 23

Figure 1. Study area. The base map is a street map, showing roads such as S219, G7, and Route 12.

The GDELT project, supported by Google Jigsaw, monitors global broadcasts, print
media, and online news from nearly every corner of every country in over 100 languages.
It identifies the people, locations, organizations, themes, sources, emotions, counts,
quotes, images, and events driving our global society, creating a free and open platform
for computing the entire world. It is the largest, most comprehensive, and highest-resolu-
tion open database of human society ever created, with a total archive spanning over 215
years. For this study, we used events between two countries from the GDELT 1.0 simpli-
fied event database, covering all events from 1 January 1979, to 17 February 2014. There
are a total of 164,255 events, spanning 412 event types. We performed a statistical analysis
of the GDELT event dataset and visualized the results using a word cloud, as shown in
Figure 2. In the word cloud, the font size corresponds to the frequency of events, with
more frequent events represented by larger font sizes.

Figure 2. GDELT event dataset world cloud.

When creating the multivariate time series and predictive target dataset, the data are
first sorted by occurrence time. In this experiment, the sequence length L is set to 30, and
the X-th element after the sequence is selected as the prediction value. The dataset is di-
vided into training, validation, and test sets in a ratio of 90:9:1. The dataset partitioning
details are shown in Table 1.

Figure 2. GDELT event dataset world cloud.

When creating the multivariate time series and predictive target dataset, the data
are first sorted by occurrence time. In this experiment, the sequence length L is set to 30,
and the X-th element after the sequence is selected as the prediction value. The dataset is
divided into training, validation, and test sets in a ratio of 90:9:1. The dataset partitioning
details are shown in Table 1.

Table 1. Dataset statistics.

Dataset NOAA GDELT

Data Volume 179,111 164,255
Sequence Length L 30 30

Training 161,199 147,802
Validation 16,119 14,780

Testing 1793 1643

2.2. TE-LSTM

TE-LSTM builds upon the traditional LSTM, which is suitable for capturing data with
long-term dependencies. To make the model suitable for processing multivariate time
series data, it uses a temporal weighting strategy to optimize the integration of temporal

Remote Sens. 2024, 16, 3666 6 of 21

information and capture the temporal relationship of each element relative to the target
element. This combination allows the model to better focus on relevant parts of the input
sequence and capture the time patterns inherent in the sequence, thereby improving the
model’s performance.

The model consists of four main components, as shown in Figure 3. The first compo-
nent is the temporal encoder, which encodes time in various ways to fully extract temporal
features and determine the most suitable temporal encoding method for this model. The
second component is the temporal weighting module, which employs a temporal weighting
strategy to optimize time features and capture the relationship between the time of each
element in the sequence and the predicted target time. The third component is the multi-
variate encoder. In multivariate time series data, each time step corresponds to multiple
variables. This module encodes and recombines these variables into a tensor, serving as
input for the prediction model. The fourth component is the prediction module, which is
based on the traditional LSTM and consists of a chain neural network repeating module.
Each chain neural network includes a forget gate, an input gate, an updated unit state, and
a temporal weighting output gate. The inputs include the unit state and hidden state from
the previous time step, the entity vector for the current time step, and the temporal weight
for the current time step. The outputs are the unit state and hidden state of the current time
step. This module ultimately generates prediction results through a fully connected layer
and calculates the loss value using Mean Squared Error (MSE) and the true value.

2.2.1. Temporal Encoder

Time, as a crucial piece of information in the prediction process, has the following char-
acteristics: (1) Fluidity: Time is linked to the motion of matter, passing second by second,
minute by minute, continuously flowing and unaffected by human will; (2) irreversibility:
Time cannot be reversed; once it has passed, it cannot be reclaimed; and (3) relativity: The
progression of time is not absolutely constant.

Due to the inherent characteristics of time, entities exhibit evolutionary patterns such
as periodicity, increase, or decrease. However, even for the same entity, these evolutionary
patterns are not fixed and may vary across different periods. Additionally, the time span
over which some entities evolve can be extraordinarily large; for instance, geological
evolution may require hundreds, thousands, or even tens of thousands of years to discern
patterns. These patterns are complex and strongly correlated with time, rather than solely
dependent on the entity itself.

In reality, there are three types of time associated with entities: time points, time
periods, and timelessness. In multivariate time series forecasting tasks, the type of time is
typically a time point, and only a small portion of the data is timeless. In this paper, we
classify the evolutionary patterns of elements into two categories: periodic and aperiodic.
To capture these two types of patterns and fully extract temporal characteristics to better
utilize time information, we employ two temporal encoding techniques: Feed Forward
Networks (FFN) and Time2Vec [39].

(a) Temporal Encoder (FFN)

The feedforward neural network principally comprises an input layer, hidden layers,
and an output layer. The input layer receives external data, the hidden layers extract
features from the data, and the output layer produces the calculation results. The skip
connection structure introduced in the ResNet architecture proposed by He et al. effectively
enhances network performance [40]. In this research, we utilize two forms of time:

• Standard Time of Each Element (ST): The standard time for each element is a 6-dimensional
vector: [yyyy, MM, dd, HH, mm, ss] representing year, month, day, hour, minute, and
second, respectively. This information captures the element’s absolute position on
the timeline and its global evolutionary patterns, effectively identifying two types
of evolutionary patterns. For elements whose evolutionary patterns require a long
time span to be captured, the standard time helps in detecting global changes. When

Remote Sens. 2024, 16, 3666 7 of 21

the patterns of elements continuously change, the standard time can pinpoint precise
positions, allowing for the acquisition of information before and after that time point
to capture finer details of the entity’s evolution. This time format is applicable to all
types of datasets.

• The Time Interval between Each Element in the Sequence and the Element to Be
Predicted (TI): The time interval between each element in the sequence and the element
to be predicted is an exact value. This captures the relative position of each element
in the sequence relative to the prediction target on the time axis. Additionally, as
the model trains on sequences, using time intervals allows it to focus more on the
sequence itself, reducing the emphasis on the global time position of elements and
focusing more on local patterns. Thus, this method is better suited for capturing
periodic patterns.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 23

Figure 3. TE-LSTM. C represents the cell state, h represents the hidden state, x represents the
multivariate vector at the current time step, w represents the temporal weight at the current time
step, σ represents the sigmoid function, ⊗ represents matrix multiplication, ⊕ represents
matrix addition, fc represents the fully connected layer.

2.2.1. Temporal Encoder
Time, as a crucial piece of information in the prediction process, has the following

characteristics: (1) Fluidity: Time is linked to the motion of matter, passing second by sec-
ond, minute by minute, continuously flowing and unaffected by human will; (2) irrevers-
ibility: Time cannot be reversed; once it has passed, it cannot be reclaimed; and (3) rela-
tivity: The progression of time is not absolutely constant.

Due to the inherent characteristics of time, entities exhibit evolutionary patterns such
as periodicity, increase, or decrease. However, even for the same entity, these evolutionary
patterns are not fixed and may vary across different periods. Additionally, the time span
over which some entities evolve can be extraordinarily large; for instance, geological evo-
lution may require hundreds, thousands, or even tens of thousands of years to discern
patterns. These patterns are complex and strongly correlated with time, rather than solely
dependent on the entity itself.

Figure 3. TE-LSTM. C represents the cell state, h represents the hidden state, x represents the
multivariate vector at the current time step, w represents the temporal weight at the current time step,
σ represents the sigmoid function, ⊗ represents matrix multiplication, ⊕ represents matrix addition,
fc represents the fully connected layer.

The overall structure of the temporal encoder is shown in Figure 4. A single hidden
layer unit comprises a fully connected layer, LeakyReLU activation layer, and normalization

Remote Sens. 2024, 16, 3666 8 of 21

layer. Each standard time or time interval in the time series data is fed into the encoder
separately, where multiple hidden layers extract time features to generate the final time
feature vector.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 23

In reality, there are three types of time associated with entities: time points, time pe-
riods, and timelessness. In multivariate time series forecasting tasks, the type of time is
typically a time point, and only a small portion of the data is timeless. In this paper, we
classify the evolutionary patterns of elements into two categories: periodic and aperiodic.
To capture these two types of patterns and fully extract temporal characteristics to better
utilize time information, we employ two temporal encoding techniques: Feed Forward
Networks (FFN) and Time2Vec [39].
(a) Temporal Encoder (FFN)

The feedforward neural network principally comprises an input layer, hidden layers,
and an output layer. The input layer receives external data, the hidden layers extract fea-
tures from the data, and the output layer produces the calculation results. The skip con-
nection structure introduced in the ResNet architecture proposed by He et al. effectively
enhances network performance [40]. In this research, we utilize two forms of time:
• Standard Time of Each Element (ST): The standard time for each element is a 6-di-

mensional vector: [yyyy, MM, dd, HH, mm, ss] representing year, month, day, hour,
minute, and second, respectively. This information captures the element’s absolute
position on the timeline and its global evolutionary patterns, effectively identifying
two types of evolutionary patterns. For elements whose evolutionary patterns re-
quire a long time span to be captured, the standard time helps in detecting global
changes. When the patterns of elements continuously change, the standard time can
pinpoint precise positions, allowing for the acquisition of information before and af-
ter that time point to capture finer details of the entity’s evolution. This time format
is applicable to all types of datasets.

• The Time Interval between Each Element in the Sequence and the Element to Be Pre-
dicted (TI): The time interval between each element in the sequence and the element
to be predicted is an exact value. This captures the relative position of each element
in the sequence relative to the prediction target on the time axis. Additionally, as the
model trains on sequences, using time intervals allows it to focus more on the se-
quence itself, reducing the emphasis on the global time position of elements and fo-
cusing more on local patterns. Thus, this method is better suited for capturing peri-
odic patterns.
The overall structure of the temporal encoder is shown in Figure 4. A single hidden

layer unit comprises a fully connected layer, LeakyReLU activation layer, and normaliza-
tion layer. Each standard time or time interval in the time series data is fed into the encoder
separately, where multiple hidden layers extract time features to generate the final time
feature vector.

Figure 4. Temporal encoder (FFN). Ti represents the time of each element in the time series, and Tp
represents the time of the predicted target. N represents N repeated hidden layers.

Figure 4. Temporal encoder (FFN). Ti represents the time of each element in the time series, and Tp

represents the time of the predicted target. N represents N repeated hidden layers.

(b) Temporal Encoder (Time2Vec)

Time2Vec is a method for time vector representation, designed to effectively incor-
porate time information into various machine learning architectures. Time2Vec captures
periodic patterns and aperiodic trends by combining periodic functions, such as linear
and sinusoidal functions. For a given time scalar t, the following Time2Vec(t) is defined
as a vector of size k + 1, where the first component is a linear function of time, and the
remaining components are periodic functions with learnable frequencies and phase offsets,
allowing the Time2Vec model to learn and represent the complex time dynamics inherent
in many real-world datasets:

Time2Vec(t)[i] =
{

ωit + ϕi (i = 0)
F(ωit + ϕi) (1 ≤ i ≤ k)

(1)

where F() is the periodic activation function, ωi and ϕi is a learnable parameter.
Here, because Time2Vec can capture periodic and aperiodic trends, we only use the

standard time of the element and convert standard time to a scalar: yyyyMMddHHmmss.
We employ the encoder-decoder structure [41–43]. The encoder outputs a time vector with
a dimension of 64, where the first 32 positions of the vector use linear layers and the last
32 positions use periodic activation functions:

τ[i] =
{

ωit + ϕi (0 ≤ i < 32)
F(ωit + ϕi) (32 ≤ i < 64)

(2)

The following decoder uses two linear layers to decode the time vector into a six-
dimensional vector, and calculates the loss value using the MSE function and standard time
format time:

loss =
1
6∑6

i=1 (L(τ)i − STi)
2

(3)

where L is a linear function, and ST is the standard time.
By calculating the loss, we ensure the decoded time is consistent with the standard

time as much as possible. The overall structure of the temporal encoder is shown in
Figure 5.

Remote Sens. 2024, 16, 3666 9 of 21

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 23

(b) Temporal Encoder (Time2Vec)
Time2Vec is a method for time vector representation, designed to effectively incor-

porate time information into various machine learning architectures. Time2Vec captures
periodic patterns and aperiodic trends by combining periodic functions, such as linear
and sinusoidal functions. For a given time scalar t, the following Time2Vec(t) is defined as
a vector of size k + 1, where the first component is a linear function of time, and the re-
maining components are periodic functions with learnable frequencies and phase offsets,
allowing the Time2Vec model to learn and represent the complex time dynamics inherent
in many real-world datasets:

()[] ()
() ()

0
1

i i

i i

i
Time2Vec i

F i
t

t
t k

ω φ
ω φ

 + ==  + ≤ ≤
 (1)

where ()F is the periodic activation function, iω and iφ is a learnable parameter.
Here, because Time2Vec can capture periodic and aperiodic trends, we only use the

standard time of the element and convert standard time to a scalar: yyyyMMddHHmmss.
We employ the encoder-decoder structure [41–43]. The encoder outputs a time vector with
a dimension of 64, where the first 32 positions of the vector use linear layers and the last
32 positions use periodic activation functions:

()
() ()

0 32

[]
32 64

i i

i i

i
i

t
F

i
t

τ
ω

ω φ
φ

 + ≤ <
 + ≤ <

=


 (2)

The following decoder uses two linear layers to decode the time vector into a six-
dimensional vector, and calculates the loss value using the MSE function and standard
time format time:

26

1

1 (())
6 i ii

loss L STτ
=

= − (3)

where L is a linear function, and ST is the standard time.
By calculating the loss, we ensure the decoded time is consistent with the standard

time as much as possible. The overall structure of the temporal encoder is shown in Figure 5.

Figure 5. Temporal encoder (Time2Vec).

2.2.2. Temporal Weighting Module
Our objective is to understand the relationship between the time of each element and

the target time being predicted. Inspired by the attention mechanism [44] and the use of
spatial weighting strategy to optimize the integration of spatial information [45], we cal-
culate the weights of each sequence element’s time and the target’s time to capture this
relationship. For each element’s time in the sequence, a linear layer is used to generate the
corresponding query matrix and value matrix. For time of target to be predicted, a linear

Figure 5. Temporal encoder (Time2Vec).

2.2.2. Temporal Weighting Module

Our objective is to understand the relationship between the time of each element and
the target time being predicted. Inspired by the attention mechanism [44] and the use
of spatial weighting strategy to optimize the integration of spatial information [45], we
calculate the weights of each sequence element’s time and the target’s time to capture this
relationship. For each element’s time in the sequence, a linear layer is used to generate the
corresponding query matrix and value matrix. For time of target to be predicted, a linear
layer generates the key matrix. Subsequently, the query matrix of each sequence element is
multiplied by the key matrix of the predicted target time. Then, this result is multiplied by
the value matrix to obtain the weight of that element relative to the predicted target time,
as shown in Figure 3.

wi =
qikp
√

dk
vi (4)

where q, k, v represent the query matrix, key matrix, and value matrix, respectively. dk is
the feature dimension of keys and queries.

2.2.3. Multivariate Encoder

In multivariate time series data, each time point or time step consists of multiple
variables. For example, in the temperature dataset used in this study, there are nine variables
at each time point, as described in Section 2.1. The input to the multivariate encoder is an
array of multivariate variables: [x, y, · · ·, z] at each time point. The multivariate encoder
uses a pre-trained Word2Vec model to encode each variable, obtaining the corresponding
feature vector. Then, these feature vectors are concatenated to form a single feature vector. A
linear layer is subsequently used to transform this feature vector into a vector of dimension
64, as specified by the model, as shown in Figure 6. The calculation process is as follows:

e = Linear(W2V(x)⊕ W2V(y)⊕ · · · ⊕ W2V(z)︸ ︷︷ ︸
multivariable: [x,y,···,z]

) (5)

where W2V represents Word2Vec, and Linear represents linear transformation.

2.2.4. Prediction Module

The prediction module is based on the traditional LSTM architecture and consists of
a chain neural network repeating module. Each chain neural network includes a forget
gate, an input gate, a cell state layer, and a temporal weighting output gate. The calculation
process of the forget gate, input gate, cell state layer, and output gate of the LSTM is
as follows:

ft = σ(W f · [ht−1, xt] + b f) (6)

it = σ(Wi · [ht−1, xt] + bi) (7)

Remote Sens. 2024, 16, 3666 10 of 21

C̃t = tanh(WC · [ht−1, xt] + bC) (8)

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

ot = σ(Wo · [ht−1, xt] + bo) (10)

where W represents the weight parameter, b represents the bias parameter, xt represents
input information, and f , i, C, o represent the parameters of the forget gate, input gate, cell
state layer, and out gate, respectively.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 23

layer generates the key matrix. Subsequently, the query matrix of each sequence element
is multiplied by the key matrix of the predicted target time. Then, this result is multiplied
by the value matrix to obtain the weight of that element relative to the predicted target
time, as shown in Figure 3.

i p
i

i
k

q kw v
d

= (4)

where , ,q k v represent the query matrix, key matrix, and value matrix, respectively. kd
is the feature dimension of keys and queries.

2.2.3. Multivariate Encoder
In multivariate time series data, each time point or time step consists of multiple var-

iables. For example, in the temperature dataset used in this study, there are nine variables
at each time point, as described in Section 2.1. The input to the multivariate encoder is an
array of multivariate variables: [, , ,]x y z⋅⋅ ⋅ at each time point. The multivariate encoder
uses a pre-trained Word2Vec model to encode each variable, obtaining the corresponding
feature vector. Then, these feature vectors are concatenated to form a single feature vector.
A linear layer is subsequently used to transform this feature vector into a vector of dimen-
sion 64, as specified by the model, as shown in Figure 6. The calculation process is as
follows:

[]multivariable: , , ,

(2 () 2 () 2 ())
x y z

e Linear W V x W V y W V z
⋅⋅⋅

= ⊕ ⊕ ⋅⋅⋅⊕
(5)

where W2V represents Word2Vec, and Linear represents linear transformation.

Figure 6. Multivariate encoder.

2.2.4. Prediction Module
The prediction module is based on the traditional LSTM architecture and consists of

a chain neural network repeating module. Each chain neural network includes a forget
gate, an input gate, a cell state layer, and a temporal weighting output gate. The calcula-
tion process of the forget gate, input gate, cell state layer, and output gate of the LSTM is
as follows:

1([,])t f t t ff W h x bσ −= ⋅ + (6)

1([,])t i t t ii W h x bσ −= ⋅ + (7)

1tanh([,])t C t t CC W h x b−= ⋅ + (8)

1* *t t t t tC f C i C−= +  (9)

Figure 6. Multivariate encoder.

Here, we integrate the temporal weight into the output gate, as shown in Figure 3.
This step aims to replace the original order positions with temporal weight. Then, we
calculate the output using the current time step’s input information xt, the current time
step’s temporal weight wt, and the hidden state from the previous time step ht−1:

ot = σ(Wo · [ht−1, xt] + wt + bo) (11)

Then, the cell state is normalized to the [−1, 1] range using the tanh function, and the
output at the current time step is calculated:

ht = ot ∗ tanh(Ct) (12)

The model consists of n neural network modules described above, where n is the
length of the sequence: n = L = 30. The output results of these n chain-like neural network
repeating modules will finally enter a fully connected layer to obtain the final prediction
result. The following Mean Squared Error (MSE) is used as the loss function:

loss =
1
n∑n

i=1 (hpi − f c(hti))
2

(13)

where n is the number of predictions, and hpi is the true value.

3. Results and Discussion

We use probability (P) (P = 1 − MSE) as the evaluation metric.

3.1. Verify the Accuracy of TE-LSTM under Different Temporal Encoders

To verify the role of time in the model, we select the X-th (X = {1, 2, 3}) element after
the sequence as the prediction value. Under the same conditions, the predicted data have
the same occurrence order, but the time and time interval are different. For standard time,
we use both FFN and Time2Vec time encoding methods, while for time interval, only FFN
encoding is applicable. The model results are shown in Table 2.

Remote Sens. 2024, 16, 3666 11 of 21

Table 2. Model results when using data with X = {1, 2, 3}.

Dataset X LSTM ST (FFN) ST (Time2Vec) TI (FFN)

NOAA
1 0.909423 0.919506 0.908378 0.916457
2 0.908807 0.924220 0.913982 0.916036
3 0.908416 0.905575 0.907367 0.908263

GDELT
1 0.889572 0.892315 0.888130 0.887824
2 0.889164 0.900982 0.896460 0.900762
3 0.897718 0.900174 0.895819 0.889391

As shown in Figure 7, for the NOAA dataset, ST (FFN) demonstrates the best per-
formance, with only a slight decrease in P at X = 3. In contrast, ST (Time2Vec) exhibits
the worst performance, with a minor increase in P at X = 2. According to Table 2, when
X = 1, ST (FFN) results increased by 1.0083%, TI (FFN) results increased by 0.7034%, and
ST (Time2Vec) results decreased by 0.1045%. When X = 2, ST (FFN) results increased by
1.5413%, TI (FFN) results increased by 0.7229%, and ST (Time2Vec) results increased by
0.5175%. When X = 3, the performance of all three methods slightly decreased: ST (FFN)
results decreased by 0.2841%, TI (FFN) results decreased by 0.0153%, and ST (Time2Vec)
results decreased by 0.1049%. On average, ST (FFN) shows a mean increase of 0.7552%,
TI (FFN) shows a mean increase of 0.4703%, and ST (Time2Vec) shows a mean increase of
0.1027%. For the GDELT dataset, ST (FFN) again demonstrates the best performance, while
TI (FFN) performs the worst. According to Table 2, when X = 1, ST (FFN) results increased
by 0.2743%, TI (FFN) results decreased by 0.1748%, and ST (Time2Vec) results decreased by
0.1442%. When X = 2, ST (FFN) results increased by 1.1818%, TI (FFN) results increased by
1.1598%, and ST (Time2Vec) results increased by 0.7296%. When X = 3, ST (FFN) results
increased by 0.2456%, TI (FFN) results decreased by 0.8327%, and ST (Time2Vec) results
decreased by 0.1899%. On average, ST (FFN) shows a mean increase of 0.5672%, TI (FFN)
shows a mean increase of 0.0508%, and ST (Time2Vec) shows a mean increase of 0.1318%.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 23

results decreased by 0.1049%. On average, ST (FFN) shows a mean increase of 0.7552%, TI
(FFN) shows a mean increase of 0.4703%, and ST (Time2Vec) shows a mean increase of
0.1027%. For the GDELT dataset, ST (FFN) again demonstrates the best performance,
while TI (FFN) performs the worst. According to Table 2, when X = 1, ST (FFN) results
increased by 0.2743%, TI (FFN) results decreased by 0.1748%, and ST (Time2Vec) results
decreased by 0.1442%. When X = 2, ST (FFN) results increased by 1.1818%, TI (FFN) results
increased by 1.1598%, and ST (Time2Vec) results increased by 0.7296%. When X = 3, ST
(FFN) results increased by 0.2456%, TI (FFN) results decreased by 0.8327%, and ST
(Time2Vec) results decreased by 0.1899%. On average, ST (FFN) shows a mean increase of
0.5672%, TI (FFN) shows a mean increase of 0.0508%, and ST (Time2Vec) shows a mean
increase of 0.1318%.

Figure 7. Model results when using data with X = {1, 2, 3} under different temporal encoders. (a)
Model results when using the NOAA dataset; (b) Model results when using the GDELT dataset.

In conclusion, incorporating temporal information significantly enhances model pre-
diction accuracy, with ST (FFN) being the most effective method for encoding time. The
use of standard time facilitates the precise location of elements on the time axis, enabling
the capture of comprehensive patterns, and is suitable for various types of datasets. Time
interval captures the relative position between the time of elements in the current se-
quence and the target element, focusing solely on the evolution pattern of the sequence
itself. This method is particularly suitable for datasets with short-term and periodic
changes. In the NOAA dataset, where temperature is the prediction target, the periodic
nature of temperature changes makes the TI (FFN) method more appropriate. Experi-
mental results confirm the superiority of TI (FFN) in capturing periodicity. However, the
TI (FFN) results still fall short compared to ST (FFN), indicating that the local information-
focused approach of time interval is not the optimal solution. In the era of big data, da-
tasets are characterized by large volumes, long time spans, and rich temporal information,
necessitating comprehensive global information for more accurate predictions. The
GDELT dataset, which uses events as prediction results, exhibits greater uncertainty, ren-
dering the local pattern-focused TI (FFN) the worst performer. Therefore, for TE-LSTM,
regardless of the type of dataset, the ST (FFN) temporal encoder can be used.

3.2. Verify the Accuracy of TE-LSTM under Different Time Granularities
The results of Experiment 1 verified the necessity and reliability of incorporating time

information. Next, we evaluated the model’s performance under different time granular-
ities. For NOAA data with richer time information, we set X = 1 and established five dif-
ferent time granularities G = {1, 2, 3, 6, 12}. For GDELT data, we set X = 1 and established
three different time granularities G = {1, 2, 3}, due to the lesser time information in each

Figure 7. Model results when using data with X = {1, 2, 3} under different temporal encoders.
(a) Model results when using the NOAA dataset; (b) Model results when using the GDELT dataset.

In conclusion, incorporating temporal information significantly enhances model pre-
diction accuracy, with ST (FFN) being the most effective method for encoding time. The
use of standard time facilitates the precise location of elements on the time axis, enabling
the capture of comprehensive patterns, and is suitable for various types of datasets. Time
interval captures the relative position between the time of elements in the current sequence
and the target element, focusing solely on the evolution pattern of the sequence itself. This
method is particularly suitable for datasets with short-term and periodic changes. In the

Remote Sens. 2024, 16, 3666 12 of 21

NOAA dataset, where temperature is the prediction target, the periodic nature of tempera-
ture changes makes the TI (FFN) method more appropriate. Experimental results confirm
the superiority of TI (FFN) in capturing periodicity. However, the TI (FFN) results still fall
short compared to ST (FFN), indicating that the local information-focused approach of time
interval is not the optimal solution. In the era of big data, datasets are characterized by large
volumes, long time spans, and rich temporal information, necessitating comprehensive
global information for more accurate predictions. The GDELT dataset, which uses events
as prediction results, exhibits greater uncertainty, rendering the local pattern-focused TI
(FFN) the worst performer. Therefore, for TE-LSTM, regardless of the type of dataset, the
ST (FFN) temporal encoder can be used.

3.2. Verify the Accuracy of TE-LSTM under Different Time Granularities

The results of Experiment 1 verified the necessity and reliability of incorporating
time information. Next, we evaluated the model’s performance under different time
granularities. For NOAA data with richer time information, we set X = 1 and established
five different time granularities G = {1, 2, 3, 6, 12}. For GDELT data, we set X = 1 and
established three different time granularities G = {1, 2, 3}, due to the lesser time information
in each sequence of GDELT data. Elements within the same time granularity are assigned
the same time. For example, with a time granularity of G = 2 days, if 1 January 1979 and
2 January 1979 fall within the same time granularity, all elements within these two days
are set to 1 January 1979. This approach is used to verify the model’s performance under
different time granularities. The experimental results using the NOAA dataset are shown
in Table 3.

Table 3. The results of the models using the NOAA dataset with different time granularities.

Dataset G (0.5 h) LSTM ST (FFN) ST (Time2Vec) TI (FFN)

NOAA

1 0.909423 0.919506 0.908378 0.916457
2 0.910448 0.921464 0.905445 0.899359
3 0.909430 0.921477 0.907413 0.914457
6 0.904408 0.909433 0.910445 0.914428
12 0.899278 0.902479 0.902379 0.899233

The results of the base LSTM model differ under different time granularities because the data are shuffled each
time the dataset is created.

To comparatively analyze the impact of different time granularities on the model’s
accuracy, we examined the probability changes △P = PTE−LSTM − PLSTM between TE-
LSTM, using different encoding methods, and LSTM at the same time granularity.

From Figure 8, it can be observed that as the time granularity increases, regardless of
whether time fusion improves or degrades accuracy, the magnitude of change becomes
smaller. This indicates that the influence of time in the model decreases. When analyzing
the dataset itself, the multivariate time sequence length was set to 30 during dataset creation.
We counted the occurrences of different time information in the sequences at various time
granularities, as shown in Figure 9. The number of different times in the sequence is defined
as follows: If a sequence contains 3 occurrences of 12:00:00 on 21 May 2024, 5 occurrences
of 13:00:00 on 21 May 2024, 10 occurrences of 14:00:00 on 21 May 2024, and 2 occurrences of
15:00:00 on 21 May 2024, then this sequence has four non-repeating times.

From Figure 9, it can be observed that when G = 1, the time quantity is concentrated
around 14; when G = 2, the time quantity is concentrated around 8; when G = 3, the time
quantity is concentrated around 5; when G = 6, the time quantity is concentrated around
3; and when G = 12, the time quantity is concentrated around 2. As the time granularity
increases, the number of time points in the sequence gradually decreases, leading to a
decline in the richness of time information.

Remote Sens. 2024, 16, 3666 13 of 21

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 23

sequence of GDELT data. Elements within the same time granularity are assigned the
same time. For example, with a time granularity of G = 2 days, if 1 January 1979 and 2
January 1979 fall within the same time granularity, all elements within these two days are
set to January 1, 1979. This approach is used to verify the model’s performance under
different time granularities. The experimental results using the NOAA dataset are shown
in Table 3.

Table 3. The results of the models using the NOAA dataset with different time granularities.

Dataset G(0.5 h) LSTM ST(FFN) ST(Time2Vec) TI(FFN)

NOAA

1 0.909423 0.919506 0.908378 0.916457
2 0.910448 0.921464 0.905445 0.899359
3 0.909430 0.921477 0.907413 0.914457
6 0.904408 0.909433 0.910445 0.914428

12 0.899278 0.902479 0.902379 0.899233
The results of the base LSTM model differ under different time granularities because the data are
shuffled each time the dataset is created.

To comparatively analyze the impact of different time granularities on the model’s
accuracy, we examined the probability changes TE LSTM LSTMP P P−= − between TE-LSTM,
using different encoding methods, and LSTM at the same time granularity.

From Figure 8, it can be observed that as the time granularity increases, regardless of
whether time fusion improves or degrades accuracy, the magnitude of change becomes
smaller. This indicates that the influence of time in the model decreases. When analyzing
the dataset itself, the multivariate time sequence length was set to 30 during dataset crea-
tion. We counted the occurrences of different time information in the sequences at various
time granularities, as shown in Figure 9. The number of different times in the sequence is
defined as follows: If a sequence contains 3 occurrences of 12:00:00 on 21 May 2024, 5 oc-
currences of 13:00:00 on 21 May 2024, 10 occurrences of 14:00:00 on 21 May 2024, and 2
occurrences of 15:00:00 on 21 May 2024, then this sequence has four non-repeating times.

Figure 8. Model accuracy changes under different time granularities. Figure 8. Model accuracy changes under different time granularities.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 23

Figure 9. Statistics of the number of different times in the NOAA dataset under different time gran-
ularities. The x-axis represents the number of non-repeating times in the sequence.

From Figure 9, it can be observed that when G = 1, the time quantity is concentrated
around 14; when G = 2, the time quantity is concentrated around 8; when G = 3, the time
quantity is concentrated around 5; when G = 6, the time quantity is concentrated around
3; and when G = 12, the time quantity is concentrated around 2. As the time granularity
increases, the number of time points in the sequence gradually decreases, leading to a
decline in the richness of time information.

For ST (FNN), the pattern is captured through the absolute position of time. When
the richness of time decreases, the model accuracy begins to decline. For ST (Time2Vec)
and TI (FNN), both methods can capture periodicity. When the time granularity is small,
too much time information introduces noise, making it difficult to capture patterns. As the
time granularity increases, the model accuracy begins to slowly rise. Therefore, when the
appropriate time granularity is chosen, the accuracy of these two methods will outper-
form the base model.

In summary, changes in time granularity significantly affect model accuracy. Appro-
priate time granularity can significantly enhance model performance. For ST (FNN),
smaller time granularity yields better results, and larger time granularity should be
avoided. For ST (Time2Vec) and TI (FNN), the model performs poorly with smaller time
granularity. In this experiment, with a sequence length of 30, a time granularity of 6 or 12
is suitable, ensuring the number of time points in the sequence is around 3.

Table 4. The results of the models using the GDELT dataset with different time granularities.

Dataset G(Day) LSTM ST(FFN) ST(Time2Vec) TI(FFN)

GDELT
1 0.889572 0.892315 0.888130 0.887824
2 0.888756 0.889969 0.889270 0.888060
3 0.888272 0.889145 0.889386 0.888957

The experimental results using the GDELT dataset are shown in Table 4. We also ex-
amined the probability changes, as shown in Figure 10. From Figure 10, it can be observed
that although the GDELT data do not exhibit a clear periodicity, the results of all three
methods show a consistent pattern with those obtained using NOAA data. Similarly, the
quantity of different time points in the sequence under different time granularities is also
counted, as shown in Figure 11. When the complexity of time information is low, ST

Figure 9. Statistics of the number of different times in the NOAA dataset under different time
granularities. The x-axis represents the number of non-repeating times in the sequence.

For ST (FNN), the pattern is captured through the absolute position of time. When
the richness of time decreases, the model accuracy begins to decline. For ST (Time2Vec)
and TI (FNN), both methods can capture periodicity. When the time granularity is small,
too much time information introduces noise, making it difficult to capture patterns. As the
time granularity increases, the model accuracy begins to slowly rise. Therefore, when the
appropriate time granularity is chosen, the accuracy of these two methods will outperform
the base model.

In summary, changes in time granularity significantly affect model accuracy. Appropri-
ate time granularity can significantly enhance model performance. For ST (FNN), smaller
time granularity yields better results, and larger time granularity should be avoided. For
ST (Time2Vec) and TI (FNN), the model performs poorly with smaller time granularity.
In this experiment, with a sequence length of 30, a time granularity of 6 or 12 is suitable,
ensuring the number of time points in the sequence is around 3.

The experimental results using the GDELT dataset are shown in Table 4. We also
examined the probability changes, as shown in Figure 10. From Figure 10, it can be

Remote Sens. 2024, 16, 3666 14 of 21

observed that although the GDELT data do not exhibit a clear periodicity, the results of all
three methods show a consistent pattern with those obtained using NOAA data. Similarly,
the quantity of different time points in the sequence under different time granularities is
also counted, as shown in Figure 11. When the complexity of time information is low, ST
(Time2Vec) and TI (FNN) perform well. When the complexity of time information is high,
ST (FFN) performs well.

Table 4. The results of the models using the GDELT dataset with different time granularities.

Dataset G (Day) LSTM ST (FFN) ST (Time2Vec) TI (FFN)

GDELT
1 0.889572 0.892315 0.888130 0.887824
2 0.888756 0.889969 0.889270 0.888060
3 0.888272 0.889145 0.889386 0.888957

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 23

(Time2Vec) and TI (FNN) perform well. When the complexity of time information is high,
ST (FFN) performs well.

Figure 10. Model accuracy changes under different time granularities.

Figure 11. Statistics of the number of different times in the GDELT dataset under different time
granularities. The x-axis represents the number of non-repeating times in the sequence.

3.3. Verify the Performance of TE-LSTM in Predicting Questions with Specific Times
We aimed to address the issue where existing models perform well in answering

questions like “What will happen next?” but perform poorly in answering questions with
specific times such as “What will happen on 21 May 2024 12:00:00?” Therefore, the model
trained with X = 1, G = 1 was used as the baseline model. Then, this trained baseline model
was used to predict data with X = {2, 3, 5, 10}, G = 1. When X is determined, the prediction
target relative to the sequence order will be fixed, but the time of the prediction target will
vary, and so will the time interval distance from the sequence. Therefore, this approach
can be used to evaluate the performance of the proposed method in answering predictive

Figure 10. Model accuracy changes under different time granularities.

3.3. Verify the Performance of TE-LSTM in Predicting Questions with Specific Times

We aimed to address the issue where existing models perform well in answering
questions like “What will happen next?” but perform poorly in answering questions with
specific times such as “What will happen on 21 May 2024 12:00:00?” Therefore, the model
trained with X = 1, G = 1 was used as the baseline model. Then, this trained baseline model
was used to predict data with X = {2, 3, 5, 10}, G = 1. When X is determined, the prediction
target relative to the sequence order will be fixed, but the time of the prediction target will
vary, and so will the time interval distance from the sequence. Therefore, this approach
can be used to evaluate the performance of the proposed method in answering predictive
questions with specific times. The results using the model trained with X = 1, G = 1 for
X = {2, 3, 5, 10}, G = 1 data are shown in Table 5.

From the previous two experiments, we know that when X = 1, G = 1, ST (FFN)
performs the best. Therefore, we only analyzed the comparison between TE-LSTM using
ST (FFN) temporal encoder and LSTM. From Figure 12, for both two datasets, it can
be seen that the performance of the ST (FFN) is significantly better than the baseline
model. As the prediction steps increase, the probability P of the LSTM model shows
a decreasing trend, indicating that the prediction results become less accurate. For the
NOAA dataset, the ST (FFN)’s results remain stable around 91.55%. For GDELT data,
the ST (FFN)’s results remain stable around 89.2%. This stability is because the ST (FFN)
calculates the weight of each element’s time relative to the target’s time, capturing the time
interval positions of each element with respect to the target element. This significantly

Remote Sens. 2024, 16, 3666 15 of 21

enhances the results. However, when X = 10, both methods show a slight decrease. This is
because the target to be predicted is too far from the corresponding sequence, weakening
the regularity and correlation between the sequence and the target element. The role of
temporal weight as an auxiliary enhancement diminishes. In contrast, LSTM treats all
targets to be predicted as an element occurring at X = 1, and thus the prediction accuracy
decreases. This result proves the excellent performance of TE-LSTM in answering questions
with specific time predictions.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 23

(Time2Vec) and TI (FNN) perform well. When the complexity of time information is high,
ST (FFN) performs well.

Figure 10. Model accuracy changes under different time granularities.

Figure 11. Statistics of the number of different times in the GDELT dataset under different time
granularities. The x-axis represents the number of non-repeating times in the sequence.

3.3. Verify the Performance of TE-LSTM in Predicting Questions with Specific Times
We aimed to address the issue where existing models perform well in answering

questions like “What will happen next?” but perform poorly in answering questions with
specific times such as “What will happen on 21 May 2024 12:00:00?” Therefore, the model
trained with X = 1, G = 1 was used as the baseline model. Then, this trained baseline model
was used to predict data with X = {2, 3, 5, 10}, G = 1. When X is determined, the prediction
target relative to the sequence order will be fixed, but the time of the prediction target will
vary, and so will the time interval distance from the sequence. Therefore, this approach
can be used to evaluate the performance of the proposed method in answering predictive

Figure 11. Statistics of the number of different times in the GDELT dataset under different time
granularities. The x-axis represents the number of non-repeating times in the sequence.

Table 5. The results using the model trained with X = 1, G = 1 for X = {2, 3, 5, 10}, G = 1 data.

Dataset X (G = 1) LSTM ST (FNN) ST (Time2Vec) TI (FNN)

NOAA

1 0.909423 0.919506 0.908378 0.916457
2 0.909221 0.919213 0.908576 0.916178
3 0.908810 0.917772 0.908639 0.912760
5 0.907842 0.917608 0.907656 0.917809

10 0.904270 0.913126 0.904135 0.912310

GDELT

1 0.889572 0.892315 0.888130 0.887824
2 0.889554 0.891979 0.888211 0.887977
3 0.889433 0.891608 0.887990 0.887809
5 0.889310 0.891640 0.887870 0.887632

10 0.889051 0.891354 0.887612 0.887407

3.4. Comparison of TE-LSTM with State-of-the-Art (SOTA) Methods and Validation of TE-LSTM
Performance on LSTM Variant Models

We chose two SOTA methods, TFT and Informer [38,46]. TFT is a hybrid model
that combines the Transformer architecture with traditional LSTM, enabling it to capture
long-term dependencies while handling both dynamic and static features. Moreover,
TFT provides built-in interpretability, which is advantageous for understanding model
predictions. Informer, an efficient Transformer variant specifically designed for long-term
time series forecasting, reduces computational complexity through a sparse self-attention
mechanism, significantly enhancing the efficiency of long-term series predictions. We first
verified the ability of the three models to predict targets at different locations. In this
experiment, the time granularity G is set to 1, and TE-LSTM employs the ST (FFN) time
encoder, which demonstrated the best performance at this granularity. The final results are
presented in Table 6.

Remote Sens. 2024, 16, 3666 16 of 21

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 23

questions with specific times. The results using the model trained with X = 1, G = 1 for X
= {2, 3, 5, 10}, G = 1 data are shown in Table 5.

Table 5. The results using the model trained with X = 1, G = 1 for X = {2, 3, 5, 10}, G = 1 data.

Dataset X(G = 1) LSTM ST(FNN) ST(Time2Vec) TI(FNN)

NOAA

1 0.909423 0.919506 0.908378 0.916457
2 0.909221 0.919213 0.908576 0.916178
3 0.908810 0.917772 0.908639 0.912760
5 0.907842 0.917608 0.907656 0.917809

10 0.904270 0.913126 0.904135 0.912310

GDELT

1 0.889572 0.892315 0.888130 0.887824
2 0.889554 0.891979 0.888211 0.887977
3 0.889433 0.891608 0.887990 0.887809
5 0.889310 0.891640 0.887870 0.887632

10 0.889051 0.891354 0.887612 0.887407

From the previous two experiments, we know that when X = 1, G = 1, ST (FFN) per-
forms the best. Therefore, we only analyzed the comparison between TE-LSTM using ST
(FFN) temporal encoder and LSTM. From Figure 12, for both two datasets, it can be seen
that the performance of the ST (FFN) is significantly better than the baseline model. As the
prediction steps increase, the probability P of the LSTM model shows a decreasing trend,
indicating that the prediction results become less accurate. For the NOAA dataset, the ST
(FFN)’s results remain stable around 91.55%. For GDELT data, the ST (FFN)’s results re-
main stable around 89.2%. This stability is because the ST (FFN) calculates the weight of
each element’s time relative to the target’s time, capturing the time interval positions of
each element with respect to the target element. This significantly enhances the results.
However, when X = 10, both methods show a slight decrease. This is because the target to
be predicted is too far from the corresponding sequence, weakening the regularity and
correlation between the sequence and the target element. The role of temporal weight as
an auxiliary enhancement diminishes. In contrast, LSTM treats all targets to be predicted
as an element occurring at X = 1, and thus the prediction accuracy decreases. This result
proves the excellent performance of TE-LSTM in answering questions with specific time
predictions.

Figure 12. Comparison of LSTM and ST (FFN) results. (a) Comparison of LSTM and ST (FFN) results
when using the NOAA dataset; (b) comparison of LSTM and ST (FFN) results when using the
GDELT dataset.

Figure 12. Comparison of LSTM and ST (FFN) results. (a) Comparison of LSTM and ST (FFN)
results when using the NOAA dataset; (b) comparison of LSTM and ST (FFN) results when using the
GDELT dataset.

Table 6. The results of TE-LSTM and SOTA methods when using data with X = {1, 2, 3}.

Dataset X TE_LSTM TFT Informer

NOAA
1 0.919506 0.910564 0.916096
2 0.924220 0.915774 0.913519
3 0.905575 0.909956 0.914697

GDELT
1 0.892315 0.884865 0.895266
2 0.900982 0.885409 0.906563
3 0.900174 0.884908 0.893185

From Table 6, it can be observed that when using the NOAA dataset, the average
accuracy of TE-LSTM is 0.916434, TFT is 0.912098, and Informer is 0.914771, with TE-LSTM
showing the highest accuracy. When using the GDELT dataset, the average accuracy of
TE-LSTM is 0.897824, TFT is 0.885061, and Informer is 0.898338, with Informer achieving
the highest accuracy. TE-LSTM’s accuracy is 0.051433% lower than Informer’s. TE-LSTM is
more suitable for datasets that exhibit regularity and simplicity. For datasets characterized
by higher randomness and more complex patterns, traditional LSTM architectures and
their variants tend to perform worse than Transformer architectures and their variants.
This is because Transformers have a stronger capacity to capture long-range dependencies
compared to LSTM. Due to its recursive nature, LSTM is more adept at capturing short-term
dependencies and local patterns, such as trends and periodicity, which also explains why
TE-LSTM outperforms Informer on datasets with certain periodic patterns. The GDELT
dataset, with its high degree of randomness and weak local patterns, requires the ability
to capture patterns over a longer time span. Therefore, Informer, with its superior ability
to capture long-range dependencies, achieves the highest accuracy. However, across both
datasets, TE-LSTM consistently outperforms TFT, indicating the effectiveness of TE-LSTM’s
weighting strategy.

We also compare the ability of these three models to answer time-specific prediction
questions, and the results are presented in Table 7. Neither the TFT nor Informer methods
take into account the distance relationship between each time step in the time series and
the target time to be predicted. When using a pre-trained model with X = 1 and G = 1 data
to predict different positions, the model cannot adaptively adjust based on the predicted
target time. As the predicted position increases, the model’s accuracy continues to decline,
and the rate of decline is relatively rapid. TE-LSTM, on the other hand, uses the time
weights of each time step and the predicted target time, instead of relying solely on the
time sequence, which directly impacts the prediction results. This allows the model to
make adaptive predictions based on the predicted target time, even when the predicted

Remote Sens. 2024, 16, 3666 17 of 21

position changes. As a result, even if TE-LSTM’s pre-training accuracy is initially lower
than Informer’s, its accuracy ultimately surpasses Informer’s as the predicted position
increases. This demonstrates the effectiveness of the time-weighting method proposed via
TE-LSTM, showcasing its superior performance in addressing time prediction problems
with clear temporal constraints.

Table 7. The results of TE-LSTM and SOTA methods in predicting questions with specific times.

Dataset X (G = 1) TE_LSTM TFT Informer

NOAA

1 0.919506 0.910564 0.916096
2 0.919213 0.908343 0.908897
3 0.917772 0.907987 0.908554
5 0.917608 0.907001 0.907603

10 0.913126 0.903486 0.899208

GDELT

1 0.892315 0.884865 0.895266
2 0.891979 0.884836 0.893274
3 0.891608 0.884774 0.892185
5 0.891640 0.884780 0.890133

10 0.891354 0.884597 0.888894

TE-LSTM uses LSTM as the base model and integrates time information into the
prediction process, ultimately improving prediction accuracy. The model is not combined
with other methods and has a relatively simple architecture. However, it is precisely this
characteristic that allows TE-LSTM to be applied across all LSTM variant models. TE-
LSTM can directly replace the LSTM module in these variants. In this study, we selected
TFT as the base model and replaced the original LSTM module in TFT with TE-LSTM to
evaluate the performance of different LSTM architectures and their variants under TE-
LSTM. The experimental results are presented in Table 8. After replacing the original LSTM
module in TFT with TE-LSTM, a slight improvement in model accuracy was observed.
This demonstrates TE-LSTM’s strong compatibility, as it can be integrated into any LSTM
variant model to enhance prediction accuracy.

Table 8. The results of TFT and TFT using TE-LSTM. TFT-TE represents TFT using TE-LSTM.

Dataset X TFT TFT-TE

NOAA
1 0.910564 0.911570
2 0.915774 0.916166
3 0.909956 0.910908

GDELT
1 0.884865 0.885147
2 0.885409 0.896496
3 0.884908 0.885809

3.5. Discussion

In this study, we introduce an innovative multivariate time series data prediction
model: TE-LSTM, an LSTM variant that considers the temporal evolution of entities. To
address the limitations of existing models that do not fully utilize the time dimension, we
designed multiple time encoding methods for comparative experiments to comprehensively
extract temporal features. Additionally, to account for the relationship between the time
of each element in the time series and the predicted target time, we developed a time-
weighting strategy that calculates the weight between each element’s time and the predicted
target time. This weight is then incorporated into each time step, replacing the original
sequence order, enabling the model to handle prediction tasks with explicit temporal
constraints. Our study primarily focuses on temperature prediction, and we also validated
the model’s performance on non-periodic and complex datasets using the GDELT dataset.

Remote Sens. 2024, 16, 3666 18 of 21

To validate the effectiveness of TE-LSTM, we predicted targets at different positions
and compared the performance of three time encoders, as shown in Table 2. TE-LSTM,
based on LSTM, leverages LSTM’s recursive nature to capture local changes in the sequence.
The ST (FFN) encoder, which captures the absolute position of time, focuses on global
changes, balancing long- and short-term dependencies. This made it suitable for various
datasets, as demonstrated by its strong performance across both datasets. On the other
hand, the TI (FFN) encoder uses time intervals between each element in the series and the
predicted target time, focusing on local changes and strengthening the capture of short-term
dependencies. This led to its particularly strong performance on the NOAA dataset, which
exhibits periodicity, but it had weaker performance on the GDELT dataset, which lacks
such periodic structures.

In environmental and meteorological research, time granularities of hours, days, or
larger intervals can reveal vastly different patterns of change. Coarser time granularity
may obscure key precursor changes, while finer granularity may introduce excessive noise,
making it difficult to identify long-term trends. After verifying TE-LSTM’s effectiveness,
we further investigated the impact of temporal richness on the results. We employed
multi-scale analysis methods, exploring a range of time granularities from coarse to fine.
Our findings indicate that the ST (FFN) method exhibits a negative correlation with time
granularity, where larger granularities result in lower model accuracy. Consequently, ST
(FFN) is more appropriate for datasets with rich temporal information. Both TI (FFN)
and ST (Time2Vec) effectively capture periodicity, but they are less suitable when tem-
poral information is abundant. As temporal granularity increases, the performance of
these two methods initially improves but then declines, reaching peak accuracy at an
optimal granularity. Therefore, selecting the appropriate time granularity is crucial for
their application.

We also assessed the model’s ability to address time-specific prediction questions by
pre-training it using a dataset with fixed prediction locations and then applying this pre-
trained model to predict targets at other locations. The experimental results demonstrate
that as the number of predicted positions increases, the accuracy of the TE-LSTM model
remains relatively stable, with only a gradual decline, as shown in Table 5. Moreover,
the performance of TE-LSTM was further validated by comparing it with SOTA methods
such as TFT and Informer, as shown in Tables 6 and 7. While TE-LSTM proved to be
more effective for datasets with certain regularities, such as NOAA data, its accuracy on
more complex and irregular datasets was lower than that of Informer. This difference is
attributable to the inherent characteristics of TE-LSTM, which is based on LSTM. However,
these characteristics also give TE-LSTM strong compatibility and applicability, allowing it
to be integrated into various LSTM-based models. In this study, we replaced the original
LSTM module in TFT with TE-LSTM, resulting in improved prediction accuracy and
confirming the model’s compatibility and scalability.

The ability of TE-LSTM to answer time-specific prediction questions makes it applica-
ble to multiple fields. In meteorological forecasting, for instance, it can be used to predict
changes in temperature, rainfall, wind speed, and other meteorological variables at specific
time points. This capability is critical for natural disaster warnings, such as for typhoons
and rainstorms, as well as for agricultural production planning. Similarly, in environmental
monitoring and disaster management, precise time prediction can forecast the occurrence
of natural disasters such as earthquakes, landslides, and floods. This improves emergency
response efficiency, minimizes losses, and provides a scientific basis for the formulation of
more targeted response strategies. Additionally, in logistics and supply chain management,
accurate time prediction can optimize transportation routes and inventory management, en-
suring goods are delivered at the optimal time, thus reducing logistics costs and enhancing
operational efficiency.

This study also has certain limitations. First, we were unable to obtain long-term
data on temperature-related indicators such as solar radiation, wind speed, and wind
direction. This limitation has a slight impact on the accuracy of temperature modeling. In

Remote Sens. 2024, 16, 3666 19 of 21

future research, we aim to expand the inclusion of these indicators to improve the accuracy
of the model’s temperature prediction. Additionally, we were unable to find datasets
with ultra-long time spans, such as those related to geological evolution, to validate the
model’s applicability. Datasets of this type require extended time periods to reveal accurate
patterns. Since this method is based on LSTM, which excels at capturing short-term
dependencies due to its recursive nature, its performance on datasets requiring long-term
dependencies remains uncertain. Further validation is needed to accurately determine
the model’s scope of applicability in such cases. Second, the study did not propose a
unified method for determining the most appropriate time granularity. In environmental,
meteorological, or geological research, the choice of time granularity—whether hours,
days, or longer intervals—can reveal vastly different patterns of change. The optimal
time granularity varies across different fields and requirements. Therefore, establishing
a recommended framework or standard for selecting the appropriate time granularity
based on data characteristics, research objectives, and prior experience is necessary to
minimize the uncertainty caused by arbitrary selection. Additionally, the model did not
consider spatial location, which can also affect prediction outcomes. Incorporating spatial
information to develop spatiotemporal prediction models would be a promising direction
for future research.

4. Conclusions

This study introduced a precise time point prediction method called TE-LSTM, a
variant of the LSTM model designed to capture the temporal evolution of entities and used
for temperature forecasting based on multivariate time-series data. This method extracts
temporal features from multivariate time series data, automatically emphasizing features
that are closer to the predicted target time, thus enhancing both the accuracy and reliability
of predictions. The goal of TE-LSTM is to address the challenge of accurately predicting
temperature or events at specific and reliable time points. The main contributions of this
study are as follows:

(a) Multiple encoders were designed to account for both the periodic and non-periodic
nature of time, enabling the comprehensive extraction of temporal features. Addi-
tionally, the study examines the applicable datasets and optimal time granularity for
each encoder.

(b) A novel time weighting strategy based on LSTM was developed, which integrates the
weight of each element in the time series relative to the predicted target time at each
step. This approach allows the model to focus on features that are temporally closer
to the target, transforming the model from sequence-based prediction to time-based
prediction, thereby achieving more precise time point forecasting.

(c) TE-LSTM was compared with the base LSTM model and two SOTA methods. The
results demonstrate that TE-LSTM outperforms these models in terms of prediction
accuracy, particularly for tasks requiring precise time point predictions.

(d) The TE-LSTM method was applied to other LSTM variants, effectively improving their
prediction accuracy, thereby validating the robustness and generalization capability
of the proposed approach. The study also tested TE-LSTM on more complex GDELT
datasets, further confirming the model’s applicability and generalizability.

This method can be applied to natural disaster warning systems (such as typhoons and
rainstorms), agricultural production planning, and other fields. Currently, the model pri-
marily focuses on temporal predictions and lacks the integration of spatial dynamics, which
are essential for comprehensive forecasting. Moreover, the method may encounter chal-
lenges when applied to complex, multi-faceted scenarios due to data sparsity or variability
in environmental conditions. In future research, we aim to overcome these limitations by
incorporating spatial dimensions into the prediction process. By integrating both spatial
and temporal data, we aspire to achieve more accurate and reliable predictions. Addition-
ally, expanding the method’s applicability to a broader range of fields and exploring its
scalability across different regions will be key objectives in our ongoing research.

Remote Sens. 2024, 16, 3666 20 of 21

Author Contributions: Conceptualization, K.Z. and C.Z.; methodology, K.Z.; software, K.Z.; valida-
tion, K.Z.; formal analysis, K.Z.; investigation, K.Z. and B.X.; resources, K.Z.; data curation, C.L. and
Y.P.; writing—original draft, K.Z.; writing—review & editing, K.Z., C.Z. and J.H.; visualization, K.Z.;
supervision, C.Z.; project administration, K.Z. and C.Z.; funding acquisition, C.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China, grant
number 42171453; the National Key K&D Program of China, No. 2022YFB3904200; and the Open
Fund of the Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration,
Ministry of Natural Resources, grant number 2022-ARPE-KF04.

Data Availability Statement: The National Oceanic and Atmospheric Administration is available at
https://www.ncei.noaa.gov/maps/hourly (accessed on 25 January 2024). The GDELT 1.0 simplified
event database is available at https://www.gdeltproject.org/data.html (accessed on 26 January 2024).

Acknowledgments: We acknowledge the data support from the National Centers for Environmental
Information and the GDELT project.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lv, Z.; Pomeroy, J.W. Detecting intercepted snow on mountain needleleaf forest canopies using satellite remote sensing. Remote

Sens. Environ. 2019, 231, 111222. [CrossRef]
2. Luo, L.; Sun, S.; Xue, J.; Gao, Z.; Zhao, J.; Yin, Y.; Gao, F.; Luan, X. Crop yield estimation based on assimilation of crop models and

remote sensing data: A systematic evaluation. Agric. Syst. 2023, 210, 103711. [CrossRef]
3. Chu, Y.; Wang, Y.; Yang, D.; Chen, S.; Li, M. A review of distributed solar forecasting with remote sensing and deep learning.

Renew. Sustain. Energy Rev. 2024, 198, 114391. [CrossRef]
4. Islam, M.A.; Olm, G. Deep learning techniques to detect rail indications from ultrasonic data for automated rail monitoring and

maintenance. Ultrasonics 2024, 140, 107314. [CrossRef] [PubMed]
5. Pande, C.B.; Egbueri, J.C.; Costache, R.; Sidek, L.M.; Wang, Q.; Alshehri, F.; Din, N.M.; Gautam, V.K.; Chandra Pal, S. Predictive

modeling of land surface temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable
development. J. Clean. Prod. 2024, 444, 141035. [CrossRef]

6. Sumner, M.D.; Michael, K.J.; Bradshaw, C.J.A.; Hindell, M.A. Remote sensing of Southern Ocean sea surface temperature:
Implications for marine biophysical models. Remote Sens. Environ. 2003, 84, 161–173. [CrossRef]

7. Bouali, M.; Sato, O.T.; Polito, P.S. Temporal trends in sea surface temperature gradients in the South Atlantic Ocean. Remote Sens.
Environ. 2017, 194, 100–114. [CrossRef]

8. Zhu, J.; Fan, C.; Yang, M.; Qian, F.; Mahalec, V. Semi-supervised learning for predicting multivariate attributes of process units
from small labeled and large unlabeled data sets with application to detect properties of crude feed distillation unit. Chem. Eng.
Sci. 2024, 298, 120324. [CrossRef]

9. Xu, J.; Liu, J.; Yu, S.; Xu, K.; Zhang, T. Real-time temperature prediction of lunar regolith drilling based on ATT-Bi-LSTM network.
Int. J. Heat Mass Transf. 2024, 218, 124783. [CrossRef]

10. van Blitterswijk, R.H.; Botelho, L.A.; Farshidianfar, M.H.; Etman, P.; Khajepour, A. Adaptive thermal model for real-time peak
temperature and cooling rate prediction in laser material processing. J. Manuf. Process. 2023, 101, 1301–1317. [CrossRef]

11. Breitenbach, T.; Wilkusz, B.; Rasbach, L.; Jahnke, P. On a method for detecting periods and repeating patterns in time series data
with autocorrelation and function approximation. Pattern Recognit. 2023, 138, 109355. [CrossRef]

12. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv 2015, arXiv:1508.01991.
13. Zhu, Z.; Duan, W.; Zou, S.; Zeng, Z.; Chen, Y.; Feng, M.; Qin, J.; Liu, Y. Spatiotemporal characteristics of meteorological drought

events in 34 major global river basins during 1901–2021. Sci. Total Environ. 2024, 921, 170913. [CrossRef] [PubMed]
14. Zhang, J.-L.; Huang, X.-M.; Sun, Y.-Z. Multiscale spatiotemporal meteorological drought prediction: A deep learning approach.

Adv. Clim. Chang. Res. 2024, 15, 211–221. [CrossRef]
15. Reikard, G. Forecasting long-term solar activity with time series models: Some cautionary findings. J. Atmos. Sol.-Terr. Phys. 2020,

211, 105465. [CrossRef]
16. Box, G.E.P.; Jenkins, G.M. Time series analysis: Forecasting and control. J. Time Ser. Anal. 2010, 31, 303. [CrossRef]
17. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 2003, 13, 21–27. [CrossRef]
18. Dasgupta, S.; Osogami, T. Nonlinear dynamic boltzmann machines for time-series prediction. In Proceedings of the Thirty-First

AAAI Conference on Artificial, San Francisco, CA, USA, 4–9 February 2017; pp. 1833–1839.
19. Neil, D.; Pfeiffer, M.; Liu, S.C. Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences. In

Proceedings of the Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016.
20. Yu, R.; Li, Y.; Shahabi, C.; Demiryurek, U.; Liu, Y. Deep Learning: A Generic Approach for Extreme Condition Traffic Forecasting.

In Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, TX, USA, 27–29 April 2017; pp. 777–785.

https://www.ncei.noaa.gov/maps/hourly
https://www.gdeltproject.org/data.html
https://doi.org/10.1016/j.rse.2019.111222
https://doi.org/10.1016/j.agsy.2023.103711
https://doi.org/10.1016/j.rser.2024.114391
https://doi.org/10.1016/j.ultras.2024.107314
https://www.ncbi.nlm.nih.gov/pubmed/38626489
https://doi.org/10.1016/j.jclepro.2024.141035
https://doi.org/10.1016/S0034-4257(02)00103-7
https://doi.org/10.1016/j.rse.2017.03.008
https://doi.org/10.1016/j.ces.2024.120324
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124783
https://doi.org/10.1016/j.jmapro.2023.06.037
https://doi.org/10.1016/j.patcog.2023.109355
https://doi.org/10.1016/j.scitotenv.2024.170913
https://www.ncbi.nlm.nih.gov/pubmed/38354818
https://doi.org/10.1016/j.accre.2024.04.003
https://doi.org/10.1016/j.jastp.2020.105465
https://doi.org/10.1111/j.1467-9892.2009.00643.x
https://doi.org/10.1109/TIT.1967.1053964

Remote Sens. 2024, 16, 3666 21 of 21

21. Zhu, Y.; Li, H.; Liao, Y.; Wang, B.; Cai, D. What to Do Next: Modeling User Behaviors by Time-LSTM. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence Main Track, Melbourne, Australia, 19–25 August 2017;
pp. 3602–3608.

22. Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
23. Pineda, F.J. Generalization of back-propagation to recurrent neural networks. Phys. Rev. Lett. 1987, 59, 2229–2232. [CrossRef]
24. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back Propagating Errors. Nature 1986, 323, 533–536.

[CrossRef]
25. Chung, J.; Gulcehre, C.; Cho, K.H.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.

arXiv 2014, arXiv:1412.3555.
26. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
27. Lafferty, J.; Mccallum, A.; Pereira, F.C.N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence

Data. In Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, USA, 28 June–1 July
2001; pp. 282–289.

28. Mohammadi, M.; Jamshidi, S.; Rezvanian, A.; Gheisari, M.; Kumar, A. Advanced fusion of MTM-LSTM and MLP models for time
series forecasting: An application for forecasting the solar radiation. Meas. Sens. 2024, 33, 101179. [CrossRef]

29. Wang, J.; Liu, K.; Li, H. LSTM-based graph attention network for vehicle trajectory prediction. Comput. Netw. 2024, 248, 110477.
[CrossRef]

30. Ishida, K.; Ercan, A.; Nagasato, T.; Kiyama, M.; Amagasaki, M. Use of one-dimensional CNN for input data size reduction
in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling. J. Environ. Manag. 2024,
359, 120931. [CrossRef]

31. Wanigasekara, R.W.W.M.U.P.; Zhang, Z.; Wang, W.; Luo, Y.; Pan, G. Application of Fast MEEMD-ConvLSTM in Sea Surface
Temperature Predictions. Remote Sens. 2024, 16, 2468. [CrossRef]

32. Huang, N.E.; Shen, Z.; Long, S.R.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.-C.; Liu, H.H. The Empirical Mode Decomposition and
the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis; Royal Society: London, UK, 1998.

33. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal.
2009, 1, 1–41. [CrossRef]

34. Xu, X.; Han, W.; Gao, Z.; Li, J.; Yin, R. Retrieval of Atmospheric Temperature Profiles from FY-4A/GIIRS Hyperspectral Data
Based on TPE-MLP: Analysis of Retrieval Accuracy and Influencing Factors. Remote Sens. 2024, 16, 1976. [CrossRef]

35. Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. In
Proceedings of the SIGIR ‘18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval,
Ann Arbor, MI, USA, 8–12 July 2018.

36. Zhang, X.; Liang, X.; Zhiyuli, A.; Zhang, S.; Xu, R.; Wu, B. AT-LSTM: An Attention-based LSTM Model for Financial Time Series
Prediction. IOP Conf. Ser. Mater. Sci. Eng. 2019, 569, 052037. [CrossRef]

37. Li, Y.; Zhu, Z.; Kong, D.; Han, H.; Zhao, Y. EA-LSTM: Evolutionary Attention-based LSTM for Time Series Prediction. Knowl.-Based
Syst. 2019, 181, 104785. [CrossRef]

38. Lim, B.; Arik, S.Ö.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting.
arXiv 2019, arXiv:1912.09363. [CrossRef]

39. Kazemi, S.M.; Goel, R.; Eghbali, S.; Ramanan, J.; Sahota, J.; Thakur, S.; Wu, S.; Smyth, C.; Poupart, P.; Brubaker, M.A. Time2Vec:
Learning a Vector Representation of Time. arXiv 2019, arXiv:1907.05321.

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

41. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014,
arXiv:1409.0473.

42. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 39, 640–651. [CrossRef]

43. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215.
44. Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need.

In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
45. Yu, Q.; Yuan, H.-W.; Liu, Z.-L.; Xu, G.-M. Spatial weighting EMD-LSTM based approach for short-term PM2.5 prediction research.

Atmos. Pollut. Res. 2024, 15, 102256. [CrossRef]
46. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence

Time-Series Forecasting. arXiv 2020, arXiv:2012.07436. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.measen.2024.101179
https://doi.org/10.1016/j.comnet.2024.110477
https://doi.org/10.1016/j.jenvman.2024.120931
https://doi.org/10.3390/rs16132468
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.3390/rs16111976
https://doi.org/10.1088/1757-899X/569/5/052037
https://doi.org/10.1016/j.knosys.2019.05.028
https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1016/j.apr.2024.102256
https://doi.org/10.1609/aaai.v35i12.17325

	Introduction
	Materials and Methods
	Experimental Data
	TE-LSTM
	Temporal Encoder
	Temporal Weighting Module
	Multivariate Encoder
	Prediction Module

	Results and Discussion
	Verify the Accuracy of TE-LSTM under Different Temporal Encoders
	Verify the Accuracy of TE-LSTM under Different Time Granularities
	Verify the Performance of TE-LSTM in Predicting Questions with Specific Times
	Comparison of TE-LSTM with State-of-the-Art (SOTA) Methods and Validation of TE-LSTM Performance on LSTM Variant Models
	Discussion

	Conclusions
	References

