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Abstract: The pure rotational Raman (PRR) lidar technique relies on calibration functions (CFs) to
extract temperature information from raw detection data. The choice of CF significantly impacts the
accuracy of the retrieved temperature. In this study, we propose a method that combines multiple
Monte Carlo simulation experiments with a statistical analysis, and we first conduct simulated
comparisons of the calibration effects of different CFs while considering the impact of noise. We
categorized ten common CFs into four groups based on their functional form and the number of
calibration coefficients. Based on functional form, specifically, we defined 1/T = f(lnQ) as a forward
calibration function (FCF) and lnQ = g(1/T) as a backward calibration function (BCF). Here, T denotes
temperature, and Q denotes the signal intensity ratio. Their performance within and outside the
calibration interval is compared across different integration times, smoothing methods, and reference
temperature ranges. The results indicate that CFs of the same category exhibit similar calibration
effects, while those of different categories exhibit notable differences. Within the calibration interval,
the FCF performs better, especially with more coefficients. However, outside the calibration interval,
the linear calibration function (which can be considered a two-coefficient FCF) has an obvious
advantage. Conclusions based on the simulation results are validated with actual data, and the
factors influencing calibration errors are discussed. Utilizing these findings to guide CF selection can
enhance the accuracy and stability of PRR lidar detection.

Keywords: pure rotational Raman temperature measurement technology; calibration function com-
parison; Monte Carlo method; least squares fitting

1. Introduction

Atmospheric temperature is a crucial factor in the atmospheric environment. The
troposphere, which is the most closely related to human activities, has rapidly changing
temperatures and a complex change mechanism. Lidar, with its high temporal and spatial
resolution and precision, is extensively employed for the detection of atmospheric temper-
atures. Among various lidar technologies, pure rotational Raman (PRR) lidar stands out
as the preferred method for detecting vertical temperature profiles in the troposphere and
lower stratosphere [1,2].

The PRR temperature measurement technique was initially proposed by Cooney [3],
and it is based on the different temperature dependences of PRR spectral lines [4]. By
comparing two PRR signals with opposite temperature dependences, a quantity solely
dependent on atmospheric temperature is obtained, which is then used for temperature
retrieval. Prior to temperature retrieval, PRR lidar needs to be calibrated; hence, it is also
called the relative temperature measurement technique. If only one high-order and one
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low-order PRR spectral line are received independently, then the signal intensity ratio Q of
the high- and low-quantum-number channels can be expressed as exp(α + β/T). However,
in practical applications, whether using double-grating spectrometers (DGs) or interference
filters (IFs), it is challenging to extract independent PRR spectral lines [5–11]. At this time, Q
can no longer be directly expressed as a simple function of temperature T [12], necessitating
the use of a calibration function (CF) to approximate the relationship between Q and T so
as to invert the detection signal into an atmospheric temperature profile [1].

Several CFs have been proposed to approximate the relationship between Q and T.
In 1983, Arshinov et al. [12] proposed a method to represent the intensity of the actual
received multi-spectral line signal with a single spectral line intensity, resulting in a first-
order linear CF. Behrendt et al. [13] extended the exponential term of the linear CF to
a quadratic form in 2000, resulting in a second-order CF with a lower theoretical error.
Di Girolamo et al. [14] further extended the exponential term to a cubic form, yielding
a theoretically more accurate third-order CF. In addition, specific functions [15,16] and
inversion methods [17–19] have been proposed for particular situations. For example,
Chen et al. [15] proposed a CF that maintains good accuracy and robustness under a low
signal-to-noise ratio (SNR), and a CF proposed by He et al. [16] could reduce the error by
about 50% compared with commonly used functions under a weak SNR. These CFs and
inversion methods each have their own advantages, but they are only applicable in specific
cases. In general, first- and second-order CFs remain commonly used [1,16], although they
are also special forms derived under certain assumptions.

To better align with actual conditions, Gerasimov et al. [20,21] conducted a large anal-
ysis and derivation of the relationship between the signal intensity ratio Q of multi-spectral
line reception and temperature T, resulting in general calibration function 1 (GCF1) for PRR
lidar, and GCF2 was obtained from the special case of its integer power approximation.
GCF1 and GCF2 correspond to Equations (1) and (2), respectively. Most CFs are special
cases of these two GCFs. Theoretically, the GCF accounts for the collision broadening of
PRR spectral lines from all atmospheric molecules, thus achieving a greater calibration ac-
curacy. However, as the GCF is an infinite series, it cannot be directly used for temperature
inversion, and, thus, its special forms are utilized to calculate temperature profiles. In 2018,
Gerasimov [22] introduced nine nonlinear CFs, as shown in Table 1. Gerasimov compared
the calibration effects of these nine CFs through simulations and validated them with
actual data; however, the conclusions drawn are only applicable to specific lidar systems.
Subsequently, Gerasimov [23] further simulated and compared the calibration effects of
various CFs under different spectral filter bandwidths and laser central wavelength settings.
Other studies also employed similar methods to determine the most suitable CF for specific
systems [24–26]. However, these analyses did not consider the impact of noise and, thus,
do not accurately reflect practical conditions.

ln Q(T) = · · ·+ α−3

T
√

T
+

α−2

T
+

α−1√
T
+ α0 + α1

√
T + α2T + · · · =

∞

∑
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αnT
n
2 (1)

ln Q(T) ≈ · · ·+ β−3

T3 +
β−2

T2 +
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T
+ β0 + β1T + β2T2 + · · · =

∞

∑
n=−∞

βnTn (2)

When utilizing PRR technology for temperature detection in practice, it is inevitably
affected by noise. Since the backscatter signal detected by PRR lidar is relatively weak,
photon-counting detectors are generally employed. In lidar systems that use photon
counting for detection, shot noise is the primary source of random noise [27,28]. During
the PRR temperature measurement process, shot noise and the calibration procedure are
the most influential factors affecting the detection results [29]. Therefore, analyzing the
calibration effects of different CFs under the influence of shot noise can better reflect the
actual situation. In practical detection scenarios, the SNR and corresponding atmospheric
temperature range of the retrieved data typically differ from those of the calibration data.
It is common practice to select an interval with a higher SNR for calibration. All of
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these will lead to calibration results used for temperature retrieval extending beyond the
calibration interval. Therefore, it is essential to analyze the performance of each CF beyond
the calibration interval. However, previous studies have neither conducted comparative
analyses of CFs under the influence of noise nor examined their extrapolation performance.

Table 1. Nonlinear CFs in nine special cases of GCFs. In the table, y denotes lnQ, x denotes 1/T, and
u denotes 1/

√
T. a, b, c, and d are the coefficients to be calibrated.

Three-Coefficient Calibration Functions Four-Coefficient Calibration Functions

Direct special cases of GCF2 CF1: y = a + bx + cx2 Indirect special cases of GCF2
CF2: y = a + bx + c/x CF7: x = a + by + cy2 + dy3

Indirect special cases of GCF2 CF3: x = a + by + cy2 CF8: x = a + by + cy2 + d/y
CF4: x = a + by + c/y CF9: x = a + by + c/y + d/y2

Direct special cases of GCF1 CF5: y = a + bu + cu2

CF6: y = a + bu + c/u

In this paper, the effects of different CFs within and outside the calibration interval are
compared and analyzed under the influence of noise. The primary focus is on shot noise,
incorporating Poisson random processes during signal simulation. Due to the randomness
introduced by the Poisson process, multiple simulations are conducted using the Monte
Carlo (MC) method [30,31], followed by a statistical analysis. Additionally, the calibration
performance of each CF under various integration times, smoothing methods, and reference
temperature ranges is analyzed using MC experiments. This paper is organized as follows:
In Section 2, the principle of signal generation and temperature inversion is introduced, and
the implementation of the MC and statistical methods is explained in detail. In Section 3,
the calibration effects of different CFs are compared using simulated data following the
methods described in Section 2. In Section 4, the simulation results from Section 3 are
validated with actual observation data, and the factors affecting calibration results and
their interdependencies are further analyzed. Finally, Section 5 concludes this paper.

2. Methods
2.1. Echo Signal Simulation

Firstly, a single-pulse echo signal is simulated according to the lidar equation. The
number of echo photons detected via PRR scattering can be expressed as

S(z) = E0∆zAξ
λ0

hc
O(z)

z2 β(z)τ(z) + Sd + Sb (3)

where S(z) denotes the number photons received by the lidar at range z. E0 denotes the
emitted energy of the laser pulse, λ0 is the central wavelength of the laser, ∆z is the range
resolution of the system, A is the effective receiving area of the telescope, h is the Planck
constant, and c is the speed of light. ξ is the overall efficiency of the lidar system, including
the optical efficiency of all components in the transmission and receiving optical systems, as
well as the detection efficiency of the electronic devices. O(z) denotes the geometric overlap
factor, primarily caused by the incomplete overlap between the laser beam cross-section
and the field of view received by the telescope. β(z) denotes the backscatter coefficient
for PRR scattering by atmospheric molecules, τ(z) denotes the two-way transmittance of
the laser through the atmosphere, Sd is the dark noise of the detector, and Sb is the noise
generated by atmospheric background light.

The equation for calculating β(z) is

β(z) = ∑
i=O2,N2

∑
Ji

N(z)ηiτRR(Ji)

(
dσ

dΩ

)RR,i

π

(Ji) (4)
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where N(z) is the number density of atmospheric molecules, and ηi denotes the volumetric
fraction of nitrogen or oxygen in the atmosphere, with nitrogen accounting for 78.08% and
oxygen accounting for 20.95%. The term Ji indicates different rotational quantum numbers
(of nitrogen or oxygen molecules), τRR(Ji) is the reception efficiency of the lidar system
for the Ji corresponding spectral lines in the Raman spectrum, and (dσ/dΩ)RR,i

π (Ji) refers
to the PRR differential backscattering cross-section corresponding to Ji. The method for
calculating the differential scattering cross-section of single lines in the PRR spectrum is
detailed in [32–34].

τ(z) can be obtained by integrating the extinction coefficient along the transmission
path, with the calculation equation given by

τ(z) = exp
[
−
∫ z

0
α
(
z′, λ0

)
dz′

]
exp

[
−
∫ z

0
α
(
z′, λr

)
dz′

]
(5)

where the first term represents the loss of outgoing light with wavelength λ0 transmitted to
range z, and the second term represents the loss of backscattered light with wavelength λr
transmitted to the receiving telescope. α is the atmospheric extinction coefficient, for which
the calculation equation is as follows:

α(z, λ) = αa(z, λ) + αm(z, λ) (6)

where αa denotes the extinction coefficient of aerosol in the atmosphere, and αm denotes
the extinction coefficient of atmospheric molecules. In this study, the extinction coefficients
of atmospheric molecules and aerosols are simulated based on the standard atmospheric
model. The detailed calculation methods can be found in [35].

Sd can be calculated by integrating time ∆t and dark count rate Sd0 according to the
following equation:

Sd = Sd0∆t (7)

The equation for calculating Sb is as follows:

Sb = Ib A∆λ∆tξτξd
ϕ2π

4
λr

hc
(8)

where Ib denotes the luminance of atmospheric background radiation, the typical value
of which can be set to 0.149 w/(m2sr·nm) during the day. The atmospheric background
radiation during nighttime detection is approximately 0.1% of the daytime value [36],
which can generally be neglected, but it should be considered when considering the impact
of noise. ∆λ is the transmittance spectral bandwidth of the receiving channel, ξτ is the
optical efficiency of the receiving optical system, ξd is the detector efficiency, and ϕ is the
field of view of the receiving telescope.

After simulating with Equation (3), a set of single-pulse signals containing background
noise and dark noise is obtained. This set is considered the expectation of single-pulse echo
photons. To introduce shot noise, multiple Poisson randomizations are applied based on
the required integration time, resulting in multiple sets of single-pulse signals that include
shot noise.

2.2. Temperature Inversion

The whole process of temperature inversion from lidar signals can be divided into
three modules: data preprocessing, CF fitting, and temperature retrieval.

Data preprocessing primarily involves integrating and denoising the raw signal. First,
the integration time is set based on the system configuration and the detection purpose,
after which the raw signal is then accumulated over the specified integration period. The
position where the signal intensity ceases to decrease with an increasing altitude is referred
to as the detection limit of the system. Signals beyond this detection limit are considered
background noise, including contributions from atmospheric background radiance and the
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noise generated by the receiving electronic system. Even after subtracting the background
noise, the integrated signal still contains random noise. A common denoising technique
is the moving window average method, which is categorized into fixed-window smooth-
ing [13,14,24,37] and variable-window smoothing [21,38]. While integration and smoothing
can enhance the SNR, they also reduce the temporal and spatial resolution of the system
and may introduce some unquantifiable errors [29]. In practice, it is essential to balance the
trade-offs between the SNR and temporal–spatial resolution by choosing an appropriate
integration time and smoothing methods.

For the preprocessed signal, a calibration interval (i.e., the range corresponding to
the calibration sample points) is selected, followed by the fitting of the CF. The calibration
interval should be selected in a region that is unaffected by the geometric overlap factor at
low altitudes and the low SNR at high altitudes. For the lidar system used in this study,
the influence range of the geometric overlap factor is below approximately 1 km [39].
Long-term detection results also show that the temperature detection results in the range
of 0–1 km have large errors. Therefore, in this study, the calibration interval is chosen to be
above 1 km, extending to the range where the pre-smoothed SNR reaches 10 (approximately
5 km). Here, the 1 km equal altitude position is relative to the working position of the
lidar system. When processing simulation data, the calibration interval is consistently set
to 1–5 km. As previously mentioned, the GCFs cannot be directly applied for calibration.
Gerasimov et al. [20–22] proposed that a specific form of CFs, suitable for calibration,
should meet two conditions: the inclusion of a linear term and the ability to derive a
physically meaningful solution. Under these conditions, nine specific CFs are retained,
as shown in Table 1. Although many other specialized CFs exist, they either fail to meet
the aforementioned conditions, are computationally complex, or provide only marginal
improvements in calibration accuracy. Therefore, they are not included in this study.

In addition to the nine nonlinear CFs in Table 1, a linear CF is also included for a
comparative analysis. Based on the number of calibration coefficients and structural char-
acteristics, the 10 CFs are classified, and the classification results are shown in Table 2. To
illustrate, the three-coefficient forward calibration function (3c-FCF) is taken as an example,
which includes three coefficients to be calibrated and uses x (i.e., 1/T) as the dependent
variable. When performing temperature retrieval, the temperature value (i.e., T) can be
directly obtained from the calibration results. Conversely, the three-coefficient backward
calibration function (3c-BCF) uses y (i.e., lnQ) as the dependent variable and requires an
inverse solution for temperature retrieval. The logic for the four-coefficient forward calibra-
tion function (4c-FCF) is consistent with the above, while the linear calibration function
(LCF) does not require the same distinction as the nonlinear CFs. For the preprocessed
signal, 10 different CFs (i.e., CF0–CF9) are used for calibration, resulting in calibration
coefficients for each one.

Table 2. Classification of a linear CF and nine nonlinear CFs. In the table, y denotes lnQ, x denotes
1/T, and u denotes 1/

√
T. a, b, c, and d are the coefficients to be calibrated.

Type 1: LCF Type 2: 3c-BCF Type 3: 3c-FCF Type 4: 4c-FCF

CF0: x = a + by CF1: y = a + bx + cx2 CF5: x = a + by + cy2 CF7: x = a + by + cy2 + dy3

CF2: y = a + bx + c/x CF6: x = a + by + c/y CF8: x = a + by + cy2 + d/y
CF3: y = a + bu + cu2 CF9: x = a + by + c/y + d/y2

CF4: y = a + bu + c/u

Each CF in Table 2 corresponds to a specific temperature retrieval function (TRF). The
temperature retrieval functions TRF0–TRF9, corresponding to CF0–CF9, are all expressed
in the form of temperature T as a function of lnQ, which can be directly derived by
solving the calibration equations in Table 2. For any CF, once the calibration coefficients
are obtained, the corresponding TRF is determined. By substituting the signal intensity
ratio at a given position into the TRF, the temperature at that location can be obtained,
enabling the retrieval of the temperature profile. For the N sets of single-pulse signals
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simulated in Section 2.1, temperature retrieval is performed using different CFs following
the aforementioned method. The calibration error (i.e., the difference between the retrieved
temperature and the reference temperature) is then calculated to compare the calibration
accuracy of the various CFs.

2.3. MC Experiments and Statistical Methods

The entire process, from the simulation of single-pulse signals to the calculation of
calibration errors for various CFs, constitutes a single MC simulation experiment. The flow
of one MC experiment is illustrated in the yellow box in Figure 1. A concise summary of the
complete MC simulation experiment is as follows: Using the specified system parameters
and atmospheric conditions, simulate the single-pulse echo signals based on Equation (3),
treating them as the expected number of single-pulse echo photons. Firstly, perform N
Poisson randomizations to generate N sets of single-pulse signals that include shot noise.
Then, apply the three modules outlined in Section 2.2—signal preprocessing, CF fitting,
and temperature retrieval—to process the signals and compute the retrieved temperatures,
and, finally, calculate the calibration/retrieval errors for various CFs.
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of different CFs based on MC simulation experiments.

Due to the introduction of a Poisson random process, the results obtained from a single
MC simulation are stochastic. Therefore, multiple MC simulations are conducted under
the same experimental conditions to obtain average results and distribution probabilities.
In addition, before each MC simulation experiment, a random seed is set to make the
experimental results repeatable.

The number of repeated experiments is a critical parameter in MC experiments. The
JCGM 2008 [40] document, jointly authored by the International Bureau of Weights and
Measures (BIPM) and others, provides guidance on the number of MC simulations. It
mentions that, typically, 106 MC trials are necessary to achieve a 95% confidence level



Remote Sens. 2024, 16, 3690 7 of 25

in the output results. However, conducting 106 simulations requires substantial time
and computational resources. Therefore, an experiment was conducted to investigate
the relationship between the accuracy of the output results and the number of trials. For
different numbers of MC simulations, the relative deviation between the output results
at various distance gates and the results obtained from 106 trials was calculated. The
mean absolute relative deviation (MARD) and standard deviation of the relative deviation
(SDRD) were then statistically analyzed, as shown in Table 3. When the number of trials
was 1000, the MARD relative to the results of the 106 trials was 0.959%. To reduce the
MARD by an order of magnitude, the number of trials must be increased by two orders
of magnitude. Thus, considering both output accuracy and computational cost, 1000 MC
simulations were selected in this study, which can still provide results with a high degree
of credibility.

Table 3. The differences between the output results obtained from various numbers of MC trials and
those obtained from 106 MC trials.

MC Trials Number 5 × 105 105 5 × 104 104 5000 1000 500

MARD to 106 0.000524 0.00103 0.00146 0.00310 0.00414 0.00959 0.0134
SDRD to 106 0.000559 0.00109 0.00160 0.00332 0.00439 0.0103 0.0146

For each preset condition, 1000 MC simulation experiments are conducted. As a
result, for each CF, there are 1000 corresponding calibration errors on each range gate.
The mean absolute error (MAE) [41] and the standard deviation of the error (SDE) [42] of
these 1000 sets of calibration results are then calculated. The formula for MAE is given
in Equation (9), which is a precise measure of the average magnitude of errors and can
accurately reflect the size of the actual prediction error. The formula for SDE is provided in
Equation (10), which is the arithmetic square root of the variance, reflecting the degree of
dispersion among individual data points in a dataset:

MAE =
1
n

n

∑
i=1

∣∣∣xi − xref.
∣∣∣ (9)

SDE =

√
∑n

i=1(xi − x)2

n
(10)

where xref. denotes the reference true value, and x is the mean of the dataset.

3. Simulation Results
3.1. Simulation Parameters and Calibration Errors without Noise

The major parameters of the system used in the simulations are listed in Table 4. This
model was set based on the PRR lidar system from the Beijing Institute of Technology,
Beijing, China [43]. When calculating the backscatter cross-section, the contributions of
the first 24 spectral lines of both the Stokes and anti-Stokes branches in the PRR spectrum
to the high- and low-order PRR channels were considered. The PRR spectra of the N2
and O2 molecules at 200 K and 280 K are shown in Figure 2. Figure 2 also presents the
spectral transmission function (STF) curve used in the simulations, which was set based
on the spectrometer-measured curves of the double-grating polychromator arranged by
the Beijing Institute of Technology. In our simulation, we utilized data from the 1976 U.S.
Standard Atmosphere model, using its tropospheric temperature profile as the reference
temperature profile and its atmospheric pressure data to calculate the molecular number
density (i.e., N in Equation (4)).
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Table 4. Major parameters for PRR lidar system simulations.

System Configuration Parameter Value

Laser Nd: YAG
Wavelength 532 nm

Laser pulse energy 60 mJ
Pulse repetition rate 20 Hz

Telescope effective diameter 0.2 m
Total optics efficiency 0.5

Detector quantum efficiency 0.1
Detector dark count 100 s−1
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distinguished by light blue and dark blue, respectively. Jevev and Jodd represent the even and odd
order of the rotation quantum numbers, respectively. The wavelength of incident light is 532 nm. The
black dashed and solid lines represent the transmission curves of the receiver, with the passband
centers at 529.10, 530.48, 533.77, and 534.90 nm, and the full width at half maximum (FWHM) of the
curves is 0.6 nm. The maximum transmittance of the low- and high-order channels is 20% and 12%,
respectively.

The echo signals are simulated using the parameters mentioned above, and the ab-
solute calibration (or temperature) error is calculated using similar methods in [22–26].
The absolute calibration error represents the difference between the temperature profile
retrieved from the simulated signal intensity ratio Q by any CF in Table 2 and the reference
temperature profile, without considering the impact of noise. The absolute calibration
errors of each CF are shown in Figure 3. The results in Figure 3 show that the magnitude
of the absolute calibration errors for the nine nonlinear CFs (i.e., CF1–9) obtained in this
study is consistent with that in [22,23]. Furthermore, the four-coefficient CFs similarly yield
smaller absolute calibration errors. Additionally, due to the specific STF used in this study,
the values and ranking of the absolute calibration errors for each CF differ from the results
in the references. This also validates the conclusion in the literature that “CFs’ comparison
results of lidar systems with different configurations (i.e., laser wavelength and STF) are
different.” The absolute calibration errors produced by each CF in this study, ranked from
smallest to largest, are as follows: CF7 < CF9 < CF5 < CF8 < CF1 < CF3 < CF4 < CF2 < CF6
< CF0. CF7 has the smallest error (less than 2.5 × 10−5 K), while CF5 has the smallest error
among the three-coefficient CFs (less than 2 × 10−3 K).
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Figure 3. Simulation results: an intercomparison of absolute calibration (or temperature) errors
produced using CF0–9 without considering noise.

However, as previously discussed, comparing absolute calibration errors without
considering noise effects is not sufficiently reflective of real-world conditions. The following
presents a statistical comparison of calibration errors for different CFs while considering
the influence of noise (including shot noise, background light noise, and dark noise), that
is, the MC simulation and statistical comparison results obtained according to the methods
described in Section 2 of this paper.

3.2. MC Simulation and Statistical Results

According to the simulation method described in Section 2, in addition to the previ-
ously discussed system parameters and atmospheric model data, it is also necessary to
configure the integration time and smoothing method in the data preprocessing module.
We set the integration time to 60 min, corresponding to the Poisson random number N of
72,000 in Figure 1. We applied an initial window size of 5 and used a smoothing method
where the sliding window expands by 1 point on each side of the central point for ev-
ery 20 data points, which is referred to as variable sliding window method 1 (VSW-M1).
Specifically, within the height range of 0 to 600 m, the sliding window is 150 m, and, for
every 600 m increase in detection height, the sliding window expands by 30 m on both the
upper and lower sides. VSW-M1 was proposed after testing various smoothing methods
from [13,14,21,24,37,38] on actual data and considering the impact on the SNR and the
temporal–spatial resolution.

After setting the integration time and smoothing method, 1000 MC experiments were
conducted following the workflow shown in Figure 1. The MAE and SDE of the calibration
(or temperature) results in both the calibration interval and the extrapolation interval
(i.e., outside the calibration range) were statistically obtained, as shown in Figure 4. The
significance of these two statistics was mentioned in Section 2.3. The MAE can reflect the
magnitude of the actual prediction error, with smaller values indicating a higher calibration
accuracy. The SDE can reflect the degree of dispersion among individuals in a set of data,
with smaller values indicating a higher stability of the calibration results. In the figure,
curves of the same color system represent the statistical results for the same category of
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CFs: Red represents LCF (CF0), blue represents 3c-BCF (CF1–4), orange represents 3c-FCF
(CF5–6), and green represents 4c-FCF (CF7–9).
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Figure 4. A single-pulse signal was simulated under the specified system parameters and the
1976 standard atmospheric model. MC simulation experiments were conducted using 72,000 random
Poisson counts and the VSW-M1 smoothing method. An intercomparison was conducted between
the calibration (or temperature) error statistics generated by CF0–9 after 1000 MC simulation experi-
ments. (a) The MAE of the calibration results generated using CF0–9; (b) the SDE of the calibration
results generated using CF0–9. “Cali-interval” represents the calibration interval, and “Ex-interval”
represents the extrapolation interval. The small gray box in the upper-right corner of each subgraph
shows a vertical magnification of the results within the calibration interval.

As shown in Figure 4, whether in the calibration interval or extrapolation interval, the
MAE and SDE curves for the calibration results generated by the same category of CFs
are quite similar, while the differences between the different categories of CFs are obvious.
In the extrapolation interval, the MAE generated by different CFs, ranked from smallest
to largest, is LCF < 3c-BCF < 3c-FCF < 4c-FCF. In the range near the calibration interval
(corresponding to a temperature range of 246–256 K), the SDE generated by 3c-BCF is
greater than that generated by 3c-FCF. Apart from the above scenario, the ranking of the
SDE generated by the different CFs is consistent with that of the MAE. This indicates that,
in the extrapolation interval, the LCF has a distinct advantage in both calibration accuracy
and stability.

Within the calibration interval, each CF generates MAE and SDE curves that exhibit a
local minimum at both ends, and the differences in the middle region (corresponding to
the 265–275 K temperature range) are relatively indistinguishable. In the higher-altitude
regions within the calibration interval (corresponding to temperatures below 265 K), the
order from smallest to largest is 4c-FCF < 3c-FCF < LCF < 3c-BCF. Overall, throughout the
entire calibration interval, the MAE and SDE generated by 4c-FCF appear to be the smallest
across most range gates.

To provide a clearer comparison, the MAE and SDE at different range gates within the
calibration interval were averaged to obtain the mean of the mean absolute error (MMAE)
and the mean standard deviation of the error (MSDE). The results are presented in Figure 5.
Whether the MMAE or MSDE, the differences among the CFs of the same category are in
the order of 10−3 K, while the differences between the CFs of different categories are in the
order of 10−1 K (up to 0.335 K). There is a significant disparity in the MMAE and MSDE
between the different categories of CFs, ranked from smallest to largest as follows: 4c-FCF <
3c-FCF < LCF < 3c-BCF. In contrast, the differences among the CFs in the same category are
nearly negligible. Combined with the results in Figure 4, it can be concluded that, within
the calibration interval, 4c-FCF exhibits the best calibration performance among the four
types of CFs.
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Figure 5. Statistical results: heatmap of the MMAE and MSDE of calibration (or temperature) results
generated by CF0–9 within the calibration interval.

3.3. Comparison under Different Conditions

When considering the impact of noise, the SNR significantly influences the calibration
results. The integration and smoothing operations in the preprocessing module have
a substantial effect on the SNR. Additionally, we are interested in understanding how
different atmospheric reference temperature ranges and their corresponding atmospheric
pressures affect calibration performance. Therefore, we conducted simulation comparisons
of the calibration effects of different CFs under various integration times, smoothing
methods, and reference temperature ranges.

3.3.1. Different Integration Times

Different integration times were selected, specifically 90, 75, 60, 45, 30, and 15 min,
corresponding to the Poisson random number N of 108,000, 90,000, 72,000, 54,000, 36,000,
and 18,000, respectively, in Figure 1. All other settings remained consistent with those
described in Section 3.2. Under each integration time setting, 1000 MC experiments were
conducted following the process outlined in Figure 1. The MAE and SDE of the calibration
(or temperature) results were statistically obtained, as shown in Figures 6 and 7, respectively.
The comparison results between CFs of the same category and different categories are
similar to those discussed in Section 3.2, and they are not reiterated here.
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Figure 6. The system parameters, atmospheric model, and smoothing method are consistent with
those used in Figure 4. Under different integration times, the MAE statistics for the calibration
results were generated through 1000 MC simulation experiments: (a) 90 min; (b) 75 min; (c) 60 min;
(d) 45 min; (e) 30 min; and (f) 15 min.
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Figure 7. All settings are identical to those in Figure 6, presenting the SDE statistics for the calibration
results under different integration times: (a) 90 min; (b) 75 min; (c) 60 min; (d) 45 min; (e) 30 min; and
(f) 15 min.

As the integration time decreases (i.e., as the SNR drops), the MAE and SDE values
generated by any CF increase, and the differences between the different categories of CFs
become more obvious. Regardless of the integration time, the differences in the MAE and
SDE between the CFs in the extrapolation interval remain consistent with those discussed in
Section 3.2, with the LCF consistently providing the best calibration performance among the
four categories of CFs. If the acceptable error is set to 5 K, the LCF can be extrapolated below
245 K when the integration time is not less than 45 min. However, when the integration
time is 30 or 15 min, the errors in the extrapolation interval are almost always greater
than 5 K. For comparison, the absolute calibration errors calculated using CF0–9 without
considering noise are presented in Figure 8. The results show that the absolute errors
generated by each CF within the 20 K extrapolation range (i.e., 235–255 K) are small, with
LCF < 0.4 K and other nonlinear CFs (CF1–9) < 0.05 K. This indicates that noise significantly
amplifies the calibration errors of all CFs in the extrapolation interval. Under the influence
of noise, the LCF performs the best in the extrapolation interval, with the extrapolation
error decreasing as the SNR increases.
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Within the calibration interval, the shorter the integration time, the more obvious the
difference of the MAE and SDE generated by varying CFs in the middle region (corre-
sponding to the 265–275 K temperature range), and LCF begins to show certain advantages.
However, when observing the MAE and SDE across the entire calibration interval, the
average level of 4c-FCF should still be the lowest. Furthermore, as shown in Figure 7,
regardless of the integration time, the SDE generated by 3c-BCF is almost always the largest
within the calibration interval, which indicates poor stability when using this CF category
for temperature retrieval.

The MAE and SDE at different range gates within the calibration interval are then
averaged to obtain the MMAE and MSDE, as shown in Figure 9. When the integration time
is 90 min (during which, the SNR in the calibration interval is relatively high), the LCF has
the largest MMAE; however, the difference from 3c-BCF does not exceed 0.006 K. For the
other five integration times, the overall magnitude and ranking of the MMAE and MSDE
for each CF remain consistent with those described in Section 3.2. By combining the results
in Figures 6 and 7, we observe that, regardless of the integration time, 4c-FCF consistently
performs the best within the calibration interval. Additionally, as the integration time
decreases, the difference in the MMAE and MSDE between 3c-BCF and the other CFs
increases, further indicating that noise has a significant impact on 3c-BCF.
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Figure 9. Heatmap of the MMAE and MSDE for calibration results generated by CF0–9 within the
calibration interval and under different integration times.

3.3.2. Different Smoothing Methods

The six smoothing methods selected were as follows: no smoothing; three fixed sliding
window methods with window sizes of 11, 15, and 21 (11 FSW, 15 FSW, and 21 FSW);
VSW-M1 mentioned in Section 3.2; and variable sliding window method 2 (VSW-M2)
referenced in [21], which uses an initial window size of 3 and adds 1 point to each side of
the center point for every 10 data points. All other settings remained consistent with those
described in Section 3.2. Under the various smoothing methods, 1000 MC simulations were
conducted following the process outlined in Figure 1. The MAE and SDE of the calibration
results were statistically obtained, as shown in Figures 10 and 11, respectively.

The results in the figures indicate that, as the level of smoothing increases (as shown
in Figures 10 and 11, where the smoothing level gradually increases from [a] to [f], except
for in subfigure [e]), the MAE and SDE values generated by each CF decrease. Compared
with the unsmoothed results, smoothing not only significantly reduces the MAE and SDE,
but also alters the shape of the result curves. After smoothing, the MAE and SDE curves
for each CF within the calibration interval exhibit a characteristic with a local minimum at
both ends and a nearly uniform shape in the middle region.



Remote Sens. 2024, 16, 3690 14 of 25

Remote Sens. 2024, 16, 3690 14 of 25 
 

 

with the unsmoothed results, smoothing not only significantly reduces the MAE and SDE, 
but also alters the shape of the result curves. After smoothing, the MAE and SDE curves 
for each CF within the calibration interval exhibit a characteristic with a local minimum 
at both ends and a nearly uniform shape in the middle region. 

In the extrapolation interval, the comparison of the CFs remains consistent with the 
results discussed in Section 3.2, with the LCF providing the best calibration performance 
among the four categories of CFs. Within the calibration interval, when comparing the 
MAE and SDE produced by each CF, it appears that the average performance of 4c-FCF 
is still the best. When using VSW-M2, areas with a lower SNR experience greater smooth-
ing, resulting in the calibration results of each CF across the entire calibration interval 
exhibiting high accuracy and low dispersion. However, this smoothing method signifi-
cantly reduces the vertical resolution of the inversion results, and, hence, VSW-M2 was 
not selected for processing the actual data in this study. 

Similarly, the MMAE and MSDE within the calibration interval were calculated, and 
the results are presented in Figure 12. The overall magnitude and ranking of these values 
remained consistent with those in Section 3.2. When the VSW-M2 smoothing method was 
applied (where the SNR within the calibration interval is relatively high), the MMAE of 
the LCF was the largest, but the difference from 3c-BCF did not exceed 0.044 K. Under the 
other five smoothing methods, the overall magnitude and ranking of the MMAE and 
MSDE for each CF were consistent with the findings in Section 3.2. By combining the re-
sults in Figures 10 and 11, we found that, regardless of the smoothing method used, 4c-
FCF consistently performed the best within the calibration interval. 

Without smoothing, the SNR within the calibration interval remained above 10 (an 
SNR greater than 10 is generally considered reliable data [44]), but the MMAE and MSDE 
obtained were excessively large, especially for 3c-BCF. Moreover, as the degree of smooth-
ing decreased (indicating a lower SNR), the difference in the MMAE between 3c-BCF and 
the other categories of CFs became more obvious. This indicates that, for the system model 
established in this study, smoothing can effectively improve calibration accuracy. Addi-
tionally, among the different CFs, the calibration results of 3c-BCF are the most susceptible 
to noise. 

 
Figure 10. The system parameters, atmospheric model, and integration time are consistent with 
those used in Figure 4. Under different smoothing methods, the MAE statistics for the calibration 
results were generated through 1000 MC simulation experiments: (a) no smoothing; (b) 11 FSW; (c) 
15 FSW; (d) 21 FSW; (e) VSW-M1; and (f) VSW-M2. 

Figure 10. The system parameters, atmospheric model, and integration time are consistent with those
used in Figure 4. Under different smoothing methods, the MAE statistics for the calibration results
were generated through 1000 MC simulation experiments: (a) no smoothing; (b) 11 FSW; (c) 15 FSW;
(d) 21 FSW; (e) VSW-M1; and (f) VSW-M2.
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In the extrapolation interval, the comparison of the CFs remains consistent with the
results discussed in Section 3.2, with the LCF providing the best calibration performance
among the four categories of CFs. Within the calibration interval, when comparing the
MAE and SDE produced by each CF, it appears that the average performance of 4c-FCF is
still the best. When using VSW-M2, areas with a lower SNR experience greater smoothing,
resulting in the calibration results of each CF across the entire calibration interval exhibiting
high accuracy and low dispersion. However, this smoothing method significantly reduces
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the vertical resolution of the inversion results, and, hence, VSW-M2 was not selected for
processing the actual data in this study.

Similarly, the MMAE and MSDE within the calibration interval were calculated, and
the results are presented in Figure 12. The overall magnitude and ranking of these values
remained consistent with those in Section 3.2. When the VSW-M2 smoothing method was
applied (where the SNR within the calibration interval is relatively high), the MMAE of the
LCF was the largest, but the difference from 3c-BCF did not exceed 0.044 K. Under the other
five smoothing methods, the overall magnitude and ranking of the MMAE and MSDE
for each CF were consistent with the findings in Section 3.2. By combining the results
in Figures 10 and 11, we found that, regardless of the smoothing method used, 4c-FCF
consistently performed the best within the calibration interval.
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Without smoothing, the SNR within the calibration interval remained above 10 (an
SNR greater than 10 is generally considered reliable data [44]), but the MMAE and MSDE
obtained were excessively large, especially for 3c-BCF. Moreover, as the degree of smoothing
decreased (indicating a lower SNR), the difference in the MMAE between 3c-BCF and
the other categories of CFs became more obvious. This indicates that, for the system
model established in this study, smoothing can effectively improve calibration accuracy.
Additionally, among the different CFs, the calibration results of 3c-BCF are the most
susceptible to noise.

3.3.3. Different Reference Temperature Ranges

The calibration performance of the CFs was compared under different atmospheric
reference temperature ranges and corresponding atmospheric pressures. Radiosonde
temperature and pressure data were used instead of the standard atmospheric model for
the simulations. Radiosonde data from 15 July 2023, 15 October 2023, and 15 January 2024
were selected to simulate the atmospheric temperature and pressure conditions in summer,
spring/autumn, and winter, respectively. All other settings remained consistent with
those described in Section 3.2. A total of 1000 MC simulations were conducted following
the process outlined in Figure 1, and the MAE and SDE of the calibration results were
statistically obtained, as shown in Figures 13 and 14, respectively. The comparison results
between the CFs of the same category and different categories are similar to those discussed
in Section 3.2, and they are not reiterated here. Notably, for any given CF, the MAE and
SDE within the calibration range appear to follow the trend of 2024.1.15 < 2023.10.15 <
2023.7.15; that is, the lower the atmospheric reference temperature range, the smaller the
calibration error statistics.
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Figure 13. The system parameters, integration time, and smoothing method are consistent with those
used in Figure 4. Under different atmospheric reference temperature ranges, the MAE statistics for
the calibration results were generated through 1000 MC simulation experiments. (a) 15 July 2023;
(b) 15 October 2023; and (c) 15 January 2024.
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Figure 14. All settings are identical to those in Figure 13, presenting the SDE statistics for the
calibration results under different atmospheric reference temperature ranges. (a) 15 July 2023;
(b) 15 October 2023; and (c) 15 January 2024.

Similarly, the MMAE and MSDE within the calibration interval are calculated, and
the results are presented in Figure 15. The overall magnitude and ranking of these values
remain consistent with those in Section 3.2. By combining the results in Figures 13 and 14,
the conclusion that 4c-FCF performs the best within the calibration interval is reaffirmed.
Additionally, we focus on the calibration performance of the same CF under different
reference temperature ranges. The changes in the MMAE and MSDE values clearly indicate
that, for any CF, better calibration results are achieved when the overall temperature within
the corresponding reference temperature range is lower.

To analyze the reasons, we simulated the scattering cross-sections of the PRR spectral
lines at different temperatures. Then, by using the STF curves shown in Figure 2, we
calculated the spectral line intensities received by the high- and low-order channels. This
enabled us to determine the PRR spectral line intensity ratio (LIR) between the high- and
low-order channels at various temperatures. If the variation in the LIR with temperature is
greater within a certain range, it indicates a higher temperature sensitivity of the system in
that range, leading to more accurate temperature retrieval. To compare the LIR variations
across different temperatures, the first-order difference sequence of the LIR was calculated,
and the results are shown in Figure 16. It can be observed that, within the temperature
range of 200–350 K (including the temperature range studied), the lower the temperature,
the greater the first-order difference of the LIR, indicating a higher temperature sensitivity
of the PRR spectrum and, thus, resulting in fewer detection errors.
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4. Verification and Discussion

This paper presents a statistical comparison of the calibration effects of different CFs in
both calibration and extrapolation intervals through MC simulation experiments conducted
with various settings. Section 3 presents the statistical results of these simulations. This
section validates the simulation results using actual observational data and attempts to
discuss the factors that influence the calibration results.

4.1. Actual Data Verification

The raw data used were obtained by the PRR lidar system at the Beijing Institute of
Technology in Beijing, China. This system is used for nighttime tropospheric temperature
detection, with a range resolution of 30 m, and its main system parameters are consistent
with those in the simulations. Calibration was performed using radiosonde data from
station 54,511 in the southern suburbs of Beijing (39.93◦N, 116.28◦E), which launches
radiosondes twice daily (at 00:00 and 12:00 UTC). As the PRR lidar system operates only
at night, radiosonde data at 12:00 UTC (i.e., 20:00 Beijing time) were used for validation.
Echo signals of the closest 60 min interval were integrated (i.e., accumulating 72,000 pulses)
and smoothed using the VSW-M1 method, as described in this study. For systems with
a low laser power, a smaller fixed-size sliding window can be applied to micro-average
the signal intensity ratio Q in order to reduce statistical fluctuations and improve retrieval
accuracy [21]. However, as this study focused on comparing the calibration effects of
different CFs, a uniform processing method was sufficient. Hence, Q was not micro-
averaged here. The height range from above 1 km to an SNR of 10 before smoothing was
selected as the calibration interval. After calibration using CF0–9, the corresponding TRF
was used to retrieve temperature profiles. The results are shown in Figure 17.
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The temperature profiles for six days between 15 and 25 April 2024, retrieved using
CF0–9, are shown alongside the corresponding radiosonde data in Figure 17. As the
displayed temperature profiles are derived from the calibration data, the deviation from
the radiosonde temperatures represents the actual calibration error. Additionally, the
smaller the error, the better the calibration performance. The results indicate that the
calibration effects are similar within the same category of CFs. In the extrapolation interval,
however, the calibration (or temperature) results generated by different categories of CFs
are obviously different. When using 3c-BCF for temperature retrieval, solutions that lack
physical significance are often encountered. This issue is observed in four out of the six
days shown and is a common problem encountered in actual data inversion. Excluding
this case, the calibration errors in the extrapolation interval, ranked from smallest to largest,
are LCF < 3c-BCF < 3c-FCF < 4c-FCF. This is consistent with the results obtained from the
simulation experiments.

Figure 17 shows that, within the calibration interval, there is no significant difference
in the calibration (or temperature) results generated by the different CFs. To compare the
differences, the mean absolute deviation (MAD) between the inversion temperatures and
radiosonde temperatures at various range gates within the calibration interval is calculated
for each CF, and the results are shown in Figure 18. It can be seen that the average level of
actual calibration errors is similar to the statistical results obtained from the MC simulation
experiments in this study, and it is significantly greater than the absolute calibration errors
calculated without considering noise (as shown in Figure 3). The MAD generated by
same category of CFs is relatively close, while there are significant differences in the MAD
between different categories of CFs. Except for April 16, where the LCF exceeds 3c-BCF,
the ranking of the MAD from smallest to largest is as follows: 4c-FCF < 3c-FCF < LCF <
3c-BCF. These results further verify the reliability of the simulation results.

Each calibration process of the actual data can correspond to a single MC simulation
experiment, and the results have some randomness. Therefore, it is reasonable for some
actual data calibration results to not perfectly align with the statistical results of the simu-
lation experiment. Moreover, the actual detection process is affected by random noise in
addition to shot noise. Therefore, the calibration results of six different sets of actual data
can only verify some simulation results. However, they do offer support for the simulation
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results that we aim to verify. A significantly larger amount of actual data may be required
to verify more detailed patterns or comparative results.
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4.2. Discussion on the Causes of Calibration Errors

By analyzing the results, we posit that the calibration error generated by a CF is the
coupling result of several factors. These factors include shot noise, least square fitting,
the specific CF itself, and the temperature sensitivity of PRR spectral lines. The following
specifically analyzes the impact of these factors and discusses their coupling effects through
some examples.

4.2.1. The Impact of Shot Noise

In all MC simulation experiments in Section 3.3, the Q-T relationship curves for CFs
of the same category are very similar. Thus, CF1, CF5, and CF7 are used to represent
3c-BCF, 3c-FCF, and 4c-FCF, respectively, for an analysis. Without considering noise, the
fitting sample points (i.e., the corresponding distribution points between Q and T) and the
resulting Q-T relationship curves are shown in Figure 19a–d. When considering noise, an
arbitrary MC simulation experiment, without smoothing, is selected from Section 3.3.2,
and the results are shown in Figure 19e–h. The results indicate that, in the absence of
noise, the fitting sample points exhibit a near-linear distribution. However, under the
influence of noise, the sample points exhibit random dispersion, weakening the constraints
on the fitting results and causing the fitting curve to deviate from the ideal results obtained
without noise.

To assess whether the impact of shot noise on the fitting sample points and fitting
results is widespread, simulations were conducted with various levels of noise influence.
Different noise levels were simulated by adjusting the signal strength and smoothing
methods. The signal strength was altered through system parameter adjustments while
keeping the other settings consistent with those in the MC experiments shown in Figure 19,
and the results of simulations with signal magnifications of 20× and 40× are presented
in Figure 20. The results show that, as the signal strength increases, the divergence of
the fitting sample points gradually decreases, and the fitting curves gradually approach
the ideal result. However, even with a 40× signal amplification, where the SNR of the
fitting sample points is sufficiently high (well above actual data levels), the sample points
still exhibit random divergence, and the fitting curves remain deviated from the ideal
result to some extent. Figure 21 shows the results obtained using different smoothing
methods, specifically from a random simulation in Section 3.3.2 utilizing VSW-M1 and
21 FSW. Compared with the unsmoothed results (Figure 19e–h), both smoothing operations
reduce the degree of divergence among the sample points to some extent. However,
after smoothing, the distribution of the sample points resembles an irregular sawtooth
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pattern, which significantly deviates from the near-linear distribution observed under ideal
conditions. It can be seen that, regardless of whether the signal is enhanced or smoothing is
applied, the impact of shot noise persists and cannot be overlooked. Under the influence of
shot noise, the fitting sample points no longer exhibit near-linear distribution characteristics.
At this point, it may be necessary to use a least squares analysis to re-evaluate the calibration
performance of the different CFs.
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Figure 19. A comparison of the fitting sample points and the fitting results of different CFs, both
with and without considering noise. Panels (a–d) show the fitting results for CF0, CF1, CF5, and
CF7 without considering noise effects. Panels (e–h) present the fitting results for CF0, CF1, CF5,
and CF7 under the influence of noise, using an arbitrary MC simulation result from Section 3.3.2
that did not apply smoothing. The dark gray, light gray, red, and blue circles represent the samples
without noise, affected by overlap factors, used for calibration fitting, and outside the calibration
interval, respectively. The black, red, and blue curves denote the fitting results without noise, within
the calibration interval, and within the extrapolation interval, respectively.
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Figure 21. Same as Figure 19, but for different smoothing methods. Panels (a–d) show one instance of
an MC simulation using VSW-M1 from Section 3.3.2. Panels (e–h) show one instance of using 21 FSW
from the same section. In both cases, the results are presented for CF0, CF1, CF5, and CF7.

4.2.2. The Impact of Least Squares Fitting and Shot Noise

The least squares method [42] seeks the optimal function fit for data by minimizing
the sum of squared errors. This best function fit is for the data being fitted. The data in the
calibration interval are the data to be fitted. They are near linear without considering noise,
whereas shot noise introduces divergence and randomness into the data distribution. In this
context, fitting lnQ to 1/T using the FCF (including the LCF) can directly seek the minimum
residual of the target value T, and this is expected to generate smaller errors than fitting
1/T to lnQ and then calculating T using the BCF. Additionally, due to the divergence and
randomness of the fitting objects, a higher-order FCF should achieve smaller average errors.
Both simulated and actual data show that, within the calibration interval, the calibration
errors of various CFs are ranked as 4c-FCF < 3c-FCF < LCF < 3c-BCF. This is consistent
with the above analysis.

Additionally, due to the characteristics of the least squares method, linear fitting
results in a straight line (no inflection points), while a three-coefficient fit has one inflection
point, and a four-coefficient fit has two. The greater the number of inflection points, the
higher the sensitivity of the fitted curve to noise. Figures 19 and 20 show that, as the
SNR decreases (indicating a greater shot noise impact), the curvature of the fitted curves
of all the CFs, except for the LCF, becomes greater, with more noticeable changes as the
number of inflection points increases. In our simulations, the curvature of the 3c-BCF fitting
curve is consistently smaller, making it the closest to linear among the three nonlinear CFs.
Furthermore, generally, the curvature of the fitting curves for various CFs follows the order
of LCF < 3c-BCF < 3c-FCF < 4c-FCF. In an ideal (no-noise) situation, the fitting sample points
are nearly linear. Although the distribution is not normal due to the Poisson process, it still
centers on this near-linear relationship. Therefore, the greater the curvature of the fitted
curve, the more it deviates from the sample points in the extrapolation interval, which helps
to explain the different calibration results of the various CFs in the extrapolation interval.

The following discussion uses the statistical results obtained from the MC simulations.
Figure 22 shows the mean and standard deviation of the calibration errors generated using
CF0–9 from the MC simulations in Section 3.2. The mean error, obtained from multiple
MC experiments with the Poisson process added, differs from the error distribution in
the ideal (no-noise) case. Figure 3 shows the absolute calibration errors of the CFs in a
noise-free scenario: Linear CF errors are under 0.4 K, nonlinear CF errors are under 0.03 K,
and all CF error curves are close to 0. However, the statistical mean error curves lose these
characteristics and have one fewer inflection point than the absolute calibration error curves.
This is the manifestation of the impact of shot noise, which changes the fitting sample
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points and makes the fitting target relation deviate from the ideal scenario. Among the four
CF categories, the mean error curve of 3c-BCF is the closest to zero, possibly because it is
the closest to the GCF in form. However, it consistently generates the largest error standard
deviation, likely because it does not directly seek the minimum residual of T, leading to
greater variability and uncertainty in the calibration results for this category of CFs.
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4.2.3. Other Factors and Coupling Effects

For the system model in this paper, considering the impact of noise, the calibration
results of the CFs in the same category are considered to be similar. However, as shown in
Figures 5, 9, 12 and 15, there are still variations in the MMAE and MSDE among the CFs
in the same category. Specifically, for 3c-BCF, the sequence is generally CF1 < CF3 < CF4
< CF2; for 3c-FCF, the sequence is generally CF5 < CF6; and, for 4c-FCF, the sequence is
generally CF7 < CF9 < CF8. Additionally, the internal differences among the same category
of CFs in 4c-FCF are the smallest. Without noise, the ranking of and differences in the
absolute calibration errors (in Figure 3) among the CFs in the same category are consistent
with these findings. In the preceding analysis, it was suggested that the shot noise and least
squares method significantly impact the actual calibration results, potentially obscuring
the effects of the specific CFs themselves. Nevertheless, the differences observed among
the CFs in the same category reflect the impact of the specific CF itself, which, along with
other factors, contributes to the actual calibration errors.

In addition to the effects of the shot noise, least squares fitting, and specific CF itself
on the actual calibration errors discussed above, Section 3.3.3 discusses the impact of
PRR spectral temperature sensitivity. This suggests that the calibration error in the PPR
temperature measurement is the result of multiple interacting factors. As discussed above,
shot noise and least squares fitting are likely major influential factors. However, the
interaction and mutual constraints between these factors make it difficult to isolate and
analyze their individual effects on calibration results. Furthermore, while some examples
can demonstrate the effects of the specific CF itself and PRR spectral temperature sensitivity,
it remains difficult to analyze the extent of their impact separately. Shot noise and least
squares fitting appear to establish a significant baseline for calibration errors, upon which
other factors exert their influence. However, whether these factors are simply additive or
interact in more complex ways remains uncertain. It can be observed that the coupling
effects of various factors on calibration results are highly complex, which makes the
decoupling process difficult.
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5. Conclusions

The selection of CF significantly impacts the accuracy and stability of PRR lidar tem-
perature measurements. In this study, for the first time, a comparative analysis of the
calibration effects of 10 common CFs was conducted while considering the influence of
noise. The CFs were classified based on their functional forms and the number of calibra-
tion coefficients. To assess the impact of noise (including background light noise, dark
noise, and shot noise), Poisson processes were incorporated into the simulations, introduc-
ing randomness into the results of individual MC simulations. Therefore, multiple MC
simulations were conducted to statistically compare the calibration effects of the different
CFs. These simulation experiments were performed under various preset conditions to
obtain comparative results for different scenarios. Additionally, the simulated results were
verified using actual lidar detection data.

Through simulations and validation with actual data, we found the following: (1) The
calibration errors obtained statistically, considering the influence of noise, were closely
aligned with the actual calibration errors, both of which were significantly larger than
the absolute calibration errors calculated without considering noise. (2) Under the CF
classification in this study, the calibration effects were similar within the same CF category,
but differed significantly among categories, allowing for a comparison and the selection of
CFs by category. (3) In the extrapolation interval, the calibration effects of the CFs were
ranked as follows: LCF > 3c-BCF > 3c-FCF > 4c-FCF. (4) Within the calibration interval,
the calibration effects of the CFs were ranked as follows: 4c-FCF > 3c-FCF > LCF > 3c-BCF.
Consequently, from both simulation and practical perspectives, the LCF exhibited the best
extrapolation performance (i.e., it performed the best in the extrapolation interval), while
4c-FCF provided the best performance within the calibration interval.

Based on the results of this study, the following suggestions are proposed: If the
calibration results need to involve an extrapolation interval during inversion, the LCF is
recommended; otherwise, 4c-FCF is preferred. It is important to note that what is typically
considered as within the calibration interval may, in fact, involve some degree of extrapola-
tion due to shifts in the atmospheric temperature range to be detected and changes in the
echo signal conditions. However, if the extrapolation interval is relatively small compared
with the calibration interval, this situation can be approximately treated as one that does
not involve extrapolation. In the concrete implementation process, it is still necessary for
the calibration implementer to make a manual judgment. As previously discussed, shot
noise and least squares fitting are likely significant factors affecting calibration results, and
the comparison results between different CFs show low sensitivity to system parameters.
Therefore, the conclusions of this study should be applicable beyond our system. In the
process of using PRR lidar for temperature detection, the conclusions of this study can be
referenced to select CFs, so as to achieve more accurate and stable atmospheric vertical
temperature profile detections.

The actual data used for verification in this study are limited. More actual data will
be accumulated in the future to examine the relatively minor simulation results, such as
differences within the same CF category. Furthermore, this study included an in-depth
analysis of the coupling relationships among various influencing factors, revealing the
complexity of these interactions. In the future, quantitatively describing the impact of
different factors on calibration errors will be a highly challenging, but valuable task. This
will contribute to further improving calibration accuracy and, consequently, enhancing the
data quality of Raman temperature measurement lidar systems.
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