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Abstract: Most existing target recognition methods based on high-resolution range profiles (HRRPs)
use data from only one domain. However, the information contained in HRRP data from different
domains is not exactly the same. Therefore, in the context of inverse synthetic aperture radar (ISAR),
this paper proposes an advanced deep hybrid fusion network to utilize HRRP data from different
domains for ship target recognition. First, the proposed network simultaneously processes time-
domain HRRP and its corresponding time–frequency (TF) spectrogram through two branches to
obtain initial features from the two HRRP domains. Next, a feature alignment module is used to
make the fused features more discriminative regarding the target. Finally, a decision fusion module is
designed to further improve the model’s prediction performance. We evaluated our approach using
both simulated and measured data, encompassing ten different ship target types. Our experimental
results on the simulated and measured datasets showed an improvement in recognition accuracy of
at least 4.22% and 2.82%, respectively, compared to using single-domain data.

Keywords: target recognition; inverse synthetic aperture radar; high-resolution range profile;
spectrogram; deep hybrid fusion

1. Introduction

Due to its long-range capabilities and all-weather operation, radar automatic target
recognition (RATR) plays a crucial role in both military and civilian applications [1–6].
High-resolution range profile (HRRP) data can be viewed as the projection of scattering
point echoes along the radar’s line of sight [7]. These data encapsulate the size and
distribution of the target’s scattering points. Their acquisition process is straightforward,
and unlike inverse synthetic aperture radar (ISAR) images, the quality of HRRP data is
not compromised by focusing algorithms or non-cooperative target motion. As a result,
HRRP target recognition has been extensively studied and implemented in RATR systems.
The fundamental process of HRRP target recognition is illustrated in Figure 1.

Figure 1. Flowchart of HRRP target recognition.
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As shown in Figure 1, feature extraction plays a critical role in target recognition and
directly impacts the performance of the recognition system [8]. In HRRP target recognition,
there has been a significant shift from traditional feature extraction to the adoption of neural
networks for this purpose. Traditional feature extraction methods can be categorized into
those with physical interpretability [9] and those without [10–13]. Although these methods
have achieved high accuracy on their respective datasets, the extraction of features heavily
relies on the researchers’ expertise. Without such expertise, it is challenging to effectively
ensure the accuracy and stability of the algorithms.

Recently, many studies have utilized deep neural network methods to analyze HRRP
data, as deep learning can enhance system accuracy by eliminating the need for manual
feature extraction and providing better feature representation capabilities. Some of these
studies focus on time-domain HRRPs. For instance, a deep learning method for multi-static
radar target recognition was used to automatically extract features from HRRP data [14].
Considering the time-shift and azimuth sensitivity of HRRP data, a convolutional neural
network (CNN) with large convolution kernels and strides was proposed for target recogni-
tion [15]. Additionally, a stacked corrective autoencoder (SCAE) was used to extract features
from HRRP, with the average profile employed as a correction term [16]. An enhanced
variational autoencoder (VAE) was introduced to capture probabilistic latent features [17],
while a sparse encoder was used to learn sparse representations of high-dimensional data,
yielding better recognition performance than traditional autoencoders [18]. Furthermore,
some studies have focused on the temporal information in time-domain HRRPs and have
employed sequential models to address this issue [19–23]. Specifically, by considering the
temporal correlations within the range cells of input data, a combination of CNN, bidirec-
tional recurrent neural network (BiRNN), and attention mechanisms was used to improve
the robustness of target recognition [19]. Additionally, [21] proposed a deep learning model
combining CNN with transformers to recognize the spatiotemporal structures embedded
in HRRPs.

In contrast to the studies focusing on time-domain HRRPs, other studies have concen-
trated on the time–frequency (TF) spectrogram of one-dimensional HRRPs. For example,
a two-dimensional CNN was devised to extract spectrogram features from HRRP data [24].
A multi-scale CNN was proposed to address the challenging task of feature extraction
in space target recognition based on TF spectrograms, yielding improved recognition re-
sults [25]. Moreover, an attentional CNN model with multi-resolution spectrograms was
proposed for target recognition [26].

Although these recognition methods have potential in improving recognition per-
formance, they only utilize HRRP data from a single domain. In fact, due to different
generation mechanisms, HRRPs in different domains contain information about different
aspects of the target [8,27]. By integrating multi-domain information, it may be possible to
achieve a more comprehensive representation of the target. Recently, research has proposed
combining multi-domain HRRP data for target recognition. Specifically, a multi-input
convolutional gated recurrent unit (MIConvGRU) fusion model was introduced to fully
leverage three domains of HRRP data (i.e., time-domain HRRP, TF spectrogram, and power
spectral density (PSD)) for target recognition [6]. Experimental results demonstrated that
this method can significantly enhance radar target recognition performance. However,
it does not account for how correlation between initial features from different domains
might affect the discriminative ability of the fused features. Therefore, we aimed to design
a fusion method that fully considers this correlation to improve the system’s recognition
performance, while utilizing only two domains of HRRP data. Fusion recognition methods
can be classified by information abstraction level into data-level [28], feature-level [29],
and decision-level fusion [30]. Data-level fusion is the simplest but provides minimal
performance improvement. Decision-level fusion aggregates predictions from multiple
classifiers, adding diversity and increasing decision reliability. However, it operates at the
highest abstraction level, leading to some loss of important details. Feature-level fusion
is generally considered a more flexible and effective fusion approach [31], and it can com-
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pensate for the drawbacks of decision-level fusion. To leverage the advantages of both
feature-level and decision-level fusion, we propose using a hybrid fusion method for target
recognition, aiming to enhance the overall performance of the model.

In this paper, we propose a deep hybrid fusion network to effectively integrate HRRP
data from two domains for ship target recognition. First, in the feature extraction stage, two
CNNs independently extract features from the time-domain HRRP data and their corre-
sponding TF spectrogram. These extracted features serve as the initial input for subsequent
modules. Second, considering the correlation between the two modalities, we introduce
the supervised contrastive learning (SupCon) loss to align the initial features from both do-
mains, with the expectation that the fused and aligned features will make the samples more
discriminative. Finally, a neural network-based decision fusion module is implemented
following the feature alignment module. This hybrid fusion strategy is expected to further
improve the model’s recognition performance. The primary contributions of this work can
be summarized as follows:

(1) We explored the effectiveness of combining time-domain HRRP data and their TF
spectrogram for ship target recognition. We propose a deep hybrid fusion method to obtain
a more comprehensive and discriminative representation of the target, thereby achieving
satisfying recognition performance.

(2) In the feature-level fusion part, we design a feature alignment module based on
SupCon loss to better fuse the features from the two domains. Compared to traditional
feature-level fusion methods, the alignment module fully takes into account the correlation
between the two modalities and its impact on the discriminability of the fused features,
thereby improving recognition performance.

(3) In the decision-level fusion part, a neural network-based decision fusion module is
created to enhance recognition accuracy and reliability. The method’s effectiveness was
validated with both simulated and measured data.

This paper is organized as follows: Section 2 covers data formats and preprocessing.
Section 3 explains the proposed method. Section 4 validates the method with simulated and
measured data. Section 5 discusses results and future work. Section 6 concludes the paper.

2. Data Preprocessing
2.1. Time-Domain HRRP

The time-domain HRRP data used in this study consist of multiple HRRPs obtained
before ISAR imaging. The reason for this approach is twofold: first, the primary focus of this
paper is on using multi-domain HRRPs for fusion target recognition; second, the recognition
process does not require azimuth focusing and is not affected by ISAR image quality.
We perform some preprocessing steps to address the three sensitivities of HRRP: (1) we
first perform envelope alignment on these HRRPs to overcome the time-shift sensitivity
of HRRPs [32]. (2) Given the aspect sensitivity of HRRPs [16,33], studies indicate that
the average HRRP yields a smoother and more concise signal shape than individual
HRRPs, enhancing the depiction of a target’s scattering characteristics in a specific aspect
frame [3,34,35]. From a signal processing viewpoint, the average profile consistently
represents the target’s physical structure within a frame.This approach effectively reduces
speckle effects and alleviates issues caused by noise spikes and amplitude variations.
Therefore, we decided to compute the average profile of the aligned HRRP sequence.
According to the literature [7], the average profile is defined as follows:

xAP =

[
1
M

M

∑
i=1

|xi1|,
1
M

M

∑
i=1

|xi2|, . . . ,
1
M

M

∑
i=1

|xir|
]

(1)

where {xi}M
i=1 represents an envelope-aligned complex-valued HRRP sequence, xi =

[xi1, xi2, . . . , xir] is the ith sample in the HRRP sequence, and r is the HRRP sample dimen-
sion. Since the aligned HRRP sequence remains in a complex form, and what we commonly
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refer to as a time-domain HRRP is in a real form, we need to perform a modulus operation
on each sample in the sequence before obtaining the average profile.

Additionally, we perform amplitude normalization on the obtained average profile to
address the amplitude-scale sensitivity. Our normalization calculation method is as follows:

xAP =
xAP

max(xAP)
(2)

After the above operations, the profile xAP is used as the final representation of the
time-domain HRRP for subsequent processing.

2.2. Spectrogram

For the spectrogram, we first use TF analysis to convert xAP from the one-dimensional
time-domain to the two-dimensional time–frequency domain. Short-Time Fourier Trans-
form (STFT) captures moment-specific signal characteristics by analyzing a segment of
the signal within a time window. For a discrete signal x(k), its STFT can be expressed
as follows:

STFT(m, ω) =
∞

∑
k=−∞

x(k)w(k − m)e−jωk (3)

where x(k) is the signal to be transformed, and w(·) is the time window function. After ob-
taining the STFT representation of the signal x(k), its spectrogram is the squared magnitude
of the STFT:

spectrogram{x(k)}(m, ω) = |STFT(m, ω)|2 (4)

As indicated by the definition of the spectrogram, this representation captures the
local characteristics of the HRRP within small distance units. Compared to the time-
domain HRRP, it better describes variations in the HRRP. To eliminate the effect of scale,
we also normalize the obtained spectrogram. The final spectrogram is then used for further
processing. Figure 2 illustrates the processing of the time-domain HRRP and its amplitude-
normalized spectrogram representation. After preprocessing, the time-domain HRRP and
its spectrogram are treated as two distinct modalities for the subsequent fusion process.
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Figure 2. Processing of a time-domain HRRP and its spectrogram. (a) Aligned multiple HRRPs;
(b) average profile; (c) normalized average profile; (d) normalized spectrogram.
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3. The Proposed Method

In this section, we introduce the proposed deep hybrid fusion network for multi-
domain HRRP target recognition. As illustrated in Figure 3, the proposed method’s
framework can be divided into three main modules: feature extraction, feature align-
ment, and decision fusion. In the feature extraction module, the preprocessed time-domain
HRRP and its corresponding spectrogram, as described in Section 2, are fed into CNNs
to extract initial features, which then serve as inputs for the subsequent modules. Then,
we align the two sets of initial features to enhance their discriminative power when fused.
Finally, the two aligned initial features and their integrated representations are input into
the following decision fusion module.

Figure 3. Framework of the proposed deep hybrid fusion network. In the figure, F1 and F2 denote
the initial features extracted from the two domains of HRRP data using CNNs. F1

′ and F2
′ are the

aligned features obtained using our method. F′ is the integrated feature obtained by an element-wise
addition of F1

′ and F2
′. These three features together contribute to the decision fusion process.

3.1. Initial Feature Extraction

In deep neural networks, CNNs are particularly effective in reducing network com-
plexity and enhancing generalization ability due to their characteristics of local connections
and weight sharing [36–41]. Therefore, the proposed method utilizes CNNs to obtain initial
features from both the time-domain HRRP and its spectrogram. It is worth noting that
the preprocessed time-domain HRRP represents the target in one dimension, while the
spectrogram is a two-dimensional representation. Consequently, a one-dimensional CNN
is used for extracting initial features from the time-domain HRRP, while a two-dimensional
CNN is designed to extract features from the spectrogram.

The detailed architecture of the two CNNs is depicted in Figure 4. For the spectrogram
CNN, “Conc.128 × 5 × 5/BN/ReLU” indicates 128 feature maps with a kernel size of 5 × 5,
followed by batch normalization (BN) [42] and a rectified linear unit (ReLU) activation
function [43]. “Dropout” signifies the use of dropout regularization [44]. “Max pool 2 × 2”
represents max pooling with a pool size of 2 × 2, while “Fully connected 2560 × 1000”
denotes a fully connected layer with 2560 input units and 1000 output units. The softmax
layer then produces the predicted labels. The CNN for time-domain HRRP data has a
similar layout, with the convolutional and pooling layers utilized in one dimension rather
than two.

For both networks, the output from the first fully connected layer is considered the
initial feature for each modality. In our approach, if the dimensions of the initial features
from the two modalities are different, we need to transform them to the same dimension
for further processing. The HRRP branch takes the preprocessed HRRP, xAP, as input to
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extract the initial feature h. Assuming fH represents the CNN for HRRP with parameters
ψH , the extraction of the initial HRRP feature can be expressed as follows:

h = fH(xAP; ψH) (5)

Conv1D.128*5/BN/ReLU 

Max-Pool 1×2

Dropout

Conv1D.64*3/BN/ReLU 

Dropout

Fully connected/2560*1000

ReLU/Dropout

Output

Max-Pool 1×2

Conv1D.64*3/BN/ReLU 

Dropout

Max-Pool 1×2 Conv1D.128*3/BN/ReLU 

Max-Pool 1×2

Fully connected/1000*10

(a)
(b)

Figure 4. (a) 1D-CNN for HRRP; (b) CNN for spectrogram.

Similarly, let xs denote the preprocessed spectrogram and s represent the initial ex-
tracted features from the spectrogram. The extraction process for the initial spectrogram
features can be formally expressed as follows:

s = fS(xs; ψS) (6)

3.2. Feature Alignment

Our task is to recognize ship targets by combining a time-domain HRRP and its spec-
trogram. Since these two representations are generated through different mechanisms,
they encapsulate distinct information about the target. We hypothesize that they possess a
certain degree of complementarity, which forms the basis for our combined recognition
approach. By leveraging this complementarity, we aim to enhance the model’s predictive
performance. In feature-level fusion methods based on deep neural networks, the most
common techniques are concatenation and summation [45], as shown in Figure 5. Concate-
nation involves directly merging the two features, resulting in a feature with a dimension
equal to the sum of the dimensions of the original features. Summation, on the other hand,
adds the two features element-wise, resulting in a fused feature with the same dimension
as the original features.
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Although these two methods, along with some existing weighted feature fusion
methods, encompass all the information from the features being fused, they might overlook
the correlation between the initial features of the two modalities. This could potentially
limit the improvement in sample discriminability. In our task, the two modalities are
HRRP and its corresponding spectrogram, which represent two different aspects of the
target. As a result, the correlation between these two features is expected to be quite low.
In this scenario, the feature distributions of the two modalities in the feature space might
be disordered. Specifically, the feature distributions of the same category from the two
modalities might not be close to each other. Conversely, the initial feature distributions of
different categories from the two modalities might be close or even overlap, as shown in
the left part of Figure 6. Directly utilizing the aforementioned fusion methods in such cases
can result in the fused features containing similar information from different categories,
leading to some ambiguity with other categories. Even though the two modalities’ features
have a certain degree of complementarity, this ambiguity can restrict the performance
improvement from the fusion. To address this issue, if we can minimize the inclusion of
similar information from other classes in the fused features, we can reduce the ambiguity
to some extent, thereby increasing the discriminability of the samples and improving the
model’s predictive performance.

(a)
(b)

Figure 5. Classic feature-level fusion methods. (a) Element-wise addition; (b) Concatenation.

Therefore, we propose a feature alignment method to solve this problem. We aim
for feature alignment to make the distributions of the two modalities of the same class as
close as possible, which can reduce the disorder and, consequently, the ambiguity in the
fused features. In the field of transfer learning, the maximum mean discrepancy (MMD)
loss [46,47] is frequently utilized to assess the distance between multi-domain feature
distributions and has demonstrated outstanding performance. We aimed to use the MMD
loss function during training to constrain the feature distributions of the two modalities to
become closer, thereby achieving alignment. However, due to the low correlation, the fea-
ture distributions of the two modalities from different classes might be close to or even
overlapping each other. Since the MMD loss function is a global unsupervised alignment
method, it could lead to the “misalignment” phenomenon illustrated in Figure 6 [4]. This
phenomenon, if it occurs, could be detrimental or even harmful to reducing the ambiguity
in the fused features.

Figure 6. Misalignment in MMD-based feature alignment.
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To tackle this problem, this paper introduces SupCon loss [48] as an innovative solution.
Supervised contrastive learning is a specialized form of contrastive learning that uses label
constraints to incorporate a large number of positive and negative sample pairs during
the learning process. A positive sample pair consists of two samples that share the same
class label, while a negative sample pair comprises two samples with different class labels.
It has been shown to enhance the performance of a classification model by learning rich
representations of the samples. For a given sample embedding zi, we refer to the samples
in the batch that belong to the same class as positive samples zp. The set of positive samples
is denoted as Pi. Given a sample embedding and its positive sample set, the SupCon loss is
defined as follows:

LSupCon
i (zi, Pi) = − 1

|Pi| ∑
zp∈Pi

log
exp(sin(zi, zp)/τ)

∑j ̸=i exp(sin(zi, zj)/τ)
(7)

where j represents the index traversing all samples, and τ is a scaling parameter. The Sup-
Con loss can be intuitively understood as the average loss defined over each positive pair.
In our task, the positive pairs include samples of the same modality and class, as well as
samples of the same class but different modalities. In fact, we can rewrite Equation (7) in
the form of a combination of two terms as follows:

LSupCon
i (zi, Pi) =

1
|Pi| ∑

zp∈Pi

−(zT
i · zp)/τ︸ ︷︷ ︸

Tightness

+ log ∑
j ̸=i

exp
(
(zT

i · zj)/τ
)

︸ ︷︷ ︸
Contrast

 (8)

We reformulate the SupCon loss into a combination of a tightness term and a contrast
term, which elucidates its fundamental purpose. The tightness term aims to maximize
the similarity among samples within the same class, thereby promoting the alignment of
same-class samples, including those from different modalities in our task. Conversely,
the contrast term aims to minimize the similarity between samples of different classes,
driving them further apart. This process can be depicted as shown in Figure 7.

modality A modality A

modality B modality B

Figure 7. Process of feature alignment.

Compared to the MMD-based alignment method, the SupCon loss offers the following
advantages: (1) it uses label constraints for alignment, which can prevent misalignment;
(2) the contrast term further reduces the inclusion of information from other classes in
the fused features, thereby decreasing ambiguity and enhancing the discriminability of
the samples.
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In a batch of samples, the overall SupCon loss is the average of the losses of the
N samples:

LSupCon =
1
N

N

∑
i=1

LSupCon
i (9)

3.3. Decision Fusion

The core idea of decision fusion is to enhance the overall system’s accuracy, stability,
and robustness by aggregating the results from multiple classifiers. In complex real-world
scenarios, the outcome of a single classifier is often affected by various external factors,
leading to significant risks and uncertainties in target recognition results. Decision-level
fusion methods analyze and combine the outputs of multiple classifiers, mitigating the
impact of any single classifier’s errors and thereby improving target recognition accuracy.

Therefore, this article adopts a neural network-based decision fusion method to in-
tegrate the results of multiple classifiers to enhance model performance. The two initial
features described in Equations (5) and (6), after aligning the features, are referred to as h′

and s′, respectively. The integrated feature obtained by the element-wise addition of the
two is

m = h′ ⊕ s′ (10)

For decision fusion, we construct three base classifiers f m
c : xm

n → yn, m = 1, 2, 3. All
three base classifiers are composed of fully connected layers, with network parameters
denoted as ψcm, m = 1, 2, 3. Their inputs are h′, s′, and m, respectively. Assuming the
prediction vectors of the three classifiers are

pm = (pm
1 , pm

2 , . . . , pm
k ), m = 1, 2, 3 (11)

where k represents the total number of classes in the classification task, and pm
k is the softmax

probability of classifier f m
c for the kth class. After obtaining the three initial decision vectors,

we concatenate them and input the combined vector into a meta classifier f o
c to obtain the

final prediction vector po. This process can be expressed by the following equation:

po = f o
c

([
p1, p2, p3

]
; ψco

)
(12)

where ψco denotes the parameters of the meta-classifier network. The entire decision fusion
process is illustrated in Figure 8. It is important to note that the three initial classifiers must
have good classification performance to serve as a solid foundation for decision fusion.
Therefore, during training, we impose a cross-entropy loss constraint on the three base
classifiers to ensure their basic classification performance. This can be expressed with the
following equation:

LB = Lce1 + Lce2 + Lce3 (13)

where Lce1, Lce2, Lce3 are the cross-entropy loss functions for the three base classifier branches,
respectively. Additionally, to ensure that the final integrated decision vector is effective for
our task, we also impose a cross-entropy loss constraint on it, denoted as LT . Therefore,
the total loss function of the proposed deep hybrid fusion network mainly consists of three
parts. The first part is LSupCon, used by the feature alignment module. The second part is LB,
which ensures the performance of the three base classifiers. The final part is the task-specific
loss function LT . The overall loss function is as shown in the following equation:

Ltotal = αLSupCon + βLB + LT (14)

where α and β are adjustable hyperparameters used to balance these three components.
To present our proposed method more clearly, we describe the training process. We train
the fusion model using Adam optimizer, with a learning rate of 0.001 and a batch size of 16.
The overall training procedure is outlined in Algorithm 1.
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Figure 8. Flowchart of the proposed decision fusion module.

Algorithm 1 Training Process of the Proposed Method

1. Set the network architecture for the proposed method, including the number of
fully connected layers, the number of units in each fully connected layer, the batch size,
and other hyperparameters.
2. Initialize the parameters for the two feature extraction networks ψH , ψS; the base
classifier parameters ψcm, m = 1, 2, 3 ; and the meta-classifier parameters ψco.
3. while not converged do
4. Randomly sample a batch of examples {xi}B

i=1 and their corresponding labels {yi}B
i=1

from the entire dataset.
5. Following the preprocessing steps outlined in Section 2, obtain the preprocessed
time-domain profile xi

AP and spectrogram xs
i for each sample.

6. Use xi
AP and xs

i as inputs to obtain the initial features of the two modalities, hi and si,
through Equations (5) and 6, respectively.
7. Using {si}B

i=1, {hi}B
i=1, and {yi}B

i=1, compute LSupCon through Equations (8) and (9).
8. In the decision fusion section, obtain the prediction vector po using Equations (10)–(12).
9. Calculate the total loss Ltotal and update the network parameters.
10. end while

4. Experiments and Results
4.1. Simulated Data

In our research, we exclusively utilized HRRP data obtained prior to ISAR imaging to
validate the efficacy of joint multi-domain HRRPs in target recognition. To more intuitively
describe the target’s motion and posture, we analyze the simulation data from the perspec-
tive of ISAR images. For the simulation data, we designed 3D models of ten types of ships
to create the dataset. It is important to note that each ship category includes two pitch
angles for top-view images and two azimuth angles for side-view images. For top-view
images, each pitch angle features two azimuth movement patterns. An ISAR image is
generated at regular angle intervals within each movement pattern, producing 25 images
per movement pattern. Consequently, each pitch angle results in 50 images, with a total
of 100 images for both pitch angles combined. The side-view images follow a similar
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pattern, resulting in 100 top-view images and 100 side-view images for each category,
considering the two pitch angles and two azimuth angles. The specific imaging parameters
are presented in Table 1. In this table, T1 represents target 1, and the geometric relation-
ship between azimuth and pitch angles is illustrated in Figure 9. The radar simulation
parameters are detailed in Table 2, which lists the radar’s center frequency, bandwidth,
pulse repetition frequency (PRF), and accumulation time. The pitch angle θ is defined as
the angle between the positive direction of the z-axis and the target, while the azimuth
angle φ is defined as the angle between the projection on the xOy plane and the positive
direction of the x-axis, with the ship’s bow pointing in the positive direction of the x-axis.
Ideally, the typical preprocessed HRRP data of the ten target classes are shown in Figure 10,
with their corresponding spectrograms depicted in Figure 11.

Table 1. Detailed motion parameters of ship targets.

Top-View Side-View

Target T1 T2–T10 Target T1 T2–T10
Pitch angle (θ) 80°/85° 80°/85° Azimuth angle (φ) 10°/15° 10°/15°
Initial azimuth angle (φ) 5° 5° Initial pitch angle (θ) 40° 40°
Azimuth motion 1 0.04°/s 0.27°/s Pitch motion 1 0.08°/s 0.51°/s
Azimuth angle interval 1 0.02° 0.132° Pitch angle interval 1 0.04° 0.240°
Azimuth motion 2 0.08°/s 0.54°/s Pitch motion 2 0.16°/s 1.01°/s
Azimuth angle interval 2 0.04° 0.211° Pitch angle interval 2 0.08° 0.384°

Table 2. Settings of radar parameters for simulated data.

Parameter Value

Center frequency 8.075 GHz
Bandwidth 150 MHz

PRF 200 Hz
Observation time 0.32 s

Figure 9. Geometric relations.



Remote Sens. 2024, 16, 3701 12 of 19

(a) T1 (b) T2 (c) T3 (d) T4 (e) T5

(f) T6 (g) T7 (h) T8 (i) T9 (j) T10

Figure 10. Preprocessed time-domain HRRPs of targets in the simulated dataset.

(a) T1 (b) T2 (c) T3 (d) T4 (e) T5

(f) T6 (g) T7 (h) T8 (i) T9 (j) T10

Figure 11. Spectrograms corresponding to the targets’ time-domain HRRPs.

To evaluate the proposed method’s performance across different signal-to-noise ratios
(SNRs), Gaussian noise with SNRs of 10 dB, 5 dB, and 3 dB was added to the original echoes.
For each SNR dataset, we used the top-view data corresponding to a pitch angle of 80°
and the side-view data corresponding to an azimuth angle of 10° as the training samples,
with the rest used as test samples. The recognition accuracy of the proposed method is
shown in Table 3. Additionally, we provide the confusion matrices for the three SNR levels,
as shown in Figure 12.

Table 3. Recognition accuracy of the proposed method under different SNRs.

SNR 3 dB 5 dB 10 dB

Acc. 91.31% 93.08% 94.23%
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(a) 3 dB (b) 5 dB (c) 10 dB

Figure 12. Confusion matrices of the proposed method under different SNRs.

We also conducted comparative experiments using different fusion techniques. In these
experiments, the initial feature extraction network structure, batch size, learning rate,
and other hyperparameters were kept consistent for fairness. The methods compared in-
clude two classical feature-level fusion techniques: the first concatenates the initial features
of the two modalities before inputting them into the classifier, while the second adds the
corresponding elements of the initial features before sending them to the prediction layer.
Additionally, we compared two weighted methods that can learn the contribution of each
modality: the extended-GRU (Ex-GRU) fusion method [49] and the attention mechanism
(AM)-based fusion method [31]; as well as the MMD-based feature alignment method
(MMD_align). Another method under comparison is the MIConvGRU, which combines
HRRP data from three domains. Furthermore, to verify the effectiveness of the decision
fusion module, we also conducted an experiment using only the proposed feature align-
ment method (Only_align). Comparative experiments were conducted under different
SNRs, and the recognition performance of each method is shown in Table 4 and Figure13.
From Figure 13, it can be seen more intuitively that the proposed method has a better recog-
nition performance compared to previous fusion methods. Notably, our alignment method
outperforms the MMD-based feature alignment method in target recognition. Furthermore,
compared to the MIConvGRU approach that combines HRRP data from three domains,
our method achieves better recognition performance while using only two domains. Addi-
tionally, combining feature alignment with decision fusion for target recognition yields a
higher recognition compared to using feature alignment alone.

Table 4. Comparison of different methods with the proposed method on the simulated dataset.

SNR 3 dB 5 dB 10 dB

Concatenation 88.16% 89.90% 90.75%

Addition 88.23% 89.39% 90.93%

Ex-GRU [49] 88.65% 90.05% 90.60%

AM [31] 87.89% 90.21% 91.27%

MMD_align 87.14% 87.94% 89.38%

MIConvGRU [6] 88.18% 90.61% 92.09%

Only_align 90.79% 92.67% 93.35%

Ours 91.31% 93.08% 94.23%
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Figure 13. Comparison of different methods with the proposed method on the simulated dataset.

4.2. Measured Data

We additionally confirmed the proposed method’s effectiveness with measured data
obtained via an X-band radar. Like the simulated dataset, the real measured multi-domain
HRRP data included preprocessed time-domain HRRPs and spectrograms captured before
ISAR imaging. Additionally, the measured data covered ten target categories, with data
collected over various periods for each category. Figure 14 shows the typical preprocessed
time-domain HRRPs for these ten target categories, while Figure 15 displays the corre-
sponding spectrograms. In this experiment, we randomly selected 50 samples from each
category as training samples, with the remaining samples used for testing. The number of
training and testing samples for each of the ten target categories is detailed in Table 5.

Table 5. Details of Training and Test samples for the Ten-target measured Dataset.

Target T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Training Samples 50 50 50 50 50 50 50 50 50 50
Test Samples 450 131 230 435 299 120 128 49 56 89

(a) T1 (b) T2 (c) T3 (d) T4 (e) T5

(f) T6 (g) T7 (h) T8 (i) T9 (j) T10

Figure 14. Preprocessed time-domain HRRPs of targets in the measured dataset.
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(a) T1 (b) T2 (c) T3 (d) T4 (e) T5

(f) T6 (g) T7 (h) T8 (i) T9 (j) T10

Figure 15. Spectrograms corresponding to the targets’ time-domain HRRPs.

Similar to the experiments conducted on the simulated dataset, we also performed a
series of comparative experiments on the measured dataset. The comparison methods used
are the same as those applied to the simulated dataset. The recognition results, shown in
Table 6, demonstrate that our proposed method achieves a higher recognition rate, further
validating its effectiveness. Similar to the results on simulated data, our alignment method
surpasses the MMD-based feature alignment method in target recognition. Moreover,
compared to the MIConvGRU approach that uses HRRP data from three domains, our
method delivers better recognition performance with only two domains. Additionally,
integrating feature alignment with decision fusion leads to higher recognition rates than
using only feature alignment.

Table 6. Comparison of different methods with the proposed method on the measured dataset.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Accuracy (%)

Concatenation 99.11 90.08 95.65 99.77 92.64 100 93.58 100 76.79 75.28 95.23
Addition 93.11 93.89 97.39 99.77 96.99 98.33 94.04 93.88 55.36 92.13 94.94

Ex-GRU [49] 92.00 98.47 95.22 95.63 94.98 99.17 95.41 100 85.71 74.16 93.98
AM [31] 97.33 100 95.22 98.39 96.99 95.00 91.74 95.92 85.71 60.67 94.80

MMD_align 95.11 95.42 96.52 94.71 91.30 95.83 93.12 100 76.79 78.65 93.40
MIConvGRU [6] 97.11 99.23 99.13 99.54 95.98 99.17 92.20 87.76 80.36 73.03 95.71

Only_align 98.00 100 95.22 97.47 98.66 97.50 98.17 95.92 82.14 79.78 96.53
Ours 98.89 98.47 96.96 99.77 99.67 100 96.79 100 64.29 89.89 97.49

4.3. Ablation Study

In this section, to validate the superiority of the proposed fusion method combining
time-domain HRRPs and spectrograms over single-modality recognition, we conducted
ablation experiments on both simulated and measured data under different SNRs. The fea-
ture extraction networks for the two modalities are as shown in Figure 4. The experimental
results are presented in Table 7. From these results, it is evident that when only a single
modality is used for target recognition, the recognition rates are relatively low, regardless
of whether the data are measured or simulated. In contrast, our proposed fusion method,
which integrates both modalities, consistently yields a higher recognition accuracy.

To more intuitively demonstrate the effectiveness of the proposed method compared
to single-modality recognition, we used t-distributed stochastic neighbor embedding (t-
SNE) [50] to visualize the features extracted by the proposed fusion method and the two
single-modality features in the test set of the measured data. The results are shown in
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Figure 16. Qualitatively, the figure shows that the proposed fusion method yields a better
feature distribution, further confirming the effectiveness of the proposed fusion method
over single-modality recognition.

Table 7. Ablation study.

HRRP Spectrogram Proposed Fusion Method Accuracy (%)

✓ × × 86.88
3 dB × ✓ × 86.57

✓ ✓ ✓ 91.31

✓ × × 88.70
5dB × ✓ × 88.86 Simulated

✓ ✓ ✓ 93.08

✓ × × 89.79
10 dB × ✓ × 88.93

✓ ✓ ✓ 94.23

✓ × × 94.67
× ✓ × 93.92 Measured
✓ ✓ ✓ 97.49

(a) (b) (c)

Figure 16. Visualization of three features in the test set of measured data: (a) HRRP; (b) Spectrogram;
(c) Features obtained using the proposed fusion method. In these figures, the different colors represent
samples from different categories.

5. Discussion
5.1. Comparison

Table 4 and Figure 13 show the comparison results between our proposed method
and other fusion methods on the simulated data. Meanwhile, the comparison results on
the measured data are shown in Table 6. From these tables, it is evident that our proposed
method consistently outperforms other methods. The comparison experiments can be
divided into two parts. First, when only using our proposed alignment method, due to
our consideration of reducing the ambiguity of fused features, our method already shows
certain superiority compared to some previous fusion methods. This can be seen from the
first to the sixth rows of Tables 4 and 6. Second, when we further applied a decision fusion
module, the recognition accuracy improved even more. This is because decision fusion
can integrate the output results of multiple classifiers to obtain more stable discrimination
results, as shown in the sixth and seventh rows of Tables 4 and 6.

5.2. Impact of Feature Alignment on Reducing Ambiguity

As mentioned in Section 3, our proposed feature alignment fusion method aims pri-
marily to reduce the ambiguity of fused features. In this section, we quantitatively evaluate
the impact of our feature alignment method on reducing ambiguity. When the ambiguity of
fused features is minimized, their discriminability should be maximized. We measure this
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discriminability using the ratio of inter-class distance to intra-class distance (r) [8]. A larger
ratio indicates higher discriminability, implying lower ambiguity. We conducted a quan-
titative analysis of the various comparison methods on the test set of the measured data,
and the results are shown in Figure 17. The x-axis in the figure represents various fusion
methods, while the y-axis indicates the ratio of inter-class distance to intra-class distance for
the resulting fused features. From the figure, it is evident that the fused features obtained
through our proposed alignment method have the highest discriminability compared to
those obtained through other fusion methods. This demonstrates the effectiveness of our
feature alignment method in reducing the ambiguity of fused features.

Figure 17. Comparison of ratio of inter-class distance to intro distance with different methods.

5.3. Future Work

HRRP data often contain non-target areas, and when these regions are contaminated
with noise, it can negatively affect recognition accuracy. This issue requires careful attention,
as most current methods ignore the impact of redundant information in non-target areas
on target recognition. In future research, we plan to focus on tackling this challenge.

6. Conclusions

In this study, we investigated the effectiveness of combining a time-domain HRRP
with its spectrogram for ISAR ship target recognition. We introduced a hybrid deep fusion
method that integrates these two modalities through feature alignment and decision fusion.
At the feature-level fusion stage, the correlation between the two modalities and its effect
on the ambiguity of the fused features were considered, and the alignment module was
proposed to enhance the discriminability of the fused features, thereby improving recog-
nition performance. Additionally, to leverage the advantages of hybrid fusion, a neural
network-based decision fusion method was employed after the feature alignment module
to further enhance prediction performance. The experimental validation on both simu-
lated and measured datasets demonstrates the effectiveness of our approach in ship target
recognition, highlighting its potential for practical applications.
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