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Abstract: In this work, the airborne Synthetic Aperture Radar (SAR) infrastructure developed at the
Institute for Electromagnetic Sensing of the Environment (IREA) of the National Research Council
of Italy (CNR) is described. This infrastructure allows IREA-CNR to plan and execute airborne
SAR campaigns and to process the acquired data with a twofold aim. On one hand, the aim is to
develop research activities; on the other hand, the aim is to support the emergency prevention and
management activities of the Department of Civil Protection of the Italian Presidency of the Council
of Ministers, for which IREA-CNR serves as National Centre of Competence. Such infrastructure
consists of a flight segment and a ground segment that include a multi-frequency airborne SAR
sensor based on the Frequency-Modulated Continuous Wave (FMCW) technology and operating in
the X- and L-bands, an Information Technology (IT) platform for data storage and processing and
an airborne SAR data processing chain. In this work, the technical aspects related to the flight and
ground segments of the infrastructure are presented. Moreover, a discussion on the response times
and characteristics of the final products that can be achieved with the infrastructure is provided
with the aim of showing its capabilities to support the monitoring activities required in a possible
emergency scenario. In particular, as a case study, the acquisition and subsequent interferometric
processing of airborne SAR data relevant to the Stromboli volcanic area in the Sicily region, southern
Italy, are presented

Keywords: Synthetic Aperture Radar (SAR); airborne SAR; airborne infrastructure; MIPS sensor

1. Introduction

Nowadays, the attention paid to environmental monitoring is increasingly growing,
in addition to requests for large-scale measurements of parameters describing physical
phenomena occurring on the Earth’s surface. In this context, Synthetic Aperture Radar
(SAR) systems [1,2] are particularly suitable to respond to these ever-increasing needs.
Thanks to their all-weather monitoring capability and the availability of advanced SAR
techniques [3–5], it is possible to recover the physical properties of illuminated areas, re-
trieve the Earth surface elevation profile, measure ground deformation and so on. These
are the main reasons why the number of private and public investments made in the
development and exploitation of SAR systems and infrastructures [6–15] is continuously in-
creasing. Indeed, the exploitation of different operational frequencies and electromagnetic
polarizations, simultaneous high-resolution and wide swath capabilities and advanced
imaging modes [16,17] are among innovative features of the latest SAR monitoring sys-
tems. Satellites [13–15], airplanes [18–23], helicopters [24] and drones [25,26] are the most
common platforms used to mount SAR systems. Typically, airborne platforms are used
as test benches for spaceborne technological developments, since they allow for low-cost
experiments and operations. Moreover, airborne platforms can fly with no constraints on
flight paths and revisit times, thereby overcoming some monitoring limits that typically
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characterize the spaceborne SAR observation network. In particular, airborne SAR systems
guarantee a much quicker response time for the observation of sudden extreme events,
such as flooding, earthquakes, volcanic eruptions and so on. Moreover, airborne SAR
antennas are smaller than those used in spaceborne platforms due to the significantly lower
operational altitude of the sensor. Therefore, for a given acquisition mode, the azimuth
resolution achievable with airborne SAR systems is finer than that of the spaceborne SAR
systems [1]. On the other hand, spaceborne SAR systems guarantee a much wider spatial
coverage due to their much higher operational altitude [2]. Within this framework, an air-
borne SAR infrastructure is currently available at the Institute for Electromagnetic Sensing
of the Environment (IREA) of the National Research Council of Italy (CNR). This infrastruc-
ture, which was developed for scientific purposes, also plays a key role in supporting the
emergency prevention and management activities of the Department of Civil Protection
of the Italian Presidency of the Council of Ministers, for which IREA-CNR serves as the
National Centre of Competence.

In this work, the IREA-CNR airborne SAR infrastructure is presented. It consists of
a flight segment and a ground segment. More specifically, the flight segment includes
an airborne SAR system, namely, the Multiband Interferometric and Polarimetric SAR
(MIPS) sensor [27]. This sensor is based on the Frequency Modulated Continuous Wave
(FMCW) technology [28] and operates in two different frequency bands. In particular, it
is equipped with a single-pass Interferometric SAR (InSAR) configuration at X-band or
with a full polarimetric configuration at L-band. Thanks to its limited weight and size,
the MIPS sensor can be mounted even on board small aircrafts. The ground segment of
the infrastructure includes an Information Technology (IT) platform for data storage and
processing, the SAR data processing chain [1,29,30] jointly developed by IREA-CNR and
University “Parthenope”. Beside, a series of supporting activities are carried out before and
during the survey campaigns [21,23] to guarantee their successful execution. In this work,
the flight and ground segments of the infrastructure are described in detail in Section 2.
In Section 3, a special focus is placed on to the generation of single-pass InSAR products,
specifically, a Digital Elevation Model (DEM) of a selected test area, that is, the Stromboli
volcano in the Sicily region, southern Italy [31,32]. To show the monitoring capabilities
of the infrastructure during crisis events, in Section 4, we discuss the results reported
in Section 3 by focusing on the response times needed to generate the presented InSAR
products. In the same section, we also present the short-term future perspectives of this
airborne SAR infrastructure. Some concluding remarks are reported in Section 5.

2. Materials and Methods

In this section, we describe the flight segment (Section 2.1) and the ground segment
(Section 2.2) that compose the IREA-CNR airborne SAR infrastructure.

2.1. The Flight Segment

The flight segment, which ensures data acquisition, is composed of the following
two major elements: radar and software tools for flight planning. The aircraft is not owned
by IREA-CNR but is provided by external operators.

The airborne SAR system is MIPS [27], which is a lightweight, cost-effective FMCW
imaging sensor. The radar module has a weight of approximately 35 kg and is accommo-
dated in a compact, easily transportable rack (see Figure 1), whose dimensions are about
50 cm × 50 cm × 65 cm. MIPS operates at two different carrier frequencies, namely, in the
X- and L-bands. The availability of two separate bands of the microwave spectrum allows
widening the observation capabilities of the infrastructure. For instance, L-band SAR
signals (characterized by a wavelength on the order of 20 cm) exhibit higher penetration
capabilities than X-band signals ones (characterized by a wavelength on the order of 3 cm).
Therefore, L-band signals carry information on soil properties, even in vegetated areas,
whereas X-band signals are stopped by the upper canopy layers. L-band SAR data are,
thus, sensitive to the different scattering mechanisms that characterize complex targets and
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much more robust than X-band signals with respect to temporal decorrelation phenomena
occurring in InSAR scenarios [1,2]. Therefore, the L-band is particularly suitable for the
observation of natural areas, where it can be exploited, for instance, for land classification
and soil moisture retrieval through the use of polarimetric techniques [3] or for ground
deformation monitoring through the use of the Differential InSAR (DInSAR) technique [2].
In this regard, it is worth remarking that the phase unwrapping operation [1] is simplified
at L-band, due to the lower fringe rate that characterizes the corresponding interferograms.
On the other hand, the short wavelengths of the X-band are able to interact with objects at
finer spatial scales compared to those of the L-band. X-band SAR data are, thus, usually
collected at high/very high spatial resolutions, which are more suitable for the observation
of anthropogenic scenarios, as, for instance, in the monitoring of urban areas based on
tomographic approaches [2]. In addition, the short wavelengths of the X-band allow effec-
tive single-pass InSAR configurations to be obtained for the generation of highly accurate
DEMs [1], even on airplanes of rather small sizes. To take advantage of the peculiarities of
these two frequency bands, the MIPS system operates with a single-pass InSAR configu-
ration in the X-band or with a fully polarimetric configuration in the L-band. To achieve
these capabilities with the FMCW technology, the system is equipped with three X-band
antennas (one transmitting (Tx) and two receiving (Rx)) and four L-band antennas (two Tx
and two Rx). The X-band antennas are vertically polarized, while two L-band antennas
are vertically polarized and the other two are horizontally polarized. All antennas are
off-the-shelf microstrips. Figure 2 shows the two possible antenna layouts relevant to
the X-band interferometric configuration (left panel) and the L-band fully polarimetric
configuration (right panel) achieved on a Cessna 172 aircraft. More generally, depending
on the physical and aerodynamic characteristics of the aircraft, the X-band and L-band
antennas can even be simultaneously mounted. In this case, the operator can decide during
the flight to switch between the two different configurations described above. More details
on the parameters of the MIPS SAR sensor are collected in Table 1.

Table 1. Main characteristics of the MIPS sensor.

Band X L

Technology FMCW FMCW
Chirp duration [µs] 600.184 700
Carrier frequency [GHz] 9.55 1.35
Bandwidth [MHz] 200 125
Number of TX antennas 1 2
Number of RX antennas 2 2
PRF [Hz] 1200 600
Radar rack size [cm] 50 × 50 × 65
Radar weight * [kg] 35
Antenna size [cm] 24 × 12 × 1.5 20 × 40 × 4
Antenna weight [kg] 0.5 1.5
Polarizations VV VV-VH-HV-HH
Sampling frequency [MHz] 25 25
Single-pass interferometry yes no

* Includes the rack weight.

The MIPS system includes a modern navigation unit directly connected to the radar
module, namely, an Applanix POS-AV 610 [33], which includes an embedded Global
Navigation Satellite System (GNSS) and an Inertial Measurement Unit (IMU). The use of
this navigation unit, coupled with proper postflight processing techniques, guarantees very
precise flight parameter measurability [19]. Finally, the flight segment includes off-the-shelf
software tools for the flight planning, which are totally managed by IREA-CNR.
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2.2. The Ground Segment

The ground segment of the IREA-CNR airborne SAR infrastructure is composed of
two major elements, namely, an IT platform for data storage and processing, as described
in Section 2.2.1, and a SAR data processing chain, as summarized in Section 2.2.4. In
addition, in this section, we show the laboratory activities (Section 2.2.2) and the in-situ
procedures (Section 2.2.3) that we carry out before/during each survey campaign to support
the infrastructure, guaranteeing the successful execution of the campaign itself and the
availability of ancillary data necessary to process the SAR data.

2.2.1. IT Platform

The IT platform used to store and process the SAR datasets is installed in the IREA-
CNR laboratories in Naples, Italy (see Figure 3). It consists of 22 nodes, each of which
is equipped with 2 CPUs. Each CPU (AMD® EPYC 7513, 32 c, 2.6 GHz, 128 M cache
200W TDP) is equipped with 32 cores. Each node is equipped with 2 TB (3200 MHz) of
RAM and with 12 16TB 7K SAS 12 Gbps 512e equal to 192TB RAW disks. The 22 nodes
are interconnected through two 25 Gb/s networks. The platform is configured with the
openSUSE 15.4 operating system. The specifications of this IT platform are very well
tailored to the implementation of parallel programming techniques (multi-node and multi-
thread), which are crucial for the efficient application of the airborne SAR data processing
chain, as described in Section 2.2.4.
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2.2.2. Laboratory Activities

The laboratory activities are aimed at characterizing the radar antennas of the MIPS
system. More specifically, they involve the exploitation of an Anechoic Chamber (AC) to
carry out the far field [34] measurements described in the following.

Measurement of the Antenna Patterns

The availability of the antenna patterns is necessary during the image focusing and
the external radiometric calibration procedures described in Section 2.2.4. Specifically, for
all radar antennas, we measured the patterns in the horizontal and vertical planes. As
example, Figure 4 reports the measured co-polar, one-way amplitude patterns (black lines)
of one vertically polarized X-band antenna (top panels), one horizontally polarized L-band
antenna (middle panels) and one vertically polarized L-band antenna (bottom panels) of
the MIPS system.

Measurement of the Antenna Phase Center (APC) Position

The accurate calculation of the position of the radar APC with respect to a local
reference system defined over the antenna itself is key information for the SAR focusing
procedure described in Section 2.2.4. In particular, we measured the APC position in
an AC using the method proposed in [35], which can be effectively applied to a wide
class of antennas, including the microstrip antennas of the MIPS system. This overcomes
the limitations of other effective methods tailored to specific classes of antennas such as
reflector [36,37] or horn [38] antennas. As example, in the panels of Figure 4, we overplot the
phase patterns (red lines) measured by scanning the radar antennas around the estimated
APC. As can be seen, in all cases, the measured phase patterns are very flat, with variations
of less than two degrees within the main beam. This testifies, on one hand, to the good
behavior of the radar antenna phase patterns within the main beam and, on the other hand,
to the high precision of the APC positions that we estimated. Subsequent refinement of
such estimates through external calibration approaches [39] is, therefore, not necessary.

The antenna measurements were carried out in the AC at the DI of the University
“Parthenope”, Napoli, Italy.
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2.2.3. In-Situ Activities

The in-situ activities described in Section 2.2.3 are essential to ensure the success of
the SAR mission [21,23].

Assembly and Disassembly of the SAR Sensor Onboard the Aircraft

As remarked above, IREA-CNR does not own an aircraft. Therefore, a chartered
aircraft is used for the acquisition campaigns, and the MIPS system is assembled on board
just before the beginning of the campaign and disassembled just after its end. In this regard,
it is worth stressing that the MIPS system is not tailored to a specific aircraft; it can even be
mounted on board small/medium size aircrafts such as the Cessna 172 shown in Figure 2.

Deployment of Corner Reflectors (CRs)

Recognizable ground reference points such as CRs are of paramount importance
to assess the quality of SAR products. Typically, we deploy CRs over a test area where
preliminary data analysis procedures, such as that proposed in [40], are carried out before
processing the entire dataset acquired during a campaign. When possible, such a test area
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is included in the region of interest for the planned acquisition campaign; otherwise it is
chosen near to the departure/landing airport. In any case, it is recommendable that CRs be
deployed over the entire range swath of the system—first of all, to assess the quality of the
SAR impulse response at different ranges and, more generally, to effectively implement
some preliminary analysis procedures, such as those described in [40,41], which benefit
from a wide dispersion, along the range direction, of the exploited ground control points.

Measurement of CR Positions

This measurement, which is necessary to correctly locate CRs within SAR data, is
carried out using the Differential Global Positioning System (DGPS) technique immediately
after the deployment of the CRs, as described above. As an example, in Figure 5, we
show the activities related to the measurement of the position of one CR during one
MIPS campaign.
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Measurement of Antenna Lever Arms

To accurately carry out an SAR campaign with a focus on the external radiometric
calibration procedures described in Section 2.2.4, it is necessary to know the orientation
and position of each radar antenna with respect to a global reference system during the
entire period of radar data acquisition [42]. To do this, the flight information provided by
the navigation unit is necessary. Moreover, the antenna orientations and positions must be
known with respect to a local reference system centered on the IMU phase center. To this
end, the so-called lever arms need to be measured, at least, for 3 different reference points
on each radar antenna (see [42] for further details). Such measurements are performed by
using a theodolite total station once that the radar antennas and the IMU are mounted on
board the aircraft, with the aircraft at rest. As example, in Figure 6, we show the activities
related to the measurement of the antenna lever arms during one MIPS campaign.
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Data Download and Transfer

The downloading of data onto hard disks takes place at the landing airport at the end
of the mission. Afterwards, the hard disks are physically transferred to the IREA-CNR
laboratory in order to download the data onto the IT platform described in Section 2.2.1.

2.2.4. SAR Data Processing Chain

Once the acquired data are transferred to the IREA-CNR laboratory, the SAR data
processing chain can be applied. The implementation of such data processing procedures
on the IT platform described in Section 2.2.1 involves the use of:

• a single Computing Element (CE) acting as a master node in terms of job scheduling
policy control;

• several Worker Nodes (WNs) ensuring the required computation capability, particu-
larly to execute data processing steps based on a parallel programming strategy;

• several Storage Elements (SEs) that are installed to store the data.

The data processing procedures are aimed, first of all, at generating Single Look
Complex (SLC) images from the acquired raw airborne SAR data [1]. Following this step,
named SAR focusing, other processing procedures are implemented to achieve higher-level
SAR products, such as radiometrically calibrated SAR images, interferometric DEMs, soil
moisture maps and so on.

SAR Focusing

SAR focusing is a 2-dimensional image processing procedure [1,29,30] that, in the
airborne case, also involves compensation for the so-called motion errors, which affect
the acquired radar data. Motion errors are caused by platform attitude instabilities and
deviations of the trajectory from an ideal rectilinear planned track [42–44]. For this aim,
knowledge of the phase center position and pointing direction of the radar antennas during
the whole acquisition, as well as the availability of an external DEM of the illuminated
scene [42–44], is needed. The overall procedure consists of the cascade of the following
main operations:

(a) processing of the navigation data;
(b) Range Compression (RC) of the radar data;
(c) Radio Frequency Interference (RFI) detection and removal at the range-compressed

data level;
(d) Azimuth Compression (AC) of the radar data.

Note that RFI detection and removal is an optional procedure, developed at IREA-
CNR, which we apply only if RFI signals corrupt the acquired radar data. The processing
of the navigation data is performed by using commercially available software, namely the
APPLANIX POSPac MMS® tool. The remaining procedures implement, mainly through
the Interactive Data Language (IDL), algorithms jointly developed at IREA-CNR and
University Parthenope. More details on the four processing procedures listed above are
provided in the following paragraphs (a)–(d).

(a) Processing of the navigation data

The processing of the navigation data is a delicate and fundamental procedure, espe-
cially when using radar data acquired at high operating frequencies (e.g., X, Ka and Ku
bands). To achieve the needed centimeter level position measurement, it is necessary to
correct systematic errors (related to the receiver, the satellites and propagation delays) by
augmenting the basic GNSS system mounted on board the airplane. Specifically, we use
the APPLANIX POSPac MMS® tool [33], which imports and processes data recorded by
the Applanix INS/GNSS navigation system and by a network of reference stations.

(b) Range Compression (RC) of the radar data

RC is an image processing operation whose specific implementation depends on the
characteristics of the transmitted radar signal and, more generally, of the used radar system.
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In particular, when pulsed radar is used, RC is achieved through matched filtering [1,29,30].
Instead, in FMCW systems, RC is achieved by means of a signal beating procedure (typically
carried out on board by the radar receiver) followed by a Fourier transform [28].

The implementation of the RC procedure on the IREA-CNR IT platform described in
Section 2.2.1 exploits, to some extent, the multi-core capability of the platform. In particular,
a parallel programming strategy is not adopted to carry out the RC of the data relevant to
one flight track. Indeed, since this kind of procedure is not particularly time-consuming, a
single job is responsible for it. However, to achieve the parallel RC of the raw data relevant
to different flight tracks, different jobs are simultaneously executed on different WNs and
cores available on the platform.

(c) Radio Frequency Interference (RFI) detection and removal

This operation is aimed at filtering out interfering signals that could possibly corrupt
the useful radar data. It is noted that RFI is typically relevant in the lower bands of the
microwave spectrum, (e.g., L- and P-bands) [45,46]. The mitigation strategy that we adopt
is based on a two-step RFI identification approach that works on RC SAR data [47,48],
followed by a proper RFI suppression procedure. The first step of RFI identification acts
only on the data samples relevant to the pre-nadir region and provides a rough estimate of
the overall fraction of RFI-corrupted data. Based on this information, in the second step,
RFI detection is carried out on the overall RC data by means of statistical tests applied
azimuth by azimuth. Finally, the achieved detection results are used to drive a simple RFI
suppression procedure easily integrated in the SAR focusing processor. Specifically, the
latter treats the detected RFI as missing data.

As an example, in Figure 7, we report the results achieved with an L-band MIPS
dataset acquired over the Campi Flegrei area of the Campania region, southern Italy, in
2021. In particular, the top panel reports the Multi-Look Complex (MLC) image achieved
without applying any RFI filtering strategy, whereas the bottom panel reports the MLC
achieved after applying the RFI filtering strategy proposed in [47].
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As for the implementation of this processing procedure on the IREA-CNR IT platform, a
single job is responsible for the processing of the data relevant to one flight track. To achieve
parallel RFI detection and the removal of data relevant to different flight tracks, different
jobs are simultaneously executed on different WNs and cores available on the platform.

(d) Azimuth Compression (AC) of the radar data

AC is a fundamental processing step applied to RC SAR data with the aim of gener-
ating SLC SAR products. The algorithms that implement this procedure are divided into
time-domain and frequency-domain algorithms.

Frequency-domain algorithms [1], which are very computationally efficient, are well
tailored to SAR data acquired from straight tracks. In the case of airborne SAR acquisitions,
where the flight tracks are characterized by deviations from an ideal, straight track, original
frequency-domain algorithms must be properly adapted through the implementation of
so-called MOtion COmpensation (MOCO) techniques [43,49–51], which involve approxi-
mations [52] to preserve the computational efficiency typical of the original algorithms. As
a matter of fact, the more significant the track deviations, the more unsuitable the MOCO
approximations and the greater the impact on the quality of the achieved SLCs [44].

On the other hand, time-domain algorithms [42,53–57], often referred to as back
projection algorithms (BPAs), do not use approximations and are very accurate, regardless
of the characteristics of the acquisition track. Indeed, they operate on a pixel-by-pixel basis,
thus being suited to handling arbitrary and nonlinear flight paths. Moreover, they allow for
the processing of data in coordinates other than the native slant range azimuth, e.g., directly
in cartographic coordinates. These advantages come at the cost of computational efficiency,
which is generally worse than that of frequency-domain algorithms. To overcome this
drawback, in recent years, many efforts have been devoted to develop algorithms aimed at
reducing the computational effort required by time-domain approaches [54–57]. Moreover,
the recent widespread proliferation of multi-core hardware architectures, coupled with
the development of parallel programming solutions, has helped to reduce even more the
processing time required by time-domain algorithms, which, as observed above, are based
on a pixel-by-pixel approach, resulting intrinsically tailored to parallel processing strategies.

In the processing chain of the IREA-CNR infrastructure, we implement a time-domain
algorithm that was recently developed and presented in [42]. The algorithm accounts not
only for flight track deviations but also for the space variant nature (in both range and
azimuth direction) of the squint angle induced by variations in the pointing direction of the
radar antenna during acquisition. More specifically, to focus each target, we first calculate
the antenna-to-target distance by using an available external DEM of the observed area and
the flight data recorded by the navigation system. Then, we evaluate the number of samples
of the synthetic aperture length according to the desired azimuth resolution. Finally, we
use the navigation data to select the track portion from which the radar antenna illuminates
the considered target within its main beam [42]. Finally, it is remarked that the AC step
may be integrated with data processing procedures aimed at estimating some electronic
parameters necessary for the accurate implementation of the AC step itself [40,41].

The implementation of this time-domain AC procedure on the IREA-CNR IT platform
takes full advantage of the multi-core capability of the platform. Indeed, a parallel program-
ming approach is implemented for each image to be focused by splitting the corresponding
output grid into a number of portions equal to the number of WNs and cores available on
the platform. A set of independent jobs (one for each portion of data to be focused) is then
executed on the selected WNs and cores. The procedure is managed by Linux Bash scripts
concurrently running on the different WNs and cores. Following this parallel computation,
a straightforward mosaicking of the different portions of the focused data is carried out to
achieve the final SLC. The same rationale is also applied to achieve the parallel generation
of different SLCs; in this case, each job is responsible for the processing of one portion of
one image of the selected dataset.
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Higher-Level Products

Following the SAR focusing step, the overall data processing chain of the IREA-CNR
infrastructure, as mentioned above, also includes some processing steps leading from
SAR SLCs to higher-level products, such as radiometrically calibrated images, DEMs and
polarimetric maps. More details on the generation of these higher-level products are
provided in paragraphs (a)–(c).

(a) External Radiometric Calibration

External radiometric calibration is a procedural step used to convert the Digital Num-
bers (DNs) that compose SLC images into meaningful physical descriptors for the targets
in the observed scene, such as the Normalized Radar Cross Section (NRCS). To this end,
based on the radar equation, the procedure aims at compensating for constant and variable
factors introduced into the recorded signals by the radar electronics, the SAR acquisition ge-
ometry, the surface topography and the focusing procedure [58]. In particular, radiometric
calibration is typically split into the following two steps: relative and absolute calibration.
Relative calibration compensates for the space variant terms that account for the range
spreading loss, the used Tx/Rx radar antenna patterns, the azimuth compression gain
and topography dependent radiometric distortions [59,60]. Depending on the particular
processing needs, this step can be performed during the SAR focusing operation or using
post-processing approaches applied to uncalibrated SLC images. Afterwards, the abso-
lute calibration of such images is achieved by exploiting illuminated targets with known
scattering characteristics, such as CRs [60]. As an example, in Figure 8 (bottom image) we
report the Sigma Naught map [60] achieved applying the IREA-CNR SAR data processing
to X-band MIPS data acquired over the Salerno coastline within the Campania region,
southern Italy, in 2021.
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2.8 km. Azimuth extension: 8 km.
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Similarly to the RC and RFI detection and removal processing steps, a single job on
the IREA-CNR IT platform is responsible for the calibration of one entire SLC, whereas to
achieve the parallel calibration of different SLCs, different jobs are simultaneously executed
on the different WNs and cores available on the platform.

(b) Polarimetric Processing

Proper combinations of SAR data acquired at different polarizations allow us to
characterize complex scenarios and to extract key parameters related to both natural and
man-made targets [3].

As remarked above, the MIPS system of the IREA-CNR infrastructure can operate
with a fully polarimetric configuration in the L-band. Some activities relevant to the
polarimetric calibration of MIPS data for the compensation of undesired effects, such as
channel imbalances or polarimetric crosstalk [61,62], are matter of current work. Moreover,
MIPS acquisition campaigns in the L-band are planned for the near future, with the aim
of collecting polarimetric datasets to be used for the retrieval of ground parameters, such
as, for instance, soil moisture. In this regard, the SAR data processing chain available at
IREA-CNR already embeds a number of procedural steps applied in the past to multi-
polarized SAR data acquired by other aerial sensors [24] to provide either basic or added
value products. Specifically, algorithms for the generation of widely employed (e.g., Pauli,
Freeman, and Cloude) polarimetric decomposition maps useful for scene classification
purposes [3] are included in the IREA-CNR SAR data processing chain. As an example, in
Figure 9 we report the Pauli decomposition map (right image) achieved by the IREA-CNR
SAR data processing chain with a fully polarimetric set of P-band SAR data acquired by the
Italian Space Agency (ASI) helicopter-borne sensor over the Manfredini area of the Apulia
region, southern Italy, in 2021. Model based inversion procedures of polarimetric SAR data
for the retrieval of surface parameters, such as ground roughness, soil permittivity and soil
moisture content are available as well [63–66].
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The implementation of the polarimetric processing on the IREA-CNR IT platform once
again exploits the multi-core capability of the platform to process different polarimetric
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datasets relevant to different flight tracks. For this processing step, a single job is responsible
for the entire processing of the polarimetric dataset relevant to one flight track.

(c) Interferometric Processing

The interferometric processing allows for the generation of interferometric products,
such as DEMs or surface deformation maps [1,2,4], starting from single-pass and/or repeat-
pass interferometric pairs of SLCs.

As remarked in Section 2.1, the MIPS system of the IREA-CNR infrastructure may
operate at two different carrier frequencies. In particular, it is equipped with a single-pass
InSAR configuration in the X-band. Accordingly, the IREA-CNR SAR data processing
chain is, first of all, tailored to the generation of single-pass InSAR DEMs. It is remarked
that this is a key activity in the framework of the agreement with the Department of
Civil Protection of the Italian Presidency of the Council of Ministers for the monitoring of
effects related to eruptive activities. By referring to the standard InSAR processing [1,2,4],
the IREA-CNR chain overcomes the co-registration procedure [1], since the BP algorithm
described in Section 2.2.4 is capable of generating SLCs in arbitrary output grids (that
is, geometric coordinate systems). Therefore, all SAR SLCs of the considered InSAR
datasets are generated with respect to the same output grid. Following the interferometric
beating, the phase unwrapping procedure [67–74] is implemented through the generalized
approach for sparse data [73,74]. Then, the constant offset of each unwrapped interferogram
is estimated using the STopBE [75] or IPBE [76] method, which exploit CRs properly
deployed in the observed area or an available external DEM when CRs are not present
in the monitored zone. Finally, a pixel-by-pixel and target dependent phase-to-height
conversion procedure is applied [1]. In particular, we apply a strategy that exploits the
actual trajectory of the aircraft and takes into account the changing pointing direction of
the antenna. First single-pass InSAR experiments with data acquired by the X-band MIPS
system were conducted over the volcanic area of Stromboli, Italy [31,32]. A more detailed
discussion of such experiments is provided in the next section.

Turning to the processing of airborne repeat-pass InSAR data, this procedure is gener-
ally more complicated than the processing of single-pass InSAR data because the motion
errors and the attitude variations affecting two generic interferometric acquisitions are
independent of each other. Therefore, they do not tend to compensate for each other as
in the case of single-pass InSAR acquisitions. Generally speaking, airborne repeat-pass
InSAR is more critical at higher frequencies [44] for different reasons. First, the higher the
frequency, the more sensitive the radar system is with respect to the errors induced by the
inaccuracy of the navigation system mounted on board the airplane [44]. Secondly, for a
fixed azimuth resolution, at higher frequencies the same squint angle difference between
the two generic repeat-pass InSAR acquisitions produces a higher relative Doppler shift
between the two corresponding images [1]. Thirdly, the lower the frequency, the higher the
temporal coherence [1] of repeat-pass interferograms. For this reason, among the two op-
erative frequencies of the MIPS system, the L-band is more appropriate for repeat-pass
InSAR applications. The IREA-CNR InSAR data processing chain is currently capable of
dealing with interferometric acquisitions characterized by different squint angles, as is the
case for single-pass cross-eyed InSAR acquisitions [42], and by different motion errors. The
performance assessment of this processing procedure with repeat-pass MIPS data acquired
in the L-band is a matter of ongoing work.

3. Results

Within the framework of the abovementioned agreement with the Department of Civil
Protection of the Italian Presidency of the Council of Ministers, IREA-CNR has collected an
archive of airborne SAR data with the aim of generating multi-temporal, single-pass InSAR
DEMs of the Stromboli volcano [77] to support the monitoring activities of the Department
in this active volcanic area.

To show the capabilities of the overall IREA-CNR airborne SAR infrastructure, we se-
lected from this archive an X-band MIPS dataset acquired during the mission of September
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2022. During this mission, the MIPS system was installed on board a Cessna 172 airplane
operating at 2.5 km altitude with a mean velocity of 48 m/s. The departure/landing
airport was located in Grumento Nova, Potenza, Basilicata region, southern Italy. The
selected dataset consists of eight InSAR radar acquisitions carried out from eight straight
tracks describing two concentric closed circuits surrounding the island (see Figure 10). It is
remarked that, depending on the considered flight track, only a portion of the volcano is
visible. Moreover, the shadow and layover effects [1] are particularly relevant due to the
flight altitude, the radar look angles and the topographic height of Stromboli. To mitigate
all these effects, we planned the two closed and concentric circuits shown in Figure 10. A
set of 16 CRs was deployed near the departure/landing airport, since it was not possible to
deploy them directly over the monitored area. Moreover, all the remaining ground segment
activities described in Section 2.2.3 were accomplished.
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Figure 10. Relevant to the Stromboli campaign: a pictorial view of the flown tracks (red lines)
superimposed over a Google Earth orthophoto.

In the following, we show the main results achieved by applying the IREA-CNR SAR
data processing chain described above to this specific dataset. Table 2 reports the main
processing parameters set for the SAR focusing procedure and, subsequently, for the InSAR
processing. Figure 11 reports the amplitude of one MLC relevant to the area where the
CRs were deployed. In particular, eight CRs (highlighted by circles) are visible; the other
eight CRs were, indeed, oriented in such a way to be visible in a radar acquisition carried
out from a direction antiparallel to that considered in Figure 11. For the sake of brevity,
the MLC (where the other eight CRs are visible) relevant to this anti-parallel track is not
reported here. In any case, in both the corresponding SLCs, we measured the achieved
geometric resolution for each imaged CR. The results are summarized in Table 3, where the
CRs are clustered into two groups depending on their orientation (that is, depending on the
SLC within which they are imaged). As it can be seen, the achieved resolution is very close
to the theoretical resolution. For the sake of completeness, Figure 12 shows the azimuth
(left panel) and range (right panel) cuts of the SLC amplitude image in correspondence
with the CR highlighted by the green circle in Figure 11.
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Table 2. Relevant to the Stromboli campaign: main processing parameters.

SLC MLC

Range pixel spacing [m] 0.75 1.5
Range resolution [m] 0.75 1.5
Azimuth pixel spacing [m] 0.04 2
Azimuth resolution [m] 0.27 2
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With reference to the eight tracks shown in Figure 10, in Figures 13 and 14 we present
some products of the IREA-CNR processing chain relevant to the four tracks of the internal
circuit depicted in the figure. Similar results not shown here for brevity were also obtained
for the other four acquisitions. In particular, Figure 13 reports the calibrated amplitudes
of four MLC SAR images (one for each considered straight track). Figure 14 shows the
corresponding modulo-2π interferograms (one for each considered straight track) achieved
by removing the topographic contribution obtained from the external DEM exploited
during the SAR focusing procedure. Specifically, the external DEM is a LiDAR-derived
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model dated to 2012 and characterized by a geometric resolution of 50 cm and a vertical
error of 15 cm [78]. From the eight obtained interferograms (one for each straight track of
each circuit in Figure 10), we obtained the corresponding DEMs, which were then properly
mosaicked to achieve the final DEM reported in Figure 15.
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Google Earth image.

Some further considerations are now in order.
First, we stress that the processing of the SAR data was limited to the area covered by

the available external DEM. Furthermore, we remark that the InSAR fringes observable in
Figure 14 on the crater terrace of Stromboli and on the area known as Sciara del Fuoco [77]
provide information about the topographic differences measured by the MIPS sensor and
the external DEM used during the SAR focusing procedure. It is recalled that this external
DEM is dated to 2012; therefore, the abovementioned fringes are due to the cumulated
topographic variations induced by the volcanic activities that occurred in the past 10 years.
Finally, we observe that, according to the Cramer–Rao bound reported in [79], the generated
InSAR DEM is characterized by a height error with standard deviation on the order of
1.5 m.

4. Discussion

We now analyze the capabilities of the IREA-CNR infrastructure to support the mon-
itoring activities required in a possible emergency scenario. To this end, we consider
the case study presented in Section 3, which, as remarked above, was conducted within
the framework of the agreement with the Department of Civil Protection of the Italian
Presidency of the Council of Ministers, aimed at creating an infrastructure for the periodic
monitoring of volcanic areas, and capable of being rapidly operative during crisis events.
In this context, the response time of the infrastructure represents a key parameter that
needs to be analyzed.

For the IREA-CNR airborne SAR infrastructure described above, this response time
basically depends on the following three main terms: the activation time of the airborne
SAR sensor; the time required for data download and transfer; and the processing time
needed to generate the final product that, in the test case of Section 3, is represented by the
final InSAR-derived DEM.

To evaluate the activation time of the MIPS system, we recall that the system is not
permanently installed on one specific airplane. Therefore, as described in Section 2.2.3, the
execution of each acquisition campaign involves the installation of the instrumentation on
an aircraft and the measurement of the radar antenna lever arms. The activation time of
the MIPS system, thus, depends on the time required by these procedures, along with the
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time needed for the aircraft to reach the area of interest and the operational flight altitude
once it has departed.

The assembly of the MIPS sensor on board an aircraft generally requires the interven-
tion of two operators for a time of approximately 3 h.

Since the antenna positions may slightly change for each installation, it is mandatory
to measure the antenna lever arms after the installation of the system on the aircraft. This
activity generally requires the intervention of a surveyor and his staff collaborators (at least
one person) for a time of approximately 5 h, including the time required for the proper
processing of the measurement data. To save time, this operation is typically performed
after the radar data acquisition, during the data download and transfer. In this regard, it is
observed that if the antennas and the navigation system were jointly bound to the same
physical structure, the lever arms would not change for each installation of the system on
board an aircraft; therefore, they could be measured only once.

Reaching the operational flight altitude of the aircraft strongly depends on the air
traffic and weather conditions. Under ideal conditions, this phase requires approximately
a bit more than twenty minutes. This duration is generally shorter than that required for
the airplane to reach the area of interest and to come back after the radar acquisition. In
the case at hand, the time required to reach the Stromboli area from the airport was on the
order of 1 h and half. Moreover, considering the flight autonomy of the used airplane, the
radar acquisitions along the two circuits shown in Figure 10 were split into two missions in
the same day, for a total of about 10 h.

Turning to the time required for data download and transfer, for the Stromboli cam-
paign the download of data onto hard disks took place at the departure/landing airport,
which is about 200 km far from the IREA-CNR laboratory. The hard disks were then
physically transferred using a car. The overall procedure took about 5 h.

Regarding the time required to process the SAR data, we, first of all highlight that,
overall, 130 GByte of data were recorded during the eight considered single-pass InSAR
acquisitions. For each acquisition, the range dimension of the SAR raw data was about 4 k
samples, whereas the azimuth dimension changed from 110 to 180 k samples, depending on
the used circuit trace. No presuming and no decimation filtering was applied. To process
the SAR data, a common reference radar output grid, characterized by a spatial sampling
of 75 cm in range and 4 cm in azimuth, was assumed for all the images relevant to the same
flight track.

Concerning the processing of the navigation data, the integration of data recorded by
the system mounted on board the aircraft and the data derived from the Crustal Dynamics
Data Information System (CDDIS) and two Italian networks, namely the Rete Integrata
Nazionale GNSS (RING) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and
the Permanent Stations Network of the Campania Region, was carried out by means of the
APPLANIX POSPac MMS® tool [33]. For the case at hand, this procedure took about 2 h.

The external DEM was first downloaded onto the IREA-CNR IT platform. Then, the
area of interest was cut out and converted onto the reference radar output grid. For this
procedure, it is necessary to reserve a dedicated time of about a couple of hours. It is noted
that in the case of repeated SAR acquisitions in the same area, this procedure is performed
only once. Conversely, in the case of unscheduled acquisitions, as in the case of natural
disaster monitoring in areas not previously illuminated by radar, this procedure must be
executed before the processing of the acquired SAR dataset.

As observed above (see Table 2), the 16 SLC images (two single-pass InSAR SLCs for
each straight acquisition track in Figure 10) were focused with a geometric resolution of
75 cm in range and 27 cm in azimuth following the procedure described in Section 2.2.4.
Since the overall acquired X-band dataset turned out to be unaffected by RFI, the procedure
aimed at detecting and removing these interferences was not applied. Following the
generation of the SLCs, the InSAR processing procedure described in Section 2.2.4 was
applied, along with a complex multi-look procedure bringing the interferometric products
to a resolution of 1.5 m in range and 2 m in azimuth (see again Table 2). The processing time
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required by the PhU procedure, the STopBE phase offset estimation and the phase-to-height
conversion procedure (see Section 2.2.4) is much shorter than that related to the focusing
procedure, which represents the most time-consuming processing step. In the considered
test case, 12 h of computing time were required to execute the overall data processing
chain, allowing us to generate, from the SAR raw data, the final mosaicked DEM shown
in Figure 15. It is stressed that achieving such a relatively limited processing time was
possible due to the parallel programming strategies adopted for all the data processing
steps, particularly the AC procedure performed in the time-domain (see Section 2.2.4), with
the aim of taking advantage of the multi-core capability of the IREA-CNR IT platform. In
particular, we used up to 448 cores of the platform. Note that with only one core and the
same computing time (12 h), just a portion of only one SLC characterized by 2000 range
and 23,000 azimuth lines can be focused.

Summing up, to evaluate the current response time of the presented IREA-CNR air-
borne SAR infrastructure in a possible emergency scenario, it must be, first of all, considered
that the activation time of the MIPS sensor is on the order of 3 h, without accounting for
the time needed for the operators responsible for instrument installation to be operational
at the airport. Moreover, according to the flight autonomy of the specific airplane used
in the Stromboli campaign case study, it must be also considered that the duration of one
flight mission is on the order of 4 h. Generally, depending on the distance between the
airport and the area of interest, as well as on the extension and the characteristics of the
latter, one acquisition campaign typically requires at least a couple of missions for each
operational mode of the system. Therefore, once the MIPS system is activated, at least
10 h are necessary to conclude the overall campaign. More generally, if we intend to fully
exploit the multi-frequency capabilities of the MIPS system, we have to consider acquisition
campaigns consisting of a greater number of flight missions. In this case, the corresponding
time loss could be managed by separately processing the data acquired in the different
flight missions of the same campaign. However, to effectively apply such a strategy, it is
necessary to reduce the currently required time for data download and transfer, which, in
the considered case study, was on the order of 5 h. Finally, the time required to execute
the overall data processing chain must be considered, particularly the AC step, which is
performed in the time-domain to guarantee the high accuracy of the focused SLCs. As
remarked above, to reduce the processing time, the overall data processing chain of the
IREA-CNR infrastructure is based on a parallel programming strategy to take advantage of
the multi-core capability of the IT platform of the infrastructure. Exploiting these features
for the considered case study allowed us to process about 130 GByte of radar data in 12 h of
computing, achieving 16 SLCs with 75 cm × 27 cm (range × azimuth) resolution covering
the entire Stromboli island and a final DEM of the island with 2 m × 2 m (range × azimuth)
resolution and a height error with a standard deviation on the order of 1.5 m.

Future Perspectives

A number of activities are already planned for the future to further exploit and
strengthen the current capabilities of the IREA-CNR infrastructure.

In particular, the next MIPS acquisition campaigns are aimed at fully exploiting the
L-band mode of the system. Specifically, L-band campaigns are planned for the near future
to collect polarimetric SAR datasets for the retrieval of ground parameters such as soil
moisture. Moreover, L-band repeat-pass InSAR acquisitions are planned to retrieve ground
deformation fields through the use of the DInSAR technique [2].

Furthermore, a number of actions supported by already assigned funds are currently
being carried out to strengthen the infrastructure. In particular, as discussed in Section 2.2.3,
the current data download and transfer procedures are quite time-consuming, because
the hard disks where the data are downloaded at the end of the mission have to be
manually transferred to the IREA-CNR laboratory. To speed up this overall procedure,
in the near future, we plan to download and transfer the data using satellite Internet
constellation links. Furthermore, as a part of the “Next Generation EU Mission 4—Project
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IR0000032—ITINERIS”, a fully polarimetric pulsed multifrequency SAR system will be
acquired. The latter will allow for the expansion of the operational scenarios of interest
for the infrastructure, guaranteeing higher operational flight heights with respect to those
currently achievable with the MIPS system based on the FMCW technology. In addition,
within the framework of the same project, five computing nodes, which will be added to
the IT platform described in Section 2.2.1, will be acquired to further increase its dedicated
multi-core capabilities

5. Conclusions

In this work, the capabilities of the airborne SAR infrastructure developed at IREA-
CNR have been presented. The infrastructure consists of a flight segment and a ground
segment. The flight segment includes the MIPS SAR system based on FMCW technology
and operating with a single-pass InSAR configuration in the X-band or with a fully polari-
metric configuration in the L-band. The MIPS sensor is mounted on board chartered aircraft,
since IREA-CNR is not equipped with its own aircraft. The ground segment includes a
multi-core IT platform for data storage and processing and an SAR data processing chain,
allowing us to generate added-value products, such as soil moisture maps, DEMs, ground
motion maps and so on, from the acquired raw SAR data. The data processing chain
jointly developed by IREA-CNR and Università Parthenope was designed to guarantee
the high quality of the final products through the use of a time-domain focusing strategy
while ensuring sound processing times due to the implementation of a parallel program-
ming strategy that takes advantage of the multi-core capability of the IT platform of the
infrastructure.

Overall, the infrastructure masterfully frames the current and upcoming objectives of
the remote sensing sector and allows IREA-CNR to plan and execute airborne SAR cam-
paigns and to process the acquired data. We further remark that the infrastructure is aimed,
first of all, at developing research activities; however, it also represents a valuable support
for the emergency prevention and management activities of civil protection authorities.

The technical aspects related to the flight and ground segments of the infrastructure
have also been presented. In particular, some preliminary products (namely, an RFI-filtered
SLC) achieved with MIPS L-band data were reported. In this regard, it is stressed that
MIPS acquisition campaigns in the L-band are planned for the very near future, with the
aim of collecting polarimetric datasets to be used for the retrieval of ground parameters
such as the soil moisture and repeat-pass InSAR datasets for the application of the DInSAR
technique. More advanced products achieved with MIPS X-band data were also presented.
In particular, the results of the single-pass InSAR processing chain leading to the generation
of a DEM of the volcanic area of Stromboli, southern Italy, were reported.

The capabilities of the infrastructure were also analyzed within the framework of
the activities that IREA-CNR carries out as the National Centre of Competence of the
Department of Civil Protection of the Italian Presidency of the Council of Ministers with the
short time target of creating an infrastructure for the periodic monitoring of volcanic areas,
and capable of being rapidly operative during crisis events. In this context, the airborne
infrastructure capabilities were analyzed in terms of response times and characteristics of
the final products. In particular, the Stromboli dataset mentioned above was considered
as a real case study. The considered airborne dataset consists of eight X-band single-pass
interferometric MIPS acquisitions corresponding to about 130 GByte of radar data, which
guarantees full coverage of Stromboli Island. The entire SAR data processing procedure
required twelve hours of computing time, exploiting up to 448 cores of the IT platform of the
infrastructure and allowing us to generate 16 SLCs with 75 cm × 27 cm (range × azimuth)
resolution and the final DEM of the island, with 2 m × 2 m (range × azimuth) resolution
and a height error with a standard deviation on the order of 1.5 m. The complete budget
for response time also includes the time required to install the system on board an aircraft
and the time required to complete the entire acquisition campaign, which, for the case at
hand, consisted of two flight missions for a total of about 10 h. According to the presented
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analysis, we can safely conclude that the IREA-CNR airborne SAR infrastructure already
represents a valuable tool for the periodic monitoring of selected areas. As for the capability
of the infrastructure to be operative during crisis events, according to the presented analysis,
which does not account for downtime and the actual availability of dedicated manpower,
we can reasonably estimate, for the presented case study, a response time on the order of a
couple of days.

Finally, it is underlined that although the presented analysis is relevant to a specific
case study represented by the monitoring of a volcanic area, it provides indications for
the general capacity of the infrastructure to provide a rapid response to a wide variety of
extreme sudden events, such as floods, earthquakes and so on.
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