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Abstract: Desertification greatly threatens the ecological environment and sustainable development
over approximately 30% of global land. In this study, the contributions of climate drivers and
human activity in shaping the desertification process from 1984 to 2014 were quantified in the
desertification-prone region (DPR) in Northern China (NC) by employing net primary productivity
(NPP) as a proxy. The results reveal that 72.74% of the DPR experienced desertification mitigation
and 27.26% experienced exacerbation. Climate drivers acted as primary drivers, contributing to both
the mitigation (47.2%) and exacerbation (48.5%) of desertification, while human activity also played a
crucial role, with contributions of 39.6% to mitigation and 41.0% to exacerbation of desertification.
Furthermore, a shift in desertification dynamics emerged around 2000, with climate drivers promoting
the mitigation process (66.8%), and precipitation was a dominant climatic factor for the mitigation of
desertification after 2000, which was related to internal atmospheric variability. This study highlights
changes in the contributions of different factors to desertification, underscoring the need for policy
adjustment to attain sustainable land management in NC.

Keywords: climatic drivers; human activity; desertification; Northern China; atmospheric circulation

1. Introduction

Desertification is a land degradation phenomenon, where the biological potential
of land is reduced or destroyed [1,2]. Land degradation covers approximately 30% of
global land, with around 3 billion people residing in affected areas [3]. Desertification not
only leads to the loss of biodiversity in ecosystems but also significantly affects the food
security, health, and economic incomes of local residents, thereby impacting sustainable
development in contemporary society. The impacts of desertification on human survival
and social progress are increasing in light of climate change [4]. Therefore, determining
how to mitigate desertification is a major challenge in sustainable development [5–8], for
which understanding the causes of desertification is fundamental.

Desertification refers to land degradation caused by climate change and human ac-
tivity [9–11]. Climate change dominates desertification through drought and changes in
carbon dioxide levels, gradually causing sustained changes in ecosystems [12–15]. Human
activity, such as excessive cultivation, increased grazing, deforestation, and other prac-
tices, reaches a turning point in ecosystem functionality, ultimately causing desertification
(e.g., [16–18]). In past decades, the physical mechanism of desertification development,
the related ecohydrological process, and its relationship with human activity were clari-
fied effectively [7,9,11,13,19–22]. However, due to the different proxies used to measure
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desertification and different periods focused, the contributions of different factors to deser-
tification in the past remain uncertain [23–25]. For example, results based on an ensemble
of ecosystem models suggested that the effect of CO2 fertilization is the main cause of
desertification mitigation [26]. However, an observation-based attribution study indicated
that anthropogenic climate change has driven more than five million square kilometers of
drylands towards desertification around the world [16]. In semi-arid alpine mountains, low
elevation areas have a high risk of desertification expansion due to grazing [27]. Further-
more, based on observations of high-resolution satellite data and a global probability-based
sample, it was determined that 60% of the change in global land cover could be attributed
to anthropogenic land-use practices, while the residual 40% stemmed from a confluence of
other factors, including climate drivers [28]. Thus, quantifying the contribution of human
activity and climate drivers still needs further investigation.

China is severely impacted by desertification [29,30]. The total area of land undergo-
ing desertification in China has escalated to 2.62 million km2, accounting for 27.33% of
the country’s aggregate landmass. The majority of the desertification is concentrated in
Northern China (NC) [31]. Desertification in NC has changed over the past several decades,
with mitigation and exacerbation not occurring uniformly [32]. As an important factor
contributing to desertification, the climate in NC has experienced interdecadal variability.
The desertification region is sensitive and vulnerable to climate change. Over the arid
region of NC, except for human agricultural activities and ecological water conveyance,
precipitation is the main factor driving the spatial distribution of desertification [33]. Rapid
global warming has led to increases in the frequency and intensity of extreme precipitation
and droughts, further increasing the risk of desertification [34,35]. Climate driver (such
as precipitation, temperature) variations are linked to the changes in atmospheric circula-
tion. Studies have demonstrated that Northeast China experienced a noticeable increase
in temperature starting in the mid-1990s, accompanied by interdecadal changes in large-
scale circulation marked by a high-pressure anomaly [36–38]. Along with the temperature
rising, observations revealed a significant interdecadal transition in Northwest China’s
summer precipitation after the late 1980s, with increases in the amount and intensity of
precipitation [39,40]. Studies also indicated that desertification increased in NC prior to
the 1990s and subsequently underwent a reversal [41,42]. However, how atmospheric
circulation is linked to the impacts of climate drivers on desertification remains unclear.
Additionally, various ecological restoration projects were implemented, including the
Three-North Shelter Forest Program and Grain-for-Green. These major ecological projects
were also implemented in different regions and at different times [43,44]. Therefore, the
impacts of climate drivers and human activity on desertification may have varied during
different periods. However, under the background of climate change, the contributions of
climate drivers and human activity to desertification in NC in different periods should be
further explored.

This study focused on two aspects: What were the contributions of climate drivers
and human activity to the desertification process in NC over the past decades? What were
the dominant factors that drove desertification during different periods and the mechanism
behind desertification? To answer these questions, this study utilized remote sensing
data and meteorological datasets to analyze desertification. The methodology involved
a quantitative analysis using statistical models and remote sensing techniques to assess
contributions to desertification changes. Then, this study identified the primary drivers of
desertification evolution, separating natural and anthropogenic factors, which was aimed
at deepening our understanding of the mechanism of desertification evolution. This paper
concludes with a discussion of the mechanisms underlying these drivers based on the
attribution results.
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2. Dataset and Methodology
2.1. Study Area

This study focused on the desertification-prone region (DPR) in NC (Figure 1), which
was zoned according to a study by Wang et al. [35]. The DPR extends from central Asia
in the west to northeastern China in the east and primarily comprises sandy areas, with
annual rainfall amounts below 400 mm. Based on vegetation coverage, these areas can be
further classified as mobile, semi-mobile, semi-anchored, and anchored sandy lands. These
areas are highly susceptible to climate change and human activities if the productivity
of sandy land decreases, resulting in aeolian desertification and a fragile ecology [45].
However, almost all sandy areas have been used to meet subsistence needs [29], which
further increases the risk of desertification in these areas. More information about DPR can
be found in the Supplementary Materials (Note S1).

Figure 1. Location and subregions of the desertification-prone region (DPR) in NC.

2.2. Data Sources

Net primary productivity (NPP) is the net amount of organic carbon sequestered via
photosynthesis and serves as a sensitive indicator reflecting the impacts of climate change
and human activities [46]. Considering a decrease in plant biomass as a partial indication
of land degradation, changes in NPP were considered a proxy for desertification in this
study, as NPP has been widely used to assess desertification (e.g., [47–50]). In this study,
NPP was calculated using the Carnegie–Ames–Stanford Approach (CASA) model, which
relies on remote sensing (the normalized difference vegetation index (NDVI) and land
cover data) and meteorological datasets. Specific information related to the data can be
found in Table 1.

Table 1. Data information.

Data Source Spatial
Resolution

Temporal
Resolution

NDVI Advanced Very High-Resolution
Radiometer (AVHRR) 1/12◦ 15 days

Land cover
The multi-period land-use land

cover remote sensing monitoring
dataset for China [51]

30 m -

Solar radiation

High spatial resolution (10 km)
surface solar radiation dataset

with by merging sunshine hours
over China [52]

10 km Monthly
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Table 1. Cont.

Data Source Spatial
Resolution

Temporal
Resolution

Precipitation The Global Precipitation
Climatology Centre 0.25◦ Monthly

Evapotranspiration The Global Land Evaporation
Amsterdam Model (GLEAM) 0.25◦ Monthly

Wind speed

The European Centre for
Medium-Range Weather Forecasts

Reanalysis v5 (ERA5)
0.25◦ Monthly

Near-surface air
temperature

Potential
evapotranspiration

NPP (for validate) The Global Land Surface Satellite
(GLASS) 500 m 8 days

Pacific Decadal
Oscillation (PDO) index The National Centers for

Environmental Information
- Monthly

Atlantic Multidecadal
Oscillation (AMO) index

Population The Global Human Settlement
Layer (GHSL) [53] 30′′ 5 years

Cropland The 30 m annual cropland dataset
of China [54] 30 m Yearly

The NDVI data were derived from NOAA AVHRR satellite data, with outputs gen-
erated twice a month. The AVHRR NDVI has undergone intercalibration and corrections
for atmospheric effects, cloud cover, and biases from the drift of satellite orbital [55]. It is
regarded as the most reliable dataset for long-term NDVI trend analysis [56] and effectively
represents vegetation conditions in China [57]. Monthly NDVI data were generated by
applying a maximum-value compositing procedure to merge the 15-day data. The land-use
data were obtained from a 1:10-scale multi-period thematic land-use database with manual
visual interpretation, using Landsat remote sensing imagery data from the United States
Landsat satellite as the main source of information. The solar radiation data were the
result of fusing meteorological station datasets and the ISCCP-HXG cloud product through
geo-weighted regression, and they had higher accuracy in long-term trend modeling than
the ISCCP-HXG, GEWEX-SRB, and CMSAF-CLARA-A2 satellite radiation products [52].
The GPCC precipitation was based on quality-controlled data from 67,200 stations around
the world with records lasting 10 years or more. The evapotranspiration data from the
GLEAM maximized the recovery of evaporation information contained in current satellite
observations of climate and environmental variables. ERA5 is currently commonly used for
meteorological reanalysis. The GLASS NPP is based on the GLASS GPP algorithm, which
is uniquely suited to reproducing inter-annual variability [58], and it is also mostly applied
to the validation of NPP calculated by other models (i.e., CASA model) [59,60]. To ensure
temporal consistency and spatial comparability, the study period was set from 1984 to 2014,
and all above data were interpolated onto a 0.25◦ × 0.25◦ grid by bilinear interpolation.
The Pacific Decadal Oscillation (PDO) was defined by the empirical orthogonal function
leading pattern of sea surface temperature anomalies in the North Pacific basin (typically,
polewards from 20◦N), and the Atlantic Multi-Decadal Oscillation (AMO) was identified
based on the average anomalies of sea surface temperatures in the North Atlantic basin,
typically over 0–80◦N. As important factors affecting global climate change, the PDO and
AMO have greatly impacted climate change in NC [61]. Population data were derived
from raw global census data, then harmonized and disaggregated into grid cells based
on the distribution, classification, and build-up of each corresponding decade as mapped
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in the GHSLs [53]. Cropland data were derived from a high-resolution dataset based on
satellite data, machine learning, and other frameworks that was more accurate and stable
than other datasets [54].

2.3. Methods

In this study, we studied desertification using trends in three NPP factors that were
representative of the roles of different factors. A flowchart of the methodological approach
is shown in Figure S1. The CASA model was employed to calculate the actual NPP (ANPP).
The CASA model is an ecological model that utilizes satellite, meteorological, and surface
data to estimate light-use efficiency [62,63]. This model has been extensively employed in
China [64–66]. ANPP represents NPP from climatic factors and human activities and is
essentially equivalent to the NPP from the GLASS based on Taylor scores [67], Pearson’s
correlation coefficient, linear fitting, etc. (Figure S3).

In the CASA model, ANPP is calculated by converting the absorbed photosynthetically
active radiation (APAR, g C MJ−1) into plant biomass:

ANPP(x, t) = APAR(x, t)× ε(x, t) (1)

where ε(x, t) denotes light-use efficiency, the spatial location is denoted by x, and t denotes
time. More detailed calculations of APAR and ε and the parameter settings can be found in
the Supplementary Materials (Method S1).

This study calculated a potential NPP (PNPP) that was generated only from climate
drivers using the modified Thornthwaite memorial model [68,69]. The calculation of PNPP
was expressed as follows:

PNPP(x, t) = 3000 ×
[
1 − e−0.0009695(V(x,t)−20)

]
(2)

where V(x, t) stands for the average annual actual evapotranspiration (mm). A detailed
calculation of PNPP is presented in the Supplementary Materials (Method S2).

The human-induced loss of NPP (HNPP), which reflects the impacts of human activi-
ties on vegetation productivity, is defined as the difference between PNPP and ANPP:

HNPP = PNPP − ANPP (3)

A flowchart of the implementation details of the CASA and modified Thornthwaite
models used to calculate ANPP, PNPP, and HNPP can be seen in the Supplementary Materials
(Figure S2).

The impacts of climate drivers and human activity on NPP can be attributed according
to the linear trends (S) of NPP, i.e., ANPP (SANPP), PNPP (SPNPP), and HNPP (SHNPP),
which are calculated as follows:

S =
(∑n

i=1 i×NPPi)−∑n
i=1 i× 1

n ∑n
i=1 NPPi

∑n
i=1 i2−n( 1

n ∑n
i=1 NPPi)

2 (4)

where i represents the sequential numbering of years, commencing with 1 for the year
1984, 2 for the year 1985, and so on (i = 1, 2, . . . 31), aligning with the study period. NPPi
symbolizes the NPP value for the ith year.

Generally, a positive trend in ANPP (SANPP > 0) means that desertification mitigation
occurred, while a negative SANPP (SANPP < 0) indicates that vegetation degradation and
desertification exacerbation occurred. A positive SPNPP (SPNPP > 0) indicates that climate
drivers benefited vegetation growth and contributed to desertification mitigation, whereas
a negative SHNPP (SHNPP < 0) means a decrease in human-induced vegetation deterioration;
in other words, human activity contributed to desertification mitigation and vice versa. De-
tailed criteria for assessing desertification mitigation or exacerbation and the contributions
of climate drivers and human activity are outlined in Table 2.
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Table 2. Criteria determining the impacts of climate drivers and human activity, both individually
and in combination, on the mitigation and exacerbation of desertification.

Desertification Trend SANPP SPNPP SHNPP Dominant Factors

Mitigation >0

<0 <0 Human activity

>0 >0 Climate drivers

>0 <0 Two factors

Exacerbation <0

<0 <0 Climate drivers

>0 >0 Human activity

<0 >0 Two factors

2.4. Empirical Orthogonal Function (EOF) Decomposition

To explore the dominant modes of NPP change, empirical orthogonal function (EOF)
decomposition was also performed for the NPP data. EOF analysis is a statistical technique
used to understand spatiotemporal patterns in data [70]. Through EOF analysis, most
of the changes in the variable field could be represented by a small number of modes,
the dependence of each mode was tested according to the criterion suggested by North
et al. [71], and the first mode was selected for analysis in this study.

3. Results
3.1. Attributions of Historical Desertification in NC during the Period from 1984 to 2014

Validation of the CASA model’s feasibility in calculating NPP was first carried out
by comparing it with GLASS data, which showed that the CASA model can effectively
re-produce the variations in NPP across space and time in the DPR of NC (Figure S3). The
spatial distribution of NPP in the DPR of NC is displayed in Figure 2. The annual mean
NPP from the GLASS could reach 39.41 g C m−2, and it increased from the southwest
to the northeast (Figure 2A). The ANPP calculated using the CASA model exhibited a
similar spatial pattern (Figure 2B). The average PNPP could reach 242.89 g C m−2 yr−1,
with its distribution also decreasing from the northeast to the southwest (Figure 2C). In
the regions of Juggar and Ala Shan, the annual mean PNPP surpassed the ANPP by wide
margins, reaching 264.38 g C m−2 and 258.9 g C m−2, indicating that vegetation recovery
in these areas had not yet reached the ecosystem’s carrying capacity. Conversely, the
PNPP was relatively low in Tarim and Qinghai, measuring less than 75 g C m−2 yr−1. In
addition, the annual mean HNPP was larger than 100 g C m−2 in central and eastern Inner
Mongolia and Juggar, which implies that human activities greatly influenced desertification
in these regions.

To evaluate the changes in desertification in NC, Figure 3 shows the linear trends for
NPP from 1984 to 2014. Both the NPP from the GLASS and the ANPP calculated using the
CASA model exhibited increasing trends in most regions of the DPR in NC over the past
three decades, demonstrating the mitigation of desertification (Figure 3A,B). Conversely, in
Hulunbuir, Otindag, and Horqin, the ANPP showed significant decreases, signifying the
exacerbation of desertification in these areas. For the trends in PNPP (Figure 3C), a similar
pattern of linear trends was observed in the desertification mitigation regions, indicating
that climate drivers were the dominant factor in mitigating desertification from 1984 to 2014.
The trends in PNPP also revealed a distinct difference in vegetation responses to climate
drivers between the eastern and western regions of the DPR of NC. Additionally, HNPP
changes generally exhibited a similar trend pattern to those caused by climate drivers
(Figure 3D); in other words, human activity played the opposite role in desertification
in NC. Specifically, the negative trend for HNPP in central and eastern Inner Mongolia
(Ordos, Otindag, Horqin, and Hulunbuir) and south Xinjiang (Tarim) means that human
activity supported ecological restoration and desertification mitigation. In Hexi Corridor,
Qinghai, and north Xinjiang (Juggar), a positive trend for HNPP indicates that human
activity decreased ecological restoration and led to the exacerbation of desertification.
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As indicated by the linear trend of NPP, overall, 72.74% of the DPR in NC exhibited
mitigation of desertification (SANPP > 0). These areas were primarily situated in Juggar,
Tarim, Qinghai, Ala Shan, Hexi Corridor, and Ordos (see inset in Figure 4A). Meanwhile,
27.26% of the area experienced an exacerbation of desertification, specifically Otindag
and Horqin (see inset in Figure 4B). To further quantify the effects of climate drivers and
hu-man activity on desertification in NC, according to the judgement criteria (Table 2), the
contributions of climate drivers accounted for 47.2% of the mitigation of desertification
in NC, while 39.6% of the mitigation was attributed to human activity, and the remaining
13.2% was influenced by both human activities and climate drivers (Figure 4A). There were
large spatial differences in the predominant factors that mitigated desertification, with
climate drivers emerging as the principal factor in the northwestern DPR (Juggar, Qinghai,
Ala Shan, and Hexi Corridor), while human activity dominated in the eastern DPR (Ordos,
Hulunbuir, Otindag, and Horqin). For the exacerbation of desertification, climate drivers
accounted for 48.5% of the area, while human activity accounted for 41.03%. Specifically,
desertification exacerbation dominated by climate drivers was primarily concentrated in
Tarim, Otindag, and Horqin, whereas desertification exacerbation due to human activity
was scattered across the western DPR in NC.
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Figure 4. Different factors (human activity, climate drivers, and both) affected the (A) mitigation and
(B) exacerbation of desertification during the period from 1984 to 2014. The inset figures in (A,B)
represent the total areas of desertification mitigation and exacerbation, respectively, and the pie charts
represent the contributions of each factor.

3.2. Shift in Desertification after 2000 in NC

Studies suggested that a reversal of desertification occurred around 2000 [72–74].
Additionally, climatic factors, such as the near-surface air temperature, precipitation, and
wind speed, have exhibited dramatic interdecadal variability [75–77]. Therefore, it was
necessary to further analyze whether the impacts of climate drivers and human activity on
desertification in NC have changed over the past three decades.

As illustrated by the empirical orthogonal function (EOF) decomposition of NPP
(Figure 5A), the spatial mode of NPP variability showed an east–west reversal pattern, with
the explained variance of the first leading mode of the EOF (EOF1) accounting for 34.65% of
the total. The principal component (PC1) of EOF1 showed temporal turning around the year
2000 (Figure 5B). Such a decadal shift was consistent with previous studies [42,78,79]. To
further analyze the desertification shift around the 2000s in NC, a comparison of the spatial
patterns of the linear trends in NPP between the periods of 1984–2000 and 2001–2014
is shown in Figure 6. The NPP growth rate greatly increased after 2000 (Figure 6A,B).
Similar changes appeared for ANPP except in the northeastern DPR, i.e., the Ordos, Horqin,
and Hulunbuir regions (Figure 6C,D). This may have been due to missing data in the
Hulunbuir region, uncertainties introduced by the methodology of directly extrapolating
ANPP from the long-term NDVI, or the degradation of the AVHRR sensors assimilated
by the GLASS [80,81]. The changes in NPP and ANPP corresponded to an opposite
change in PNPP, which exhibited noteworthy decreases in most regions before 2000 and
remarkable increases thereafter (Figure 6E,F). Meanwhile, the consistent patterns of change
in HNPP (Figure 6G,H) and PNPP suggest opposite contributions of climate drivers and
human activity to desertification in the Ordos, Horqin, and Hulunbuir regions. Before
2000, ANPP increased while PNPP decreased, indicating that human activity supported
the mitigation of desertification in these regions while climate drivers had a negative effect.
After 2000, PNPP showed an increasing trend, reflecting a positive effect of climate drivers
on the mitigation of desertification, as reported by Duan et al. [82], Gou et al. [83], and
Zhang et al. [84].
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Figure 5. First leading mode of EOF (EOF1) for NPP in NC. (A) Spatial pattern of loading vectors.
(B) Principal component (PC1) of EOF1.

 

Figure 6. The spatial pattern of the linear trends (slopes) for (A) NPP, (B) ANPP, (C) PNPP, and
(D) HNPP during the periods of (A,C,E,G) 1984-2000 and (B,D,F,H) 2001–2014. The numbers indicate
the trends of the corresponding regional averages, with red representing a positive trend and blue
representing a negative trend. ***, **, and * indicate 99%, 95%, and 90% confidence levels, respectively.
The black dots represent grid values that are significant at the 95% confidence level.

As shown in Figure 7, desertification-mitigated areas in the DPR of NC increased
by 17.89% after 2000 (67.16%) compared to before 2000 (49.27%). The main driving fac-
tors were also different. From 1984 to 2000, human activity exhibited a 44.8% contri-
bution to the mitigation of desertification, which decreased to 18.9% from 2001 to 2014
(Figure 7(top,middle bottom)). Conversely, after 2000, the contribution of human activity
to the exacerbation of desertification increased to 81.7%, while climate drivers exhibited
only a 12.3% contribution (Figure 7(middle top,bottom)). It should be noted that we used
ANPP because its algorithms have a physical meaning and it could be compared with
PNPP. We also compared the results with those calculated directly based on the GLASS NPP
(Figures S4 and S5). The results of the GLASS-based NPP data analyses were generally
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consistent with those of the CASA model-based ANPP analyses except for differences in
desertification changes up to the year 2000, which may have been due to the inferior miti-
gation of desertification estimated using ANPP in the Tarim region. The relative influence
of climate drivers and human activity on desertification varies across different regions
(Figure S6). In the Juggar region, desertification mitigation is primarily driven by climate
factors, while human activities dominate desertification exacerbation in this region. In
the Tarim region, the dynamics shifted after 2000 from a pattern in which human activity
contributed to mitigation while climate drivers led to exacerbation to one in which climate
drivers promoted mitigation while human activity contributed to worsening desertifica-
tion, probably due to human agricultural activities [33]. Desertification dynamics in the
Qianghai region are more pronounced than those in Tarim, with climate factors completely
dominating mitigation after 2000, while the exacerbation of desertification is entirely due to
human activity. For the Ala Shan, Hexi Corridor, and Ordos region, desertification mitiga-
tion has mainly been dominated by climate factors, although these factors also dominated
deterioration after 2000. Unlike other regions, the Otindag, Horqin, and Hulunbuir region
experienced desertification mitigation driven by human activity from 1984 to 2014, even
as climate change completely dominated after 2000. Overall, climate drivers played a
dominant role in desertification mitigation, while desertification exacerbation was caused
by human activity in the DPR of NC after 2000.

Figure 7. Different factors (human activity, climate drivers, and both) affected the mitigation and
exacerbation of desertification (top,middle top) from 1984 to 2000 and (middle bottom,bottom) from
2001 to 2014. The inset figures represent the total areas of desertification mitigation and exacerbation,
and the pie charts represent the contributions of each factor.

4. Discussion
4.1. Effects of Different Climatic Factors

The above analysis indicates that climate drivers promoted the mitigation of desertifi-
cation in NC after 2000. PNPP can reflect the influence of climate drivers on desertification.
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Therefore, according to the PNPP algorithm, an examination was conducted to deter-
mine the key factors (among the near-surface air temperature, surface evapotranspiration,
and precipitation) that dominated the mitigation of desertification in NC after 2000. A
rising temperature can increase soil organic carbon turnover and diminish soil produc-
tivity [85]. In addition, an increase in the near-surface air temperature can reduce soil
moisture in semi-arid regions [86] and trigger soil salinization [87], which exacerbates
desertification risk [88]. From 1984 to 2014, the entire DPR in NC experienced a tempera-
ture rise (Figure S7A). Meanwhile, surface evapotranspiration increased in most areas of
the DPR (Figure S7D), amplifying vegetation water requirements, particularly in irrigated
regions, and exacerbating soil erosion risk [89]. Compared to the period from 1984 to
2000 (Figure S7B), the temperature increase was mitigated after 2000 in the DPR of NC
(Figure S7C), which may have contributed to the mitigation of desertification. However,
after 2000, an increase in surface evapotranspiration occurred in these regions (Figure S7F),
likely due to human activities such as farming, over-grazing, and mining [90]. This phe-
nomenon also provides a partial explanation for the contrasting impacts of climate drivers
and human activity in these regions. In arid and semi-arid regions, water availability is
essential for governing ecosystems [91]. Precipitation has emerged as a dominant factor that
influences NPP in these regions [92,93]. During the period from 1984 to 2014, precipitation
significantly increased over the middle–western DPR, while it decreased over the western
DPR (Figure S7G), consistent with the trends of PNPP (Figure S8). Nevertheless, compared
with the precipitation trend from 1984 to 2000 (Figure S7H), precipitation increased in
Otindag, Horqin, and Hulunbuir after 2000 (Figure S7I), which favored the mitigation of
desertification in these regions. To further quantify the contributions of precipitation (P),
evapotranspiration (E), and the near-surface air temperature (T), a method used by Yang
et al. [94] was adopted. The terms ∂PNPP/∂P, ∂PNPP/∂E, and ∂PNPP/∂T are the sensitivi-
ties of individual factors (i.e., P, E, and T) to changes in PNPP, and the terms (∂PNPP/∂P)dP,
(∂PNPP/∂E)dE, and (∂PNPP/∂T)dT represent the contributions of P, E, and T, respectively,
to changes in PNPP. The details of the method can be seen in the Supplementary Materials
(Method S4). As shown in Figure 8, the spatial pattern of the PNPP changes (i.e., the
potential tendency for desertification) induced by the changes in precipitation (dP) (i.e.,
(∂PNPP/∂P) dP) indicated a positive contribution of dP to desertification mitigation in
most regions (Figure 8A) because the sensitivity of PNPP to change in P (i.e., (PNPP/∂P))
was positive in the DPR (Figure 8B), followed by the change in P (∆P). Moreover, it is
clear that precipitation contributed more than evaporation and temperature (Figure 8D,G).
Several studies have suggested that soil moisture is an important factor for vegetation in
arid regions, but its impacts show large spatial variability and temporal lag [95–97]. In
addition, soil moisture is regulated by precipitation and surface evapotranspiration. Thus,
impacts of different climatic factors should reflect the effects of soil moisture.

Figure 8. Attributions of desertification in the DPR to climate factors from 1984 to 2014. (A) The
contribution of precipitation (P) to PNPP change, (B) the sensitivity of PNPP to P, and (C) mean
changes (∆) in P (1984–2014). (D–F) and (G–I) are the same as (A–C) but for evapotranspiration (E)
and temperature (T).
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4.2. Atmospheric Circulation and Internal Variability

Precipitation was demonstrated to be a dominant factor for desertification by the
above analysis, as its variations were tightly linked to changes in atmospheric circulation.
To discuss the mechanism behind precipitation variations, we focus on the rainy season
from April to September, which constitutes 87% of the total annual precipitation (Figure S9).
The sources and transportation of water vapor were examined at 500 hPa and 850 hPa
(Figure 9). Precipitation in the Juggar region is influenced by northwestward airflow during
the rainy season (Figure 9A,B). Generally, little water vapor reaches the inland arid region
through advection, so Juggar primarily relies on the obstruction posed by the tall mountain
range for precipitation, which primarily occurs on the northern slopes of the Tianshan
Mountain [98]. The Tarim region, encircled by mountain ranges to the west, south, and
north, experiences restricted access to water vapor from the westerlies, which consequently
leads to limited precipitation. It mainly relies on water vapor transported by low-level
(850 hPa) easterly flows from the east side of the Tarim region (Figure 9A). As it is situated
in the northeastern part of the Tibetan Plateau, Qinghai primarily receives water vapor for
precipitation from the Eurasian landmass via the westerlies and from the northern Indian
subcontinent via the Indian summer monsoons [99,100]. The precipitation in Ala Shan,
Hexi Corridor, and Ordos is influenced by the westerly trough, which is characterized by
a prevailing northwest airflow and low-level (850 hPa) water vapor from the southwest
monsoon winds. The Hulunbuir, Otindag, and Horqin regions are located be-hind an aloft
westerly trough, which brings water vapor. Regressions of water vapor flux divergence
and horizontal wind at 500 hPa and 850 hPa (Figure 9C,D) show that the anomalous east
winds over the region from Northeast China to Mongolia support water vapor convergence
over Ala Shan, Hexi Corridor, and Ordos but reduce water vapor transport from the
upstream regions to Hulunbuir, Otindag, and Horqin. Accompanied by the anomalous
northeast winds over the north side of Tianshan Mountain, water vapor convergence
increases over Juggar. Meanwhile, the anomalous west winds over eastern Tarim restrain
water vapor transport from the east side. Thus, water vapor convergence there decreases.
These anomalies of water vapor divergence related to atmospheric circulation anomalies
are generally consistent with precipitation trends (Figure 8G), which partly illustrate the
causes of precipitation changes.

 

Figure 9. Spatial distributions of specific humidity (A,B), water vapor flux divergence (shading)
and horizontal wind (vectors) (C,D), and their regressions against the precipitation series at 850 hPa
(left line) and 500 hPa (right line). The black slashes and blue vectors represent grid values that are
significant at the 90% confidence level. The dashed boxes are the different areas in the DPR.

Decadal-scale internal climate variability, such as the phases of the PDO and AMO,
affects atmospheric circulation patterns. After the 1990s, the AMO shifted from a cold
phase to a warm phase, while the PDO transitioned from a warm phase to a cold phase
(Figure 10). These changes in oceanic temperature anomaly patterns triggered adjustments
in atmospheric circulation and thereby influenced precipitation in NC [101,102]. The
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AMO transitioned from a negative phase to a positive phase, which triggered a remotely
correlated wave train over Eurasia, an atmospheric fluctuation that can produce opposing
climate effects in different regions [103,104]. Over the Mongolian Plateau, this wave train
manifests as an anti-cyclonic anomaly [105], which enhances the water vapor transported to
the arid region of Northwest China, resulting in increased precipitation [106]. In addition,
there is a strong correlation between the annual precipitation in Northwest China and the
AMO [107]. During the warm AMO phase, the vertical coupling between the upper-level
anti-cyclone and the lower-level low-pressure system facilitates ascending motion in NC,
which contributes to increased precipitation. During the cold AMO phase, contrary results
were observed [108]. During the cold phases of the PDO, a lower-troposphere anti-cyclonic
anomaly is induced over the North Pacific, which leads to wet and warm southeasterly
winds and above-normal precipitation over NC [109]. The cold phase of the PDO extends
the western Pacific subtropical high westward, weakening the East Asian summer monsoon,
which leads to a shift in the position of the East Asian westerly jet, culminating in the
emergence of easterly anomalies over East Asia [110]. Additionally, along the edge of the
subtropical high, a southwesterly flow supports water vapor transport to NC, resulting in
increased precipitation [61]. It should also be recognized that the effect of climate drivers
on NPP is lagged. Thus, the shift in desertification occurred around 2000.
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4.3. Human Activity in NC

Confronting the serious problem of desertification, the Chinese government has estab-
lished and implemented a sequence of large-scale environmental and ecological recovery
programs since 1978, such as the Three North’s Forest Shelterbelt Program and Soil and
Water Conservation Program—National [111]. These ecological programs have reduced
the area of desertification and greatly increased regional vegetation cover via afforesta-
tion [18,112]. Particularly in the southern part of Ordos, desertification was mitigated before
2000 under very unfavorable climatic conditions (Figure 6). This success was attributed
to investments by the local government and its management [113]. This also occurred in
Horqin [114]. Although the need to combat desertification was already known before 2000,
efforts to stop the deteriorating trend had failed (Figure 7). In response to this sustainability
emergency, several projects were carried out around 2000, including the Natural Forest
Conservation Program and the Grain-for-Green Program, and these programs generally
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contributed positively to mitigating desertification and controlling dust storms [79,111,115].
Unfortunately, the desertification situations in some regions, such as Otindag and Horqin,
were not sustainably improved due to increases in grazing and cropland brought about
by the increase in population as well as irrational afforestation [116,117]. The population,
which can partly reflect human activity, has been growing in all regions, especially after
2000, and this has been accompanied by a rising share of cropland area (Figure 11). These
findings generally support that human activity dominates the desertification exacerbation
from 2001 to 2014 (as shown by Figure 7(bottom)). Specifically, in Hulunbuir, Otindag,
and Horqin before 2000, the reduction in the area of cropland corresponded to a policy
of returning farmland to forests [65,116] and to desertification degradation, which was
dominated by human activity (as shown by Figure 7(top)). Therefore, in a situation where
desertification is likely to be unceasingly exacerbated in the near future [94], policies suited
to local conditions that take into account the driving causes of desertification are needed to
achieve sustainable development.

 
Figure 11. The population and cropland changes in the DPR. (A) The entire DPR; (B) Juggar; (C) Tarim;
(D) Qinghai; (E) Ala Shan, Hexi Corridor, and Ordos; and (F) Hulunbuir, Otindag, and Horqin. The
blue line represents the population and the red line represents the percentage of the cropland area.

4.4. Limitations

In this study, the evolution of desertification and its cause in the DPR of NC were
detected by regarding NPP as a proxy; this approach still has some limitations. Although
a decrease in plant biomass as a partial indication of land degradation, desertification is
a complex process, and we still need a comprehensive indicator for representing deserti-
fication [9]. In addition, this study analyzed the evolution of desertification on a coarse
resolution, which might be awkward in areas with complex terrain and underlying surface.
Future research should incorporate specific satellite observations to provide more accurate
assessments.

Moreover, this study adopts a narrow definition of human activities, focusing only on
direct impacts, such as changes in subsurface types, while considering indirect influences,
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like greenhouse gas emissions, as climatic factors. This limited perspective may lead to an
underestimation of the broader impacts of human activities on desertification.

5. Conclusions

This study employed NPP as a quantitative indicator to monitor the desertification
trend from 1984 to 2014 and to assess the relative contributions of climate drivers and
human activity. The results show that 72.74% of the total area of the DPR in NC expe-
rienced desertification mitigation from 1984 to 2014. These areas were predominantly
in the northern and northwestern regions. Meanwhile, the regions with desertification
exacerbation accounted for 27.26% of the DPR. This was mainly observed in Otindag. The
SPNPP and SHNPP indicated that climate drivers served as the primary factors influencing
the desertification process: they contributed to 47.2% of mitigation and 48.5% of exacerba-
tion, whereas human activity accounted for 39.6% of mitigation and 41.0% of exacerbation.
The remaining 13.2% and 10.5% of the area were influenced by both human activity and
climate drivers.

A shift in desertification occurred around 2000, with mitigation appearing in most
regions. Before 2000, nearly half of the DPR areas (49.27%) experienced mitigation, with
human activity having a slightly stronger positive effect (44.8%) compared to climate drivers
(40.9%). Since 2000, there has been substantial desertification mitigation (67.16%), with
climate drivers becoming the dominant positive factor (66.8%). However, 32.84% of the DPR
still experienced desertification exacerbation, of which human activity contributed 81.7%.

In addition to the near-surface air temperature and surface evapotranspiration, precip-
itation is the primary climatic factor that has promoted the mitigation of desertification in
the DPR of NC since 2000. The abnormal easterly winds caused by the phase changes of
the AMO and PDO transport additional water vapor over Ala Shan, Hexi Corridor, and
Ordos, thereby increasing precipitation, enhancing the climate’s ability to affect vegetation,
and helping to alleviate desertification, which is also influenced by human activity. While
many ecological projects have helped to control its expansion, irrational land use persists.
Although the impact of changes in climatic factors is stronger than that of human activity,
human activity seems more controllable than climate drivers when changing desertifica-
tion, even under unfavorable climatic conditions (i.e., increases in both the near-surface air
temperature and evapotranspiration and decreases in precipitation), such as the situation
in Ordos. Meanwhile, even when climatic conditions are favorable for desertification
mitigation, irrational human activities can still cause desertification exacerbation, such as
in Horqin.

This study quantified desertification changes in the DPR of NC during the period
of 1984–2014 and detected the main causes across different time periods and regions.
The research results are beneficial for a deep understanding of desertification and the
formation mechanism under the background of climate change, and these also offer a
scientific foundation for the targeted management of desertification, with strategies tailored
to specific temporal and regional contexts.
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this study; Figure S2: Detailed flowchart for calculating ANPP, PNPP, and HNPP; Figure S3: The
validation of the CASA model by GLASS data; Figure S4: Contribution of factors to desertification
change but using Glass NPP; Figure S5: The same as Figure S4 but for different time periods;
Figure S6: Contributions of climate change and human activities to different areas. Figure S7:
Spatial distribution of temperature evaporation precipitation trends; Figure S8: Scatters of the near-
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