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Abstract: Accurate and timely estimation of oat biomass is crucial for the development of sustainable
and efficient agricultural practices. This research focused on estimating and predicting forage oat
biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera
was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were
collected at six stages synchronized with UAV flights. Data analysis involved correlations and
Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage
biomass were developed using various machine learning techniques: linear regression, Random
Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest
model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set,
followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error
(RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction
accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in
estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate
estimations for this purpose.

Keywords: germination rate; machine learning; remote sensing; photogrammetry; vegetation indices

1. Introduction

Several countries are exploring and implementing various novel strategies to improve
the availability of range forage for livestock in order to ensure food security, economic
well-being and social cohesion of people [1]. Nevertheless, the increase in food demand and
environmental pressure on soils have highlighted the urgent need to adopt more sustainable
and efficient agricultural practices and technologies. These should focus on mitigating
negative impacts and ensuring the long-term sustained production and efficiency of these
pastures [2–4]. Forages, which include a variety of crops such as grasses, legumes, and
other species used for green fodder, hay, and silage, constitute the main source of livestock
wealth and are fundamental to these industries [5,6]. Being essential for livestock feeding
by providing the necessary nutrients for growth and production, it is crucial to increase
the rate of genetic improvement and conservation of forages to maintain the industry’s
competitiveness [7,8].
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The most common grasses used as forage include forage corn, oat, wheat, barley, and
rye grass, which are valued for their energy content and their ability to produce large
volumes of biomass even in dry lands [9,10]. Among forage grasses, Avena sativa stands
out as a highly important temporary grass worldwide due to its remarkable adaptability to
a wide range of altitudes and climates [11]. In the Peruvian Andes, oat grows at altitudes
ranging from 2500 to 4000 m above sea level and shows exceptional adaptability and high
nutritional quality [12]. Its use, either alone or in combination with other forage legumes,
enriches the protein content of rangelands, increasing their value as a food resource for
livestock [13,14].

Agronomic variables related to yield, seedling growth, individual plant height, and
others are essential as they play a crucial role in understanding and monitoring crop health
and productivity [15]. They are also used to guide management practices, such as fertilizer
application, irrigation, and harvesting [16]. Although conventional evaluation methods
involve the use of manual measurement techniques and equipment, the limitations of
direct observation make the process inefficient, time-consuming and prone to error [17].
Additionally, limiting measurements to only a few plants may not provide an accurate
assessment of the entire field [18].

The use of emerging technologies that involve unmanned aerial vehicles (UAVs) in
precision agriculture offers unprecedented covariables with high spectral, spatial, and
temporal resolution, which could be linked to agronomic variables, deriving vegetation
height data and multi-angle observations. Multispectral sensors represent a promising
alternative for crop measurement and monitoring within the framework of precision
agriculture [19]. This methodology relies on the intensive collection of spatiotemporal
data and images to optimize resource use and improve agricultural production [20]. It
also provides instruments and a variety of digital models to calculate plant height and
other agronomic characteristics, which are utilized by UAV remote sensing technology
through its various sensors [21]. This offers benefits such as ease of operation, flexibility,
adaptability, and reduced costs [22], leading to a notable increase in its use within the
agricultural research community [23,24].

In the context of precision agriculture, it is essential to have accurate phenological
information to estimate agronomic variables from aerial images obtained with UAVs [25].
The precision agriculture approach using UAVs needs to be complemented with on-the-
ground measurements, has demonstrated significant correlations, and has been successfully
applied to a variety of crops such as maize [16,26], wheat [27,28], barley [29,30], and grass-
lands [31–33]. To assess morphological variables using unmanned aerial vehicles, indicators
such as plant height [18], germination rate [34,35], emergence [36], and biomass [37–39],
among others, are used. These characteristics are employed in traditional linear regression
algorithms and empirical models to predict crop yield and biomass, combining crop spectra
with these agronomic variables [38]. These characteristics are used in traditional linear
regression algorithms and empirical models to predict crop yield and biomass, combining
crop spectra with these agronomic variables. It is also necessary to consider that these
methods are already being applied in various vegetable crops. However, they have not
been developed under specific variables and conditions [40–43]. However, protocols must
be evaluated and adapted to each specific crop for practical application and for the rapid
extraction of image features that represent pasture yield traits [44].

In this context, the purpose of this study is to develop precise and efficient methods to
estimate oat yield using the germination index, agronomic variables, and spectral indices
obtained through UAVs equipped with multispectral cameras, all through robust predictive
models. These methods will enable the development of innovative solutions and, in the
medium to long term, improve the efficiency of forage production while maximizing both
the yield and quality of crops. However, it is important to highlight that the originality of
this study lies in its focus on obtaining effective data through unmanned aerial vehicles
under the specific conditions of the Peruvian Andes, a perspective that has not been
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sufficiently explored in previous studies related to forage in these regions. Therefore,
emphasizing this originality is crucial to underscore the unique contribution of this study.

2. Materials and Methods
2.1. Experimental Site

The field experiment was conducted at the Santa Ana Agricultural Experimental
Center (hereafter referred to as Santa Ana), part of the National Institute of Agrarian
Innovation (INIA) (75◦13′17.60′′W, 12◦0′42.36′′S), located in the Mantaro Valley in the
central highlands of Peru. Santa Ana is situated at an altitude ranging from 3303 to 3325 m
above sea level. The region’s climate is characterized by a rainy season from November to
March, a transitional phase from April to October, and a dry season from May to August,
with a total annual precipitation of 477 mm [45]. Average temperatures range from 3.90
to 20.2 ◦C, with the lowest temperatures and frequent frosts occurring between May and
August [46,47].

The experimental work was carried out in plots, 15 m long by 5 m wide (Figure 1),
each subdivided into five strips.
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Figure 1. Location of the field experiment and experimental design of six local oat varieties in Santa
Ana, showing the ground control points (GCPs).

The oat lines tested in the experiment were INIA 2000 and SANTA ANA, both origi-
nating in North America, and introduced for grain production. After a process of genetic
improvement and phenotypic selection in the Mantaro Valley, some showed potential for
forage production. Their homogeneity has been studied for years, standardizing character-
istics such as size, yield, disease resistance and adaptability to different altitudes. The latter
generated five sublines called Santa Ana short medium size (SA-MB), Santa Ana early tall
size (SA-PA), Santa Ana late medium size (SA-T), Santa Ana early low size (SA-PB), and
Santa Ana medium high stature (SA-MA) (INIA 2000).
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2.2. Methodological Framework

Figure 2 shows the comprehensive methodological framework used in this study,
providing an overview of the sequential and integrative processes involved. The study is
divided into several key stages: the first involves the collection of agronomic data, followed
by the acquisition of information through UAV flights equipped with a multispectral cam-
era. The third stage encompasses the extraction of spectral indices and photogrammetric
processes, and finally, the training and validation of predictive models are conducted.
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Surface Model); DTM (Digital Terrain Model); DHM (Digital Height Model).

2.3. Image Acquisition and Preprocessing

The experiment was conducted using a multispectral camera MicaSense Red Edge P
(Seattle, WA, USA) mounted on a DJI Matrice 300 RTK UAV (DJI Technology Co., Ltd., Shen-
zhen, China). The camera takes 16-bit multispectral digital images in five similar spectral
bands—blue (475 ± 32 nm), green (560 ± 27 nm), red (668 ± 14 nm), NIR (842 ± 40 nm),
and RE (717 ± 12 nm)—with a resolution of 1.6 megapixels (1456 x 1088 pixels); in addition,
a GNSS receiver (D-RTK2 Mobile Station DJI, China) was used as a real-time kinematic
(RTK) base station. Figure 3 shows the equipment used for capturing multispectral images
in the evaluation plot.
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The flight plan was executed around noon local time, at a height above ground of
150 m. Images were taken every 2.0 s with 75% front and side overlap. These digital images
were stored in 16-bit .tiff format.

The process began with geolocating the images captured by the UAV equipped with a
multispectral sensor, ensuring the accuracy of the geographic coordinates of the images. Six
ground control points were used as fixed references on the terrain, allowing for correction of
any deviation in the position of the images captured by the UAV. Once precise geolocation
was established, individual images were aligned to form a coherent mosaic, a continuous
and unified representation of the study area, where overlaps were removed and perspective
differences were adjusted. Precise alignment is crucial to ensure that all geographic features
are accurately represented in the mosaic.

Multispectral images were captured using the Micasense Red Edge P camera from an
approximate height of 40 m, with an average of 14 flights conducted every 7 days. The UAV
flight time was approximately 04 min and 15 s to cover the entire experimental field area.

During preprocessing, radiometric calibration and correction of the information were
carried out. This step was essential to improve data quality by adjusting variations in
lighting and atmospheric conditions that can affect the accuracy of measurements captured
by the sensors. Radiometric calibration ensured that reflectance values in the images were
consistent and comparable.

Photogrammetric processing was performed using Pix4D Pro Mapper v4.8.4. software
(Prilly, Switzerland), geometrically corrected with field GCPs into the processing flow
to enhance the topographic accuracy of the point cloud and the reflectance bands of the
orthomosaic, with a final Ground Sampling Distance (GSD) of 2.8 cm. From the point cloud,
a Digital Surface Model (DSM) was generated with the same resolution as the orthomosaic
and exported in .tiff format.

Subsequently, a high-resolution orthomosaic was generated, geometrically corrected
to maintain a uniform scale throughout its extent, eliminating distortions caused by per-
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spective and topography. This allowed for precise measurements of distances, areas, and
other features directly on the image.

Finally, spectral index maps were generated, such as the NDVI (Normalized Difference
Vegetation Index), which are valuable tools for analyzing vegetation health and vigor. These
indices were applied in various prediction algorithms, enabling informed decisions linked
to precision agriculture.

2.4. Field Data Acquisition

The experimental work was carried out between December 2022 and July 2023. Twenty-
four experimental plots measuring 16 m in length by 5 m in width were used, each subdi-
vided into five rows. Six varieties of oats were selected based on their earliness and size,
with four replications per variety. A total of 50 seeds were planted in each row, totaling 250
seeds per plot. Agronomic management followed conventional standards, including soil
preparation with disc plowing and harrowing. Planting was carried out in rows, arranged
in five rows per treatment, with 50 oat seeds planted in each row, spaced 30 cm apart.

Since planting coincided with the rainy season, additional irrigation was not necessary.
Manual weeding was performed, and 150 kg of urea fertilizer was applied. Evaluations
were conducted every thirty days throughout the experimental period. Additionally,
six georeferenced concrete control points were installed in the surrounding area of the
experimental plot.

In each plot, sampling points were marked every two meters along its length, specifi-
cally selecting the three central rows for evaluation. Biometric measurements of oat plants
in the central rows were taken, with a total of 21 samples per plot. Plant height measure-
ments were conducted from March to July 2023, using a 2 m aluminum ruler for data
recording. Plant survival was assessed on four occasions in December 2022 and January
and March 2023, applying the survival percentage formula [48].

% Survival =
(Number of surviving plants)
(Number of plants planted)

× 100 (1)

A flower count was conducted in March 2023. During the harvest on 25 July 2023, dry
biomass was weighed using an analytical balance, and the number of tillers per plant was
counted. In the post-harvest phase, seed weight was evaluated both per plant and per plot,
proceeding with manual separation of straw from seeds and using a sorting machine for
this purpose.

In the laboratory, two germination tests were conducted. The first test took place in
April 2023 in an incubator at 25 ◦C, using four replicates of 100 seeds. Evaluations were
conducted at 3, 7, and 10 days. The second test was conducted in July 2023 in a germination
chamber at 25 ◦C under constant light and dark conditions, using trays with 72 holes filled
with sterile peat. These evaluations were also conducted at 3, 7, and 10 days. Results were
expressed as percentages of normal seedlings, abnormal seedlings, and hard, fresh, and
dead seeds using the methodology described in [48].

% Germination =
(Total seeds planted)

(Total seeds germinated)
× 100 (2)

A total of six data collection sessions were conducted during the growing season,
spanning from the early stem elongation stage to the late senescence stage. These field
measurements were taken in December (14, 21) of 2022 and January 2023 (6,18), as well
as on 22 February and 8 March 2023, on the same days as the studies and UAV flights
conducted in December (14, 21, 28) of 2022, as well as January (6, 11, 18, 25), February (8,
10, 16, 22), and March (2, 8, 15) of 2023, totaling 14 flights to provide real-time ground data.
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2.5. Extraction and Processing of Multispectral Images

For the processing and extraction of multispectral data, the photogrammetric process
was initiated using Pix4D Pro Mapper software (Prilly, Switzerland). This software is
essential for generating detailed orthomosaics from multiple images captured by the
multispectral camera mounted on the UAV. This process included not only the generation
of digital elevation models but also the fusion of spectral data to enhance the spatial and
thematic resolution of the resulting images.

The R studio software (R Core Team) was used for the analysis and manipulation of the
obtained geospatial data. Additionally, the Terra package for Hijmans [49] was employed
for image processing and the extraction of spectral indices, and Quantum Geographical
Information System software (QGIS 2.18.14, QGIS Development Team, Raleigh, NC, USA)
was used for the vectorization of the images, enabling a more detailed analysis of the
study plots.

For the extraction of indices, the derived spectral bands were used based on biblio-
graphic equations from the Terra package [49]. With the indices calculated, a 30 cm buffer
was created around the central point of each plant, and within this buffer, the zonal statistics
of the maximum values of all pixels contained within the buffer were extracted.

To develop the benchmark models, we initially generated a set of 21 spectral indices.
These indices included vegetation, soil, and water indices, and they are closely related to
crop biomass. For each sampled point, a circular buffer with a radius of 0.25 m was used.
The vegetation indices were calculated through different combinations of reflectance and
compiled as predictors along with the pure spectral bands (Table 1).

Table 1. Spectral indices derived from UAV-acquired multispectral images.

Indices Equation Description

Differenced Vegetation Index (DVI) Nir − Red [50]
Normalized Difference Vegetation Index (NDVI) Nir−Red

Nir+Red
[51]

Green Normalized Difference Vegetation (GNDVI) Nir−Green
Nir+Green [52]

Normalized Difference Red Edge (NDRE) Nir−Re
Nir+Re [52]

Enhanced Normalized Difference Vegetation Index (ENDVI) 2×Nir−Red−Blue
2×Nir+Red+Blue

[53]
Renormalized Difference Vegetation Index (RDVI) Nir−Red√

Nir+Red
[54]

Enhanced Vegetation Index (EVI) G × (Nir−Red)
(Nir+C1×Red−C2×Blue+L)

[55]

Visible Difference Vegetation Index (VDVI) Nir−Red
Nir+Red+Green

[56]
Wide Dynamic Range Vegetation Index (WDRDVI) (Nir−Red)√

Nir+Red
[57]

Transformed Vegetation Index (TVI) 0.5 × [120 × (Nir − Green)] [58]
Soil-Adjusted Vegetation index (SAVI) Nir−Red

Nir+Red+L × (1 + L) [59]
Optimized Soil-Adjusted Vegetation Index (OSAVI) (Nir−Red)

Nir+Red+0.16
[59]

Content Validity Index (CVI) Nir ×
(

Red
Green

)
[60]

Modified Soil Adjusted Vegetation Index (MSAVI) 2×Nir+1
√

(2 x Nir+1)2−8×(Nir−Red)
2

[61]

Modified Chlorophyll Absorption in Reflectance Index (MCARI) (Red−Green)−2×(Red−Blue)
Red

Green

[62]

Transformed Chlorophyll Absorption in the Reflectance Index (TCARI) 3 × ((Red − Green)− 0.2 × (Red − Blue)× ( Red
Green )) [63]

Normalized Pigment Chlorophyll Reflectance (NPCI) Red−Blue
Red+Blue

[60,64]
Green Coverage Index (GCI) Nir

Green − 1 [56]
Red-Edge Chlorophyll Index (RECI) Nir

Re − 1 [65]
Structure Insensitive Pigment Index (SIPI) Nir−Blue

Nir−Red
[66]

Anthocyanin Reflectance Index (ARI) 1
Green − 1

Red [67]

Multispectral imagery central wavelengths: Blue, Green, Red, Red edge (Re), and Nir: 474, 560, 668, 717, and
840 nm.

The selection of these indices was not random. Each index was chosen based on
its theoretical and empirical capacity to reflect key aspects of crop condition and health,
such as biomass, soil coverage, and plant water content, which are critical for accurate
yield estimation.

We initially calculated a broad range of indices to ensure that we covered all potential
variables that could influence oat yield. Subsequently, we applied statistical techniques
to select the two most significant indices, which provided valuable information for the
predictive models.
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2.6. Data Analysis and Selection of Predictor Variables

For the analysis of agronomic data, homoscedasticity tests and normality tests [68]
were conducted to determine the distribution and symmetry of the data. Additionally, box-
plots were constructed to identify outliers, enabling efficient data cleaning and refinement.

Spectral indices were extracted for each flight date, totaling 28 flights for oat crop
monitoring. Twenty-one spectral indices were evaluated in each flight. Subsequently,
a correlation matrix was generated between agronomic variables and spectral indices
derived from multispectral images, considering flight dates and days elapsed since planting,
ranging from 20 to 250 days. Out of the 21 indices evaluated, only 2 exhibited suitable
behavior or correlation for further processing: NDVI and NDRE.

Furthermore, a significance matrix was developed to identify indices showing higher
Pearson’s correlation with agronomic variables. It was observed that data obtained beyond
100 days post-planting exhibited stronger correlations with agronomic variables measured
in the field. The process included correlating variables derived from spectral indices with
agronomic parameters measured using traditional techniques such as height, germination
percentage, flower count, grain dry matter, stem count, survival percentage, and dry
biomass weight. This correlation was crucial for identifying significant relationships and
understanding complex patterns affecting biomass estimation.

Using this information, Principal Component Analysis (PCA) was performed consid-
ering only days post-planting exceeding 100. Subsequently, a detailed correlation analysis
was conducted to identify spectral indices most strongly related to agronomic variables.
This approach helped identify critical periods and the most relevant spectral indices. These
tools enabled clustering of areas with similar characteristics and reduced data dimensional-
ity, facilitating identification of the most relevant variables.

Identification of key variables for the study was accomplished through a Pearson
correlation matrix. This matrix identified variables significantly correlated with the variable
of interest, namely dry biomass weight and the most representative flight days.

2.6.1. Modeling and Estimation Algorithms

We use four predictive regression algorithms. First, linear regression models the rela-
tionship between independent variables and a dependent variable through a straight line,
which is useful for predicting numerical value [69–71]. Second, Random Forest combines
multiple decision trees to improve prediction accuracy and reduce overfitting [72–74].

Third, Neural Networks (NNs) are brain-inspired models composed of layers of
interconnected nodes that process information and learn complex patterns through feed-
back [75]. These models are suitable for deep learning and complex pattern recognition
problems [76,77].

Finally, Support Vector Machines (SVMs) are supervised learning algorithms that
seek the optimal hyperplane to separate data into different classes in a high-dimensional
space [78]. They are effective on both small and large datasets and can be applied to linear
and nonlinear classification problems. Although they may face computational challenges
with very large datasets, optimization techniques and advanced computational resources
can enhance their efficiency [79,80].

2.6.2. Model Tuning and Evaluation

The response variable was selected as a vector, while the predictor variables were
grouped into a matrix, with the data split into 70% for training and 30% for testing. The
split was performed randomly and not based on different time periods.

To optimize the performance of the machine learning models, it is essential to fine-tune
their hyperparameters. We used the training samples to calibrate the models using the
Grid Search method [81,82] which exhaustively evaluates all possible combinations of
hyperparameters. Ten-fold cross-validation and the coefficient of determination (R2) were
employed as evaluation metrics to ensure the robustness of the models [83,84].
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For Random Forest, the hyperparameters ‘ntree’ (testing values between 20 and 180)
and ‘mtry’ (testing values between 2 and 14) were adjusted, with other parameters kept at
their default settings. For the Support Vector Machine (SVM), ‘C’ (testing values between
0.01 and 10) and ‘Gamma’ (testing values between 0.1 and 1) were adjusted, while the
remaining parameters were also set to their default values.

The architecture of the neural network used has two hidden layers with 6 and 5 neu-
rons, respectively, with an input layer with the number of nodes equal to the number of
predictive variables and the output layer with one neuron and a linear continuous response.

The modeling was carried out in R, using the ‘randomForest’, ‘e1071’ and neuralnet
libraries [85].

3. Results
3.1. Descriptive Statistics of Agronomic Variables

Multiple metrics reflecting oat crop development were evaluated. Various descriptive
statistics were analyzed (Table 2) for the parameters of each evaluated variable.

Table 2. Descriptive agronomic statistics of oat variables.

Agronomic Variable Prom Mean Min Max σ

Height (meters) (h) 1.50 1.50 1.13 1.88 0.15
Tillers (t) 29.97 29.00 5.00 61.00 11.57
Dry matter (kg) (dm) 0.29 0.28 0.03 0.63 0.12
Grain weight (kg) (gw) 0.04 0.04 0.00 0.10 0.02
Flowers (f) 14.76 16.00 3.00 26.00 5.38
Germination percentage (gp) 0.72 0.79 0.30 0.88 0.18
Germination in emergency chamber (gem) 0.62 0.71 0.15 0.78 0.18
Total plants (tp) 31.87 33.00 15.00 40.00 5.47
Survival rate (sr) 0.64 0.66 0.30 0.80 0.11
Germination rate (gr) 10.27 11.29 4.29 12.57 2.55

The oat at harvest reached an average height of 1.50 m, with a standard deviation of
0.15 m, and a range varying between 1.13 and 1.88 m. The number of stems per plant had a
mean of 29.97, with a standard deviation of 11.57, ranging from 5 to 61 stems. Regarding
dry matter, plants averaged 0.29 kg, with a standard deviation of 0.12 kg and a range
from 0.03 to 0.63 kg. Grain yield per plant averaged 0.04 kg, with a standard deviation
of 0.02 kg and a range from 0.00 to 0.10 kg. Additionally, an average of 14.76 flowers per
plant was observed, with a standard deviation of 5.38, and a range fluctuating between 3
and 26 flowers. Germination data showed an average percentage of 72%, with a standard
deviation of 18% and a range from 30% to 88%.

3.2. Spectral Variable Analysis
3.2.1. Significance Correlation Matrix

The correlation matrix (Figure 4) displays Pearson correlation coefficients between
agronomic variables and filtered spectral indices, calculated using the Corrplot library for
Wei T [86], reflecting their linear relationships. Matrix values range from −1 to 1, where
1 indicates a perfect positive correlation, −1 is a perfect negative correlation, and 0 is no
correlation. The main diagonal of the matrix always holds 1, as each variable correlates
perfectly with itself.
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r—Pearson correlation coefficient; significant at the 5% probability level; X = not significant.

This analysis was crucial for identifying patterns, detecting multicollinearity, and
selecting the most relevant variables concerning dry biomass weight (bw), without seeds.
In the correlation analysis with dry matter (dm) as the variable of interest, varying levels of
association with several variables were found.

The correlation coefficient between dry matter (dm) and NDRE_160 was −0.1, indicat-
ing a weak negative correlation. NDVI, measured on days 111, 131, 141, and 146, showed
correlation values ranging from 0.15 to 0.21 with dry matter, suggesting a weak to moderate
positive correlation. Similarly, agronomic variables exhibited a positive correlation of
0.2 with dry matter (dm). In contrast, the number of stems displayed a strong positive
correlation of 0.76 with dry matter, suggesting that a higher number of stems is strongly
associated with an increase in dry matter. Additionally, the grain weight showed a positive
correlation of 0.2 with dry matter. The flight days that showed the highest correlation were
111, 118, 125, 131, 141, 146, 153, 160, and 167.

3.2.2. Principal Component Analysis

Principal Component Analysis (PCA) enabled a reduction in data dimensionality
by eliminating redundancies and focusing the analysis on the most influential variables.
This reduction not only simplified the complexity of the dataset but also decreased both
squared and absolute errors in the predictive models, thereby enhancing their accuracy
and efficiency. Consequently, PCA has established itself as a key tool for optimizing
the performance of machine learning algorithms in biomass estimation and crop yield
prediction [87–90].

Figure 5 shows PCA, where Principal Component 1 (PC1) explains 30.21% of the
variance and Principal Component 2 (PC2) explains 15.17%. Each arrow represents an



Remote Sens. 2024, 16, 3720 11 of 21

original variable projected onto the principal component space; the direction and length of
the arrows indicate how these variables contribute to the components.
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Figure 5. Principal Component Analysis of agronomic and spectral variables.

Variables NDRE_167 and NDRE_160 are negatively correlated with PC1, whereas
NDVI variables (111, 118, 125, 131, 141, 146, 153, 160, 167) contribute significantly and
positively to PC1. Other variables such as germ, gp, gr, sr, tp, t, gw, hr, and dm contribute
to PC2 to varying degrees. The color of the arrows reflects their significance level, with
darker colors indicating greater significance.

In particular, the dry matter variable “dm” projects primarily in the positive direction
of PC2 and slightly in the negative direction of PC1, suggesting a positive correlation with
Principal Component 2 and a slight negative correlation with Principal Component 1. The
darker intensity of the “dm” arrow indicates moderate to high significance.

PCA reveals that NDVI variables strongly influence PC1, while other variables like
germ and gp contribute more significantly to PC2. The variable “dm” stands out for
its influence on PC2, correlating positively with other variables that also contribute to
this component.

3.3. Model Performance

Figure 6 shows two Taylor diagrams illustrating the performance of the models used
to estimate dry matter: linear regression, Neural Network, Random Forest, and Support
Vector Machine. Each point on the graph represents the accuracy of these models in terms
of standard deviation, correlation coefficient, and root mean square error (RMSE) for both
the training and test datasets. In the test set, the Support Vector Machine shows strong
performance with a correlation coefficient (r) of 0.93, followed by the Neural Network
model with an r of 0.91, indicating high precision in predicting dry matter (dm).
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Figure 6. The Taylor diagram compares the performance of linear regression (LM), Neural Network
(NN), Random Forest (RF), and Support Vector Machine (SVM) models in predicting dry matter (dm)
based on standard deviation, correlation coefficient, and RMSE for both training and test datasets.

The Random Forest and Support Vector Machine models show outstanding fit in
the training set with r values of 0.70 and 0.72, respectively, demonstrating high learning
capacity. However, their performance in the test set is more modest. Overall, the Support
Vector Machine model exhibits the best overall performance, combining excellent fit in
the training set with solid performance in the test set. On the other hand, the linear
regression model has the lowest correlation coefficient values in both the test and training
sets, highlighting its lower effectiveness compared to the other evaluated models.

The Support Vector Machine shows the best overall performance as it demonstrates
low RMSE in both datasets and high r values. Additionally, the Random Forest model also
performs well in the test set, although not as strongly as the SVM. The Neural Network
model shows good fit in training but lower performance in testing, suggesting overfitting.
The linear regression model performs the poorest, with the highest RMSE values and the
lowest r values.

3.4. Predictor Estimation

In the results table of the linear regression (Table 3), coefficient estimates for var-
ious predictors used in the model are presented. The intercept has a value of −0.439
(p = 0.020104), which is significant and suggests that, in the absence of other factors,
forage biomass would have a negative value. The coefficient for NDVI_111 is 0.541
(p = 0.034539), indicating a positive and significant relationship with biomass. On the
other hand, NDVI_125 has a coefficient of −1.148 (p = 0.012474), showing a significant
negative relationship. NDVI_131 has a coefficient of 1.256 (p = 0.000604), indicating a
positive and highly significant relationship. Finally, plant height (h) has a coefficient of
0.184 (p = 5.805), also significant, implying that an increase in height is associated with an
increase in forage biomass.
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Table 3. Characteristics and estimation of predictors.

Linear Regression

Residual Coefficient

Min −0.208 Intercept NDVI 111 NDVI 125 NDVI 131 h

1Q −0.091 Estimate −0.439 0.541 −1.148 1.256 0.184
Median −0.016 Std 0.188 0.256 0.457 0.363 0.045

3Q 0.075 Error −2.336 2.123 −2.513 3.464 4.075
Max 0.314 t-values 0.02 0.034 0.012 0.004 5.8

Parameters RF SVM NN

Hyperparameters Node size 100 Cost 1 * HL 2 Neurons 5
Trees 500 γ 0.1 Neurons 3

N◦ var 4 ε 0.01
Residual Mean of squared 0.011 N◦ of vectors 294

% var 52.23 SVM Radial

* 5% confidence Interval; RF (Random Forest), SVM (Support Vector Machine), NN (Neural Network);
HL = hidden layer; 70% training set and 30% test set.

The hyperparameters and metrics of predictive models provide crucial information
about their configuration and performance. In the Random Forest model, a node size of
100 indicates that each terminal node must have at least 100 observations, with 500 trees
improving accuracy but increasing server processing time, and four variables considered
for splitting each node. For the Support Vector Machine model, the cost parameter is set to
one, balancing between a wide margin and correct classification of training points; gamma
of 0.1 indicates that only nearby points influence the decision boundary; epsilon of 0.01
reflects high precision, and 294 support vectors are used. In the Neural Network model,
two hidden layers are configured with five and three neurons, respectively, affecting its
ability to capture complex patterns.

Regarding residual performance metrics, the mean squared residual is 0.011 for the
Random Forest model, suggesting good accuracy, and the percentage of explained variance
is 52.23%, indicating that this percentage of variability in the data is explained by the
predictors used in the model, but also showing that 47.77% of the variability remains
unexplained. The performance of different models shows variability in predictive capability.
For linear regression, the coefficient of determination (R2) is 0.12 in the training set and 0.04
in the test set, indicating low explanatory power.

Table 4 shows the performance of four models used (linear regression, Random Forest,
Support Vector Machine, and Neural Networks) for estimating dry matter in the training
and test datasets, evaluated using the metrics R2, RMSE, and MAE. Random Forest and
Support Vector Machine stand out with superior results: in training, RF achieves an R2 of
0.68 with an RMSE of 0.080 and an MAE of 0.063, while SVM achieves an R2 of 0.87 with
an RMSE of 0.047 and an MAE of 0.030. In testing, RF obtains an R2 of 0.68 with an RMSE
of 0.080 and an MAE of 0.063, and SVM reaches an R2 of 0.83 with an RMSE of 0.051 and
an MAE of 0.040, demonstrating robust generalization performance.

Table 4. Performance of predictive models.

Linear Regression RF SVM NN

Training
R2 0.12 R2 0.68 R2 0.87 R2 0.83
RMSE 0.117 RMSE 0.080 RMSE 0.047 RMSE 0.051
MAE 0.096 MAE 0.063 MAE 0.030 MAE 0.040

Test
R2 0.04 R2 0.52 R2 0.50 R2 0.35
RMSE 0.119 RMSE 0.087 RMSE 0.085 RMSE 0.110
MAE 0.097 MAE 0.069 MAE 0.066 MAE 0.086

5% confidence Interval; RF (Random Forest), SVM (Support Vector Machine), NN (Neural Network).
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On the other hand, Neural Networks show better performance in training with an
R2 of 0.83, but significantly decrease in testing with an R2 of 0.35, indicating potential
overfitting during training. In contrast, linear regression shows the lowest performance
with an R2 of 0.12 and 0.04, an RMSE of 0.117 and 0.119, and an MAE of 0.096 and 0.097 in
training and testing, respectively. The Support Vector Machine demonstrates consistent
performance in both training and testing, with an R2 of 0.87 and 0.50, respectively, along
with low RMSE and MAE values.

The Support Vector Machine proves to be the most effective model for this dataset,
while linear regression exhibits more limited performance in comparison.

3.5. Predictive Model for Biomass Estimation

Figure 7 depicts the estimation of dry matter in forage oats using the evaluated models:
LM (Linear Model), NN (Neural Network), RF (Random Forest), and SVM (Support Vector
Machine). Each map displays the estimation in 0.25 m2 grid cells, colored according to
their weight in kilograms, allowing for observation of the variation in predictions from
each model.
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LM predominantly predicts medium weights (0.10 kg to 0.30 kg), with few cells at
extreme values. NN shows greater variability, with cells ranging from 0.05 kg to 0.55 kg,
highlighting areas with higher biomass. RF exhibits a trend similar to LM, with average val-
ues around 0.29 kg. In contrast, SVM shows a more balanced but conservative distribution,
predominantly with lower weights (0.05 kg to 0.25 kg). Areas with gray outlines in all maps
indicate regions with an estimated dry matter of zero due to the absence of vegetation.

These maps allow for comparing the predicted biomass distribution by each model,
facilitating understanding of their differences. In summary, SVM is the model that most
closely approximates the average dry matter evaluated in the field, with an estimation
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ranging between 0.05 kg and 0.25 kg, demonstrating its effectiveness in estimating dry
matter in forage oats.

4. Discussion

The use of UAVs for biomass estimation has proven to be an efficient and accurate
method, as indicated by a coefficient of determination (R2) of 0.52. Although this value is
lower than those reported in previous studies, such as that by Lussem [91], who recorded
R2 values between 0.56 and 0.73, it is important to note that the RMSE values in his study
were considerably higher, ranging from 0.274 to 0.416. On the other hand, studies like
Coelho’s [92], report significantly higher R2 values (0.70–0.89), which better capture data
variability, albeit with higher absolute errors (RMSE from 370 to 1825 kg ha−1). In contrast,
the present study reports an RMSE of 0.080 and MAE of 0.063, suggesting that while a
model with a higher R2 may better explain variance, the higher absolute and squared errors
could reduce its reliability due to sensitivity to deviations or outliers [93–95]. Therefore,
balancing explanatory power and accuracy is crucial in the selection of estimation models.
Despite these differences, the UAV approach continues to provide suitable and often
superior estimates in many contexts [96,97].

Estimating biomass in crops through remote sensing involves several critical and
interconnected objectives aimed at improving model accuracy and applicability. One
of the primary goals is to identify the variables that correlate with reference biomass
obtained in the field, which requires careful selection and evaluation of different sensors
and remote sensing techniques [98]. Equally important is the development of accurate
and scalable models that incorporate both parametric and non-parametric algorithms,
and the integration of data from multiple sensors to enhance estimation precision [91].
However, it is crucial to recognize that the accuracy of these estimates can be affected by
various sources of uncertainty. Environmental factors, such as light conditions, wind, and
humidity, can significantly influence UAV image capture, highlighting the need for detailed
analyses to identify and mitigate these potential errors [99]. Additionally, the spatial and
temporal scale of the data plays a vital role, as different resolutions can significantly impact
the accuracy of biomass models, necessitating constant methodological adjustments [98].
While the progress made is promising, applying these models on a larger scale presents
additional challenges [100]. The transferability of these models across diverse geographic
and temporal conditions must be rigorously evaluated to ensure their robustness and
accuracy in large-scale applications [91,97,101]. In this context, it is essential to consider
how environmental variability might affect the applicability of the results in different
regions and under varying climatic conditions.

Finally, to advance toward more efficient and precise methodologies in global agricul-
tural management, it is crucial not only to enhance the accuracy of existing models but also
to address the identified limitations, such as environmental factors and model scalability,
in future research. Emphasizing the importance of a critical and thorough evaluation
of the results ensures that the proposed solutions are viable and effective in a broader
agricultural context.

The use of machine learning models such as regression, Random Forest, Support
Vector Machines, and Neural Networks for biomass estimation using UAVs has been
extensively researched. Regression is useful for handling highly correlated predictors
and has been effective in predicting biomass in various vegetation types, notably reduc-
ing dimensionality and improving estimation accuracy [102]. RF is robust and accurate,
successfully used in estimating biomass in different forests and crops, including forage
oats, due to its ability to handle datasets with many features without overfitting [5,103].
The Support Vector Machine, capable of handling nonlinear and high-dimensional data,
has also proven effective in biomass prediction using complex spectral data, although
proper parameter selection can be challenging [104]. Neural Networks, on the other hand,
can model complex nonlinear relationships and have been used in numerous studies to
predict biomass, providing a significant advantage by combining multiple spectral and
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temporal variables, as seen in Bazzo [33]. The literature and current research suggest
that combining spectral data with machine learning algorithms can significantly enhance
biomass estimation accuracy, with each model offering specific advantages that can be
exploited to improve estimation precision and robustness, serving as valuable tools for
crop management and monitoring [73].

When applying different modeling approaches for biomass estimation via UAVs, it
has been observed that each technique has its own strengths and limitations. For instance,
linear regression is straightforward and easily interpretable but may fail to capture complex
nonlinear relationships between input variables and biomass. Random Forest, which
constructs multiple decision trees and averages their results, has proven robust and accurate
but can be prone to overfitting with noisy datasets [32,91]. Support Vector Machines are
effective in high-dimensional problems with small samples, although selecting appropriate
parameters can be challenging.

Artificial Neural Networks are powerful for modeling complex nonlinear relationships
and have shown high accuracy in biomass estimation, though their interpretability and
tendency to become stuck in local minima can be significant disadvantages [33]. These
findings are consistent with other research utilizing UAVs for biomass estimation across
different pasture types and vegetation [5], emphasizing the importance of selecting the
appropriate model based on dataset characteristics and study objectives.

5. Conclusions

The germination index showed low correlations with the target variable, rendering
it insignificant for the predictive model. Statistical analyses revealed it is more closely
associated with other variables not directly linked to the target variable. In contrast, dry
matter is strongly correlated with NDVI values and plant height, indicating that these
variables are more predictive. NDVI values, reflecting vegetation health along with dry
matter and height, serve as better indicators of crop status and performance. Therefore,
focusing on these variables enhances predictive model accuracy.

Using UAVs to estimate forage biomass is a powerful tool that offers high resolution
and flexibility in agricultural monitoring. However, to maximize its benefits, logistical,
technical, and validation challenges must be overcome, alongside considerations of environ-
mental conditions. With proper implementation, UAVs have the potential to revolutionize
crop management practices and provide valuable data for agricultural decision-making.

The analysis of predictive models, including Random Forest, Support Vector Ma-
chines, and Neural Networks, has revealed significant variations in terms of accuracy
and performance. The presentation of these results has been complemented by an expla-
nation of the hyperparameters and the incorporation of visualizations, with the aim of
providing a clearer and more practical perspective. This approach not only highlights the
effectiveness of the models but also facilitates the interpretation and application of the
results in real-world contexts, contributing to a more effective integration into agricultural
decision-making. Consequently, an approach has been adopted that strives to make the
models more accessible and useful.
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