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Abstract: Gross primary productivity (GPP) is vital for ecosystems and the global carbon cycle,
serving as a sensitive indicator of ecosystems’ responses to climate change. However, the impact
of future climate changes on GPP in the Tibetan Plateau, an ecologically important and climatically
sensitive region, remains underexplored. This study aimed to develop a data-driven approach to
predict the seasonal and annual variations in GPP in the Tibetan Plateau up to the year 2100 under
changing climatic conditions. A convolutional neural network (CNN) was employed to investigate
the relationships between GPP and various environmental factors, including climate variables, CO2

concentrations, and terrain attributes. This study analyzed the projected seasonal and annual GPP
from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under four future scenarios:
SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. The results suggest that the annual GPP is expected
to significantly increase throughout the 21st century under all future climate scenarios. By 2100,
the annual GPP is projected to reach 1011.98 Tg C, 1032.67 Tg C, 1044.35 Tg C, and 1055.50 Tg C
under the four scenarios, representing changes of 0.36%, 4.02%, 5.55%, and 5.67% relative to 2021.
A seasonal analysis indicates that the GPP in spring and autumn shows more pronounced growth
under the SSP3–7.0 and SSP5–8.5 scenarios due to the extended growing season. Furthermore, the
study identified an elevation band between 3000 and 4500 m that is particularly sensitive to climate
change in terms of the GPP response. Significant GPP increases would occur in the east of the Tibetan
Plateau, including the Qilian Mountains and the upper reaches of the Yellow and Yangtze Rivers.
These findings highlight the pivotal role of climate change in driving future GPP dynamics in this
region. These insights not only bridge existing knowledge gaps regarding the impact of future
climate change on the GPP of the Tibetan Plateau over the coming decades but also provide valuable
guidance for the formulation of climate adaptation strategies aimed at ecological conservation and
carbon management.

Keywords: Tibetan Plateau; gross primary productivity; climate change; spatiotemporal variation;
convolutional neural networks

1. Introduction

The ecosystems of the Tibetan Plateau are highly sensitive to climate change and play a
significant role in China’s efforts to achieve its “carbon neutrality” goals [1]. Gross primary
productivity (GPP) is a major component of the carbon cycle, which plays an essential role
in regulating the Earth’s carbon balance [2,3]. Even minor fluctuations in GPP can sub-
stantially influence the ecosystem’s carbon sequestration capacity and subsequent climate
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feedback [1,4]. However, increasing evidence shows that the global CO2 emissions continue
to rise [5,6]; this trajectory will lead to strong warming scenarios, exceeding 4 ◦C by the end
of this century, with ongoing warming thereafter [7]. Therefore, gaining a comprehensive
understanding of the impacts of climate change on the GPP of the Tibetan Plateau, and
predicting its future variations under different climate scenarios, is essential in developing
targeted emission reduction and carbon sequestration strategies. This knowledge will
provide a robust scientific basis for the achievement of carbon neutrality goals.

Over the past few decades, considerable studies have focused on assessing the impact
of climate change on GPP. Common methods for the estimation of GPP typically involve
process-based physical models that integrate physiological and ecological mechanisms re-
lated to vegetation growth, such as radiative transfer, photosynthesis, and respiration [8,9].
These models are generally categorized as either land surface models (LSMs) or Earth
system models (ESMs). LSMs are rooted in theories and hypotheses about ecosystem func-
tioning and include various mechanistic or empirical sub-models to simulate fluctuations
in ecosystem energy, water, and carbon fluxes [10,11]. ESMs, on the other hand, consider
physical, chemical, and biological processes within the Earth’s ecosystems to model car-
bon cycle interactions between the biosphere and atmosphere [12,13]. The strength of
process-based physical models lies in their capacity to account for multiple processes and
provide spatially continuous GPP estimates over long time series. For instance, Li et al. [10]
evaluated the performance of the second version of the Beijing Climate Center Atmosphere–
Vegetation Interaction Model in simulating the GPP across various spatial and temporal
scales. However, these models also have limitations. The inclusion of numerous physical
processes introduces uncertainties in the model parameters and reduces the adaptability to
large-scale regions. For example, Zhang et al. [14] assessed the GPP simulation results of
seven general circulation models (GCMs) and found that no single climate model accurately
captured the interannual variation in GPP and ecosystem responses to climate change,
particularly in the Tibetan Plateau. Consequently, there is significant uncertainty in future
GPP predictions when relying on process-based models [15].

Another powerful approach for the evaluation of the impact of climate change on GPP
involves the use of machine learning (ML) models. With advancements in remote sensing
and ML technologies, the assessment and estimation of GPP using ML models have become
a prominent research focus [16–18]. Leveraging their strong non-linear fitting capabilities,
ML models are adept in capturing the complex non-linear relationships between GPP
and various influencing factors, such as meteorological and soil conditions. For instance,
Yao et al. [19] employed a model tree ensemble algorithm to create a GPP dataset over
China with a spatial resolution of 0.1◦, spanning from 1982 to 2015, using in situ data from
40 flux sites. To further improve the precision of GPP simulations, researchers have also
conducted comparative studies on the performance of different ML models [20,21]. For
example, Wang et al. [22] compared six ML models—a multilayer perceptron, random
forest [23], Adaboost, gradient boosting decision tree, XGBoost, and LightGBM—trained
using remote sensing data and various influencing factors. In addition to their accuracy
in GPP simulation, ML models contribute to the attribution analysis of GPP variations.
For instance, Yao et al. [19] identified the temperature as the dominant climatic driver
of the GPP at a national scale. Similarly, Ma et al. [24] showed that the leaf area index
and temperature-related factors had the largest relative impacts on the GPP in Northern
and Southern China, respectively. This capability is crucial in evaluating the impacts of
climate change on GPP. Unlike process-based physical models, which rely on a set of fixed
input variables, ML-based models can incorporate a broader range of variables—such as
greenness and the land surface temperature—to enhance the GPP simulation accuracy [25].

Despite the substantial advantages of ML models in predicting GPP, research in this
field, particularly in the Tibetan Plateau, remains limited. Most current GPP prediction
efforts continue to rely on process-based physical models. For instance, Hou et al. [26]
employed the CoLM model to examine the effects of changes in land use and land cover
on the future terrestrial GPP. Similarly, GCMs have provided valuable insights into GPP
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dynamics. Zhang et al. [27] highlighted the potential risks to GPP in the high-latitude
regions of the Northern Hemisphere due to climate change, which poses a direct threat to
the global land carbon sink. Furthermore, Xu et al. [28], drawing on data from 13 ESMs,
underscored the increasing influence of extreme droughts on GPP throughout the twenty-
first century. Projections by Yan et al. [29] indicate divergent trends in GPP, with expected
increases in the Northern Hemisphere and decreases in tropical regions. The existing
studies on ML used to predict GPP are concentrated on global-scale projections. For
example, Huang et al. [30] analyzed future global GPP trends using datasets from 18 ESMs
in CMIP6, showing an overall increase in GPP across all four SSP scenarios, with the ssp585
scenario stimulating the most substantial growth. Moreover, the study of Lu et al. [31]
indicates that the global GPP is predicted to increase under future climate change in the
21st century. Despite these global-scale studies, there is a noticeable research gap regarding
the Tibetan Plateau’s GPP under future climate scenarios. Considering that climate change
significantly impacts the vegetation composition and functionality [32], it is critical to
address the spatiotemporal variations in the GPP in the Tibetan Plateau under changing
climate conditions. Employing ML models to predict these variations is not only essential
but also strategically crucial in addressing effective ecosystem management.

When selecting an ML model for the prediction of GPP, it is essential to recognize
that most existing algorithms are not well suited for the automatic learning of spatial
structures and hierarchical features within images. These algorithms often overlook the
influence of neighboring grid point variables on GPP [22,31]. Over the past few decades,
convolutional neural networks (CNNs) have achieved unprecedented success in addressing
computer vision challenges due to their ability to extract complex features and learn
compact representations [33]. As a leading paradigm in deep learning, the CNN has
significant potential in predicting the spatiotemporal variation in the future GPP. However,
the application of CNNs in modeling and predicting the GPP in the Tibetan Plateau
remains largely unexplored. Therefore, predicting the annual and seasonal GPP dynamics
in response to future climate change in the Tibetan Plateau using a CNN model is crucial in
deepening our understanding of vegetation–climate interactions.

To address the challenges posed by climate change on GPP in the 21st century, this
study employed a data-driven approach to predict both annual and seasonal variations
in the GPP in the Tibetan Plateau. Specifically, a CNN model was utilized to establish
nonlinear relationships between the GPP and various environmental factors. This study
utilized the GPP dataset developed by Wang et al. [34] to represent the historical monthly
distribution of the GPP, while climate variables, CO2 concentrations, and terrain attributes
were incorporated as key environmental factors. Additionally, future climate scenarios from
the Coupled Model Intercomparison Project Phase 6 (CMIP6), including SSP1–2.6 (ssp126),
SSP2–4.5 (ssp245), SSP3–7.0 (ssp370), and SSP5–8.5 (ssp585), were considered to project
future GPP changes. The primary objectives of this study were (1) to predict the annual
and seasonal GPP up to the year 2100 under different future scenarios using a data-driven
approach; (2) to examine the spatiotemporal variations in the future GPP and analyze their
implications; and (3) to assess the relative importance of multiple environmental factors in
predicting the GPP. This study could enhance the understanding of the complex interactions
between vegetation and the climate and provide critical insights for the formulation of
effective management practices to enhance the carbon sequestration capabilities and achieve
carbon neutrality goals.

2. Study Area and Data
2.1. Study Area

The Tibetan Plateau (Figure 1), referred to as the “Roof of the World”, is a unique
and critical research region due to its vast size and diverse environmental conditions.
Located in Central Asia, the Tibetan Plateau covers over 2.5 × 106 km2 and has average
elevation exceeding 4500 m, making it the highest and largest plateau in the world. The
region’s topography is uneven, with elevation decreasing from west to east, featuring flat
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valleys and plains alongside towering mountain ranges [9]. The Tibetan Plateau is rich in
frozen soil, snow, and glacial resources, playing a pivotal role in the Asian hydrological
cycle. It serves as the source of major rivers, such as the Yangtze, Yellow, and Mekong,
earning its designation as the “Water Tower of Asia”. The plateau also supports a wide
range of ecosystems with unique flora and fauna that have adapted to its harsh climate,
characterized by cold temperatures, strong winds, and fluctuating diurnal temperatures.
Moreover, the Tibetan Plateau is extremely sensitive to global climate change. Over the past
50 years, the mean annual temperature on the Tibetan Plateau has increased by 0.3 ◦C per
decade, a rate significantly higher than in other regions of China [35]. This rapid warming
has profound effects on the alpine vegetation, including an advanced spring phenology and
enhanced plant carbon fixation capacity. The major vegetation types on the Tibetan Plateau
include alpine grasslands, alpine meadows, shrubs, and forests [36]. Alpine grasslands
dominate the plateau, consisting primarily of hardy grasses and sedges adapted to high
altitudes and cold conditions. The GPP is a key focus of study in this region, as it represents
the total carbon fixed by photosynthetic organisms, offering critical insights into carbon
sequestration and ecosystem productivity.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 23 
 

 

The Tibetan Plateau (Figure 1), referred to as the “Roof of the World”, is a unique 
and critical research region due to its vast size and diverse environmental conditions. Lo-
cated in Central Asia, the Tibetan Plateau covers over 2.5 × 106 km2 and has average ele-
vation exceeding 4500 m, making it the highest and largest plateau in the world. The re-
gion’s topography is uneven, with elevation decreasing from west to east, featuring flat 
valleys and plains alongside towering mountain ranges [9]. The Tibetan Plateau is rich in 
frozen soil, snow, and glacial resources, playing a pivotal role in the Asian hydrological 
cycle. It serves as the source of major rivers, such as the Yangtze, Yellow, and Mekong, 
earning its designation as the “Water Tower of Asia”. The plateau also supports a wide 
range of ecosystems with unique flora and fauna that have adapted to its harsh climate, 
characterized by cold temperatures, strong winds, and fluctuating diurnal temperatures. 
Moreover, the Tibetan Plateau is extremely sensitive to global climate change. Over the 
past 50 years, the mean annual temperature on the Tibetan Plateau has increased by 0.3 
°C per decade, a rate significantly higher than in other regions of China [35]. This rapid 
warming has profound effects on the alpine vegetation, including an advanced spring 
phenology and enhanced plant carbon fixation capacity. The major vegetation types on 
the Tibetan Plateau include alpine grasslands, alpine meadows, shrubs, and forests [36]. 
Alpine grasslands dominate the plateau, consisting primarily of hardy grasses and sedges 
adapted to high altitudes and cold conditions. The GPP is a key focus of study in this 
region, as it represents the total carbon fixed by photosynthetic organisms, offering critical 
insights into carbon sequestration and ecosystem productivity. 

 
Figure 1. Location of the Tibetan Plateau. 

2.2. Data 
2.2.1. GPP NIRv Data 

The GPP NIRv dataset, developed by Wang et al. [34], marks a significant improve-
ment in estimating GPP using satellite-based near-infrared reflectance (NIRv). Covering 
the period from 1982 to 2018 with a spatial resolution of 0.05°, this dataset provides exten-
sive long-term data, effectively capturing monthly GPP variations, crucial in understand-
ing global carbon dynamics. The dataset was established through empirical relationships 
between NIRv and GPP, based on data from 104 eddy covariance flux sites across various 
climate zones and vegetation types, ensuring its reliability and broad applicability. Vali-
dation showed strong correlations between the GPP NIRv and observed GPP, with an R2 
of 0.71 for monthly variations, confirming its effectiveness in tracking temporal GPP 
changes. Furthermore, comparisons with other global GPP products, such as the 
FLUXCOM GPP and TRENDY GPP, demonstrated that the GPP NIRv not only aligns 

Figure 1. Location of the Tibetan Plateau.

2.2. Data
2.2.1. GPP NIRv Data

The GPP NIRv dataset, developed by Wang et al. [34], marks a significant improve-
ment in estimating GPP using satellite-based near-infrared reflectance (NIRv). Covering the
period from 1982 to 2018 with a spatial resolution of 0.05◦, this dataset provides extensive
long-term data, effectively capturing monthly GPP variations, crucial in understanding
global carbon dynamics. The dataset was established through empirical relationships
between NIRv and GPP, based on data from 104 eddy covariance flux sites across various
climate zones and vegetation types, ensuring its reliability and broad applicability. Valida-
tion showed strong correlations between the GPP NIRv and observed GPP, with an R2 of
0.71 for monthly variations, confirming its effectiveness in tracking temporal GPP changes.
Furthermore, comparisons with other global GPP products, such as the FLUXCOM GPP
and TRENDY GPP, demonstrated that the GPP NIRv not only aligns closely with these
datasets but also offers a more consistent depiction of the long-term GPP trends, especially
when compared to process-based models.

The global GPP estimated using NIRv during the study period averaged
128.3 ± 4.0 Pg C year−1, consistent with other GPP estimates, further highlighting the value
of the GPP NIRv dataset in enhancing the understanding of terrestrial carbon fluxes. This
dataset is a critical tool for researchers and policymakers, offering a reliable, long-term
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resource that supports climate change mitigation efforts and advances the understand-
ing of the global carbon dynamics. This dataset can be downloaded from the TPDC
“https://data.tpdc.ac.cn/zh-hans/data/d6dff40f-5dbd-4f2d-ac96-55827ab93cc5 (accessed
on 30 September 2024)”. In this study, the GPP NIRv dataset is treated as observational
data and utilized as the target GPP in an ML approach to optimize the parameters of the
CNN model.

2.2.2. Climate Variables

In this study, the Tibetan Plateau Meteorological Forcing Dataset (TPMFD) was used to
train the CNN model for the historical period of 1982–2013. Developed by Jiang et al. [37],
the TPMFD integrates high-resolution WRF simulations, long-term ERA5 data [38], and
station observations using a deep learning model. Spanning from 1979 to 2020, this dataset
offers high-spatial-resolution (1/30◦) meteorological data for the Tibetan Plateau at monthly,
daily, and hourly intervals. Six climate variables—precipitation (prcp), temperature (temp),
specific humidity (shum), wind speed (wind), longwave radiation (lard), and shortwave
radiation (srad)—were selected for this study as they are critical drivers of plant photo-
synthesis and ecosystem productivity. These variables directly influence key physiological
processes in plants, such as photosynthesis and transpiration, while also playing a sig-
nificant role in regulating the energy balance within ecosystems. Notably, prcp, temp,
and shum are derived from the fusion of short-term WRF simulations with long-term
ERA5 data and station observations, providing higher precision compared to conventional
reanalysis datasets. The TPMFD is a crucial resource for climate analysis, land surface
studies, and ecological modeling in the Third Pole region. The dataset is publicly available
at https://data.tpdc.ac.cn/zh-hans/data/44a449ce-e660-44c3-bbf2-31ef7d716ec7 (accessed
on 30 September 2024).

In this study, climate variables from the NEX-GDDP-CMIP6 dataset were used to
predict the future GPP under four SSP scenarios: ssp126, ssp245, ssp370, and ssp585 [39,40].
These scenarios represent different socioeconomic pathways, ranging from sustainable
development (ssp126) and middle-of-the-road growth (ssp245) to uneven regional devel-
opment (ssp370) and fossil-fuel-intensive futures (ssp585) [30]. The NEX-GDDP-CMIP6
dataset provides downscaled climate projections at a 0.5◦ × 0.5◦ spatial resolution, offering
detailed insights into future environmental changes [39]. This study used projected data
from 2021 to 2100, derived from seven ESMs under these SSP scenarios, as outlined in
Table 1, which can be downloaded from https://nex-gddp-cmip6.s3.us-west-2.amazonaws.
com/index.html#NEX-GDDP-CMIP6/ (accessed on 30 September 2024). The climate vari-
ables selected—precipitation (prcp), temperature (temp), specific humidity (shum), wind
speed (wind), longwave radiation (lard), and shortwave radiation (srad)—are critical in
understanding vegetation growth and GPP dynamics, influencing spatial and temporal
variations in primary productivity [14]. These variables were therefore chosen to forecast
the future GPP.

Table 1. Brief introduction to the employed GCMs from NEX-GDDP-CMIP6.

GCM Model Spatial Resolution Research Institute and Country

ACCESS-CM2 0.25◦ × 0.25◦ Commonwealth Scientific and Industrial Research Organization (CSIRO) and the
Bureau of Meteorology (BoM), Australia

CanESM5 0.25◦ × 0.25◦ Canadian Centre for Climate Modelling and Analysis (CCCma), Canada
CNRM-CM6-1 0.25◦ × 0.25◦ Centre National de Recherches Météorologiques (CNRM), France
MIROC6 0.25◦ × 0.25◦ Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan
BCC-CSM2-MR 0.25◦ × 0.25◦ Beijing Climate Center, China Meteorological Administration, Beijing, China
MPI-ESM1-2-LR 0.25◦ × 0.25◦ Max Planck Institute for Meteorology (MPI-M), Germany

UKESM1-0-LL 0.25◦ × 0.25◦ A collaborative effort between the Met Office Hadley Centre and the Natural
Environment Research Council (NERC), United Kingdom

https://data.tpdc.ac.cn/zh-hans/data/d6dff40f-5dbd-4f2d-ac96-55827ab93cc5
https://data.tpdc.ac.cn/zh-hans/data/44a449ce-e660-44c3-bbf2-31ef7d716ec7
https://nex-gddp-cmip6.s3.us-west-2.amazonaws.com/index.html#NEX-GDDP-CMIP6/
https://nex-gddp-cmip6.s3.us-west-2.amazonaws.com/index.html#NEX-GDDP-CMIP6/
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2.2.3. CO2 Concentration and Terrain Attributes Data

For GPP prediction, this study used global monthly gridded atmospheric CO2 concen-
tration data, which are crucial in evaluating the impact of CO2 fertilization on terrestrial
ecosystems [41]. The dataset provides CO2 concentration values at a 1◦ spatial resolution,
covering both historical (1982–2013) and future (2021–2100) periods across four SSP sce-
narios [42]. It captures spatial, seasonal, and annual variations in CO2 levels, offering a
detailed representation of the atmospheric CO2 distribution—critical for accurate GPP
forecasts. Additionally, the Global Multi-Resolution Terrain Elevation Data 2010, initially
at a 30 arc-second resolution, were resampled to 0.05◦ using bilinear interpolation. Five
terrain attributes—elevation, slope, aspect, latitude, and longitude—were incorporated
into the CNN model for simulation and projection [43].

3. Methodology
3.1. Convolutional Neural Networks

CNNs are a powerful class of deep learning models specifically designed for the
analysis of visual data. The core of the CNN lies in its use of convolutional layers, which
automatically and adaptively learn the spatial hierarchies of features from raw input
data [33]. A typical CNN architecture includes convolutional layers, pooling layers, and
fully connected layers. Convolutional layers use filters or kernels to slide over the input
data, extracting local patterns or features. Pooling layers then reduce the spatial dimen-
sions of these feature maps, lowering the computational complexity while retaining key
information. Finally, fully connected layers synthesize the learned features to perform tasks
like classification or regression. One of the CNNs’ key strengths is their ability to learn
hierarchical representations of the features directly from raw data, enabling them to capture
complex patterns and dependencies within images. This makes CNNs highly effective for
tasks such as object detection, image segmentation, and facial recognition.

The CNN used in this study (Figure 2) consists of a sequence of layers designed for
effective feature extraction and robust training. It begins with a 2D convolutional layer with
a fixed 3 × 3 kernel size and 32 filters, followed by a max-pooling layer with a 2 × 2 pool
size. This pattern is repeated with a second 2D convolutional layer, this time with 64 filters,
followed by another max-pooling layer. A flattened layer is then added to convert the 2D
spatial data into a 1D vector, preparing them for the dense layers. The model includes a fully
connected dense layer with 128 neurons, followed by a Monte Carlo dropout layer with a
50% dropout rate to mitigate overfitting. The final dense layer, optimized for the task, leads
to a single output neuron using a linear activation function, suitable for regression tasks.
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Figure 2. Scheme of the CNN model used for the GPP forecasts.

The model was trained using the Adam optimizer over a maximum of 1000 epochs,
with an initial learning rate of 0.001. Gradient clipping was applied to prevent exploding
gradients, and early stopping with a patience of 150 epochs was employed to further
reduce overfitting. The activation function for the output layer was “linear”, while “ReLU”
was applied to the other layers. The loss function used was the “mean squared error”.
Hyperparameters, including a batch size of 32 and “same” padding, were optimized using
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Bayesian methods. The model was implemented in Python 3.7.13 using TensorFlow and
the Keras API. All data were resampled to a 0.05◦ resolution using bilinear interpolation to
match the spatial resolution of the GPP NIRv data. To avoid the risk of overestimating the
model’s performance [44], the monthly data from the historical period of 1982 to 2013 were
segmented, with the period from 1982 to 2007 designated for training and the subsequent
period from 2007 to 2013 for testing. During the prediction period, the results for each
scenario represent the arithmetic mean of the seven ESMs. This study employs the bootstrap
method to estimate the 95% confidence intervals for the predictions under each scenario.
The bootstrap is a statistical technique that repeatedly samples with replacement from the
original dataset to estimate the distribution of a statistic, allowing for the calculation of
confidence intervals.

To determine the relative importance of the input variables in a CNN model using
feature importance scoring (i.e., permutation importance), the following steps are taken.
Train the CNN on a dataset to learn the relationship between the input features and output
targets. Then, evaluate the model on a test or validation set to establish the baseline
performance. For each input variable, shuffle its values while keeping the others intact and
re-evaluate the model’s performance. The importance score is calculated by measuring the
performance drop due to shuffling; a larger performance drop indicates higher importance.
Repeat this process for all input variables, rank them according to their importance scores,
and interpret the results accordingly. This approach provides a clear understanding of the
relative importance of each variable in the CNN’s predictions.

3.2. Performance Measures

The following four commonly used and easily understood performance measures were
used to qualitatively evaluate the performance of the ML models: root mean squared error
(RMSE), coefficient of determination (R2), PBIAS, and MAE. Their detailed expressions are
as follows:

RMSE =

√
∑n

i=1(ysim − yobs)
2

n
(1)

R2 = 1 − ∑n
i=1(yobs − ysim)

2

∑n
i=1(yobs − yobs)

2 (2)

PBIAS =
∑n

i=1(ysim − yobs)

∑n
i=1 yobs

× 100 (3)

MAE =
1
n∑n

i=1|ysim − yobs| (4)

where n is the number of observations; ysim represents the simulated GPP; yobs is the
target GPP; and yobs denotes the average of the target GPP. The R2 ranges from 0 to 1.
A value of 0 indicates that the model does not explain any variability in the dependent
variable, whereas a value of 1 indicates that the model explains all of the variability. The
RMSE measures the standard deviation of the differences between the predicted and
target variables. Lower RMSE values are preferable, signifying closer agreement between
the predictions and targets. A PBIAS value of 0% indicates a perfect model fit with no
bias. Positive values indicate that the model predictions are, on average, higher than the
observed values (overestimation) and vice versa. The MAE provides a straightforward
measure of the prediction accuracy, with lower values indicating better model performance.

4. Results
4.1. Performance of GPP Simulation

Figure 3 depicts the variation in the loss function over the epochs. The model shows
signs of stabilization after approximately 800 iterations. Table 2 summarizes the accuracy of
the GPP simulations, with R2 values of 0.994 for the training period and 0.978 for the testing
period. The corresponding RMSE values are 0.075 and 0.127, respectively. Additionally, a
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comparison of other metrics, such as the MAE and PBIAS, between the two periods further
underscores the strong generalization capability of the CNN model. Overall, the R2, RMSE,
MAE, and PBIAS for the entire period are 0.988, 0.093, 0.070, and 0.577%, respectively,
demonstrating that the CNN model could simulate the GPP effectively.
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Figure 3. Summarized results of loss for CNN model on training and testing datasets.

Table 2. Assessment of historical simulation accuracy for seasonal and annual GPP.

Evaluation Criterion Training Testing All Spring Summer Autumn Winter

R2 0.994 0.968 0.978 0.799 0.863 0.762 0.778
RMSE 0.075 0.127 0.093 0.041 0.064 0.071 0.052
MAE 0.061 0.091 0.070 0.036 0.046 0.051 0.049

PBIAS 2.077% −1.786% 0.577% 5.342% −0.663% −4.537% 9.182%

Note: the unit of the RMSE and MAE is g C·m−2·d−1.

From a seasonal perspective, the model performs best in simulating the summer GPP,
followed by autumn and then spring, with winter showing the lowest accuracy. Notably,
the model tends to overestimate the GPP during winter and spring, while underestimating
it in summer and autumn. This pattern suggests that the CNN model struggles in capturing
extreme GPP values, leading to the overestimation of lower values and the underestimation
of higher values.

The coefficient of determination R2 between the simulated and observed GPP in the
testing period, as depicted in Figure 4, was used to assess the spatial performance of the
CNN model. The spatial distribution of the R2 shows a gradual decrease from east to
west, with higher values concentrated in the Qilian Mountains and the basins of the Yellow,
Yangtze, Lancang, and Yarlung Zangbo Rivers. In the Qilian Mountains and the Yellow,
Yangtze, and Lancang River Basins, the R2 values generally range from 0.7 to 0.9, with some
low-altitude areas exceeding 0.9, indicating a strong correlation between the simulated and
observed GPP. In contrast, the R2 values in the Yarlung Zangbo River Basin range from 0.5
to 0.7, reflecting slightly lower accuracy in this region. In other areas, the R2 values range
between 0 and 0.3, likely due to lower GPP levels, which introduce greater uncertainty
into the simulation. Despite these regional variations, the overall performance of the CNN
model remains robust, underscoring its potential as a valuable tool for the prediction of
GPP on the Tibetan Plateau under future climate scenarios.
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testing period.

4.2. Temporal Variation in GPP

Figure 5 illustrates the historical changes in the annual GPP and the projected future
changes under four SSP scenarios on the Tibetan Plateau. It indicates a significant increas-
ing trend in the annual GPP during the historical period, which continues, albeit at a more
gradual pace. Moreover, the rate of increase is projected to escalate as the forcing levels in-
tensify in future scenarios. Statistical analysis (Table 3) reveals that, between 1982 and 2018,
the average annual GPP on the Tibetan Plateau was 363.80 g C·m−2·year−1, with a growth
rate of 1.033 g C·m−2·year−1. In the period from 2021 to 2060, the projected average annual
GPP under the ssp126, ssp245, ssp370, and ssp585 scenarios is 384.908 g C·m−2·year−1,
385.319 g C·m−2·year−1, 385.493 g C·m−2·year−1, and 386.368 g C·m−2·year−1, respec-
tively. Compared to the baseline period of 1982–2018, the growth rates are 5.74%, 5.85%,
5.90%, and 6.15%. By the period from 2061 to 2100, these average values are expected
to increase to 388.321 g C·m−2·year−1, 394.338 g C·m−2·year−1, 398.535 g C·m−2·year−1,
and 401.293 g C·m−2·year−1, resulting in growth rates of 6.68%, 8.33%, 9.48%, and 10.24%
relative to the 1982–2018 baseline.

Table 3. The trends and p-values for the annual GPP changes in the historical and projected future
periods during the 21st century under the ssp126, ssp245, ssp370, and ssp585 scenarios.

Historical
1982–2018

ssp126
2021–2060

ssp126
2061–2100

ssp245
2021–2060

ssp245
2061–2100

ssp370
2021–2060

ssp370
2061–2100

ssp585
2021–2060

ssp585
2061–2100

trend 1.033 0.199 0.155 0.299 0.258 0.355 0.375 0.401 0.325
p <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Note: the unit of the trend is g C·m−2·year−1; if the p-value is less than 0.01, the value of p is marked as <0.01.

Furthermore, the rates of change in the annual GPP for the periods 2021–2060 and
2061–2100 were analyzed. Under the ssp126 scenario, the growth rates for these periods
are 0.199 g C·m−2·year−1 and 0.155 g C·m−2·year−1, respectively. The p-values for trend
significance in both periods are less than 0.01, indicating that the changes in GPP under
this scenario are statistically significant. Additionally, the trend and corresponding p-value
for the overall period 2021–2100 under the SSP126 scenario are 0.108 g C·m−2·year−1 and
4.470 × 10−7, respectively. This suggests that the slight increase in GPP projected by 2100
compared to 2021 is likely within the range of normal variability. In contrast, the ssp245
scenario shows a more pronounced growth rate of 0.299 g C·m−2·year−1 from 2021 to 2060,
which slightly increases to 0.258 g C·m−2·year−1 for the period of 2061–2100. Notably,
the ssp370 and ssp585 scenarios exhibit more substantial increases in GPP. Under the
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ssp370 scenario, the annual GPP growth rate is 0.355 g C·m−2·year−1 before 2060, rising to
0.375 g C·m−2·year−1 from 2061 to 2100. These findings highlight the varying impacts of
different socioeconomic pathways on the GPP, with more aggressive scenarios resulting in
greater changes in GPP over time.
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Figure 5. The historical changes in the annual GPP (blue line) and the projected future changes
during the 21st century under the ssp126 (green line), ssp245 (yellow line), ssp370 (red line), and
ssp585 (purple line) scenarios on the Tibetan Plateau. The shaded regions depict the 95% confidence
intervals for the predicted GPP during the future period.

In the ssp585 scenario, characterized by fossil-fuel-driven development, the GPP
growth rate is projected to be 0.401 g C·m−2·year−1 from 2021 to 2060, followed by a
significant decline to 0.325 g C·m−2·year−1 after 2060. These findings suggest that scenarios
with lower forcing levels, such as ssp126 and ssp245, exhibit lower GPP growth rates after
2060 compared to the preceding period. Conversely, scenarios with higher forcing levels,
such as ssp370, indicate an increase in the GPP growth rates after 2060, with the exception of
ssp585. This phenomenon suggests that higher temperatures and levels of CO2 emissions,
coupled with more frequent extreme weather events such as droughts, could have adverse
effects on plant growth [28]. Although ssp370 also involves elevated CO2 emissions, the
temperatures in high-altitude regions may not yet reach the critical thresholds that inhibit
plant growth. In contrast, under ssp585, higher temperatures are likely to negatively impact
plant growth. In short, the annual GPP is expected to significantly increase throughout the
21st century under all future climate scenarios.

The statistical analysis reveals that, between 2021 and 2100, the average uncertainty interval
for the annual GPP on the Tibetan Plateau is 21.301 g C·m−2·year−1, 30.428 g C·m−2·year−1,
22.326 g C·m−2·year−1, and 24.684 g C·m−2·year−1 under the ssp126, ssp245, ssp370,
and ssp585 scenarios, respectively. Overall, the uncertainty interval will increase with
the increase in CO2 emissions, and the uncertainty interval in the ssp245 scenario is
significantly larger.

Figure 6 illustrates both the historical seasonal GPP from 1982 to 2018 and the projected
seasonal GPP from 2021 to 2100 under the four SSP scenarios. The data reveal pronounced
seasonal patterns in the GPP. The GPP shows the most significant increase in summer,
while there is essentially no change in winter, and it even gradually decreases. This
seasonal variation is primarily attributed to the synchronized occurrence of precipitation
and warmth in the region, which provides favorable conditions for vegetation growth
and development during summertime. The adequate temperature and moisture levels
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during this season improved the biomass compared to other seasons. In contrast, only
vegetation at lower altitudes continues to grow during the winter months, while plants
in higher-altitude regions show halted growth or undergo seasonal senescence due to the
cold temperatures.
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During the historical period, the GPP showed an increasing trend, with the spring,
summer, and autumn GPP trends passing the 99% significance test. However, the winter
GPP trend did not pass the 99% significance test (Table 4). This can be attributed to the cold
winter temperatures, weak solar radiation, and decreased precipitation in the form of snow,
which leads to soil freezing on the Tibetan Plateau. As a result, vegetation growth is largely
suspended, with most plants either showed paused growth or dying back during winter,
leading to the lowest GPP values of the year. Although the temperature has increased, it
remains insufficient to stimulate plant growth on the Tibetan Plateau, which does not result
in a noticeable trend in the GPP during winter.

The GPP in both spring and autumn showed a significant upward trend under the
ssp245, ssp370, and ssp585 scenarios, particularly in spring, where the trend passed the 99%
significance test for the period of 2061–2100. This trend is primarily driven by gradually
rising temperatures, especially in high-altitude and cold regions like the Tibetan Plateau,
which promote earlier vegetation growth and enhance photosynthesis. In autumn, the de-
layed occurrence of phenological events, particularly the postponement of plant senescence,
extends the growing season and contributes to increased GPP. Moreover, rising atmospheric
CO2 concentrations further stimulate photosynthesis, particularly at the beginning of the
growing season, leading to increases in GPP during both spring and autumn.
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Table 4. The trends and p-values for the seasonal GPP changes in the historical and projected future
periods during the 21st century under the ssp126, ssp245, ssp370, and ssp585 scenarios.

Seasonal
Historical ssp126 ssp245 ssp370 ssp585

1982–
2018

2021–
2060

2061–
2100

2021–
2060

2061–
2100

2021–
2060

2061–
2100

2021–
2060

2061–
2100

Spring trend 1.900 −0.102 0.211 0.249 0.697 0.324 1.501 0.297 1.891
p <0.01 0.379 0.088 0.038 <0.01 0.032 <0.01 0.167 <0.01

Summer
trend 4.199 1.228 1.327 1.677 2.159 1.994 1.187 2.984 0.329

p <0.01 0.011 <0.01 <0.01 <0.01 <0.01 0.061 <0.01 0.682

Autumn
trend 4.151 0.999 0.072 1.530 0.779 1.820 1.576 1.580 1.493

p <0.01 0.012 0.752 <0.01 0.018 <0.01 <0.01 <0.01 <0.01

Winter
trend 0.778 −0.059 0.029 −0.014 −0.153 −0.251 −0.177 −0.250 −0.056

p 0.074 0.339 0.684 0.017 0.028 <0.01 0.040 <0.01 0.533

Note: the unit of the trend is 10−3 g C·m−2·d−1. If the p-value is less than 0.01, the value of p is marked as <0.01;
otherwise, the true p value is given in the table.

Under the ssp126 scenario, the seasonal GPP fluctuations are minimal. The GPP trends
in all seasons fail to pass the 99% significance test, indicating that significant changes in GPP
are unlikely under this scenario. In contrast, the ssp245 scenario shows a significant increase
in the summer GPP, which passes the 99% significance test. This suggests that, under
moderate emission levels, the summer GPP may benefit from the warmer temperatures
and improved CO2 concentrations. Under the ssp370 scenario, spring exhibits accelerated
increases in GPP, with both the spring and autumn trends passing the 99% significance test
in 2061–2100. This indicates the more robust response of vegetation growth to increased
CO2 levels and warming, particularly in these seasons. The ssp585 scenario presents the
most pronounced seasonal variations in the GPP among all scenarios. Spring, summer,
and autumn all show accelerated increases in GPP, with significant trends passing the 99%
significance test in various time intervals. This scenario, characterized by high greenhouse
gas emissions, suggests that vegetation growth on the Tibetan Plateau will be profoundly
affected by this climatic scenario, inducing considerable seasonal shifts in the GPP.

4.3. Spatial Variations in GPP

Figure 7 shows the spatial patterns of the annual GPP on the Tibetan Plateau averaged
from 1982 to 2018. As shown in the figure, in general, the mean annual GPP decreases
gradually from the southeast to the northwest. The regions with higher GPP are primarily
distributed in the upper reaches of the Yellow River, Yangtze River, Lancang River, Nu
River, and Yarlung Zangbo River. These areas are low in elevation and receive relatively
abundant precipitation, which supports the growth of shrubs and grasses. In contrast,
areas such as the Chang Tang Plateau, Qaidam Basin, Shiquan River, Tarim Basin, and
Qilian Mountains show lower GPP due to their higher elevations, lower temperatures, and
limited precipitation, which restrict vegetation growth. According to the statistical results,
the mean annual GPP on the Tibetan Plateau was 363.80 g C·m−2·year−1. This finding is
consistent with the results of You et al. [45].

To illustrate the changes in GPP over different periods, Figure 8 presents the decadal
average GPP for 2021–2040, 2041–2060, 2061–2080, and 2081–2100 under the four SSP
scenarios as a function of elevation. As seen in Figures 5 and 6, the GPP shows an increasing
trend at both the interannual and seasonal scales in future periods. Here, we aim to
demonstrate how these changes manifest across different elevations. From Figure 8, it
is evident that, under the ssp126 scenario, the overall changes in GPP across different
periods are not particularly pronounced, with noticeable relative changes occurring in the
1000–2000 m range, albeit with a limited magnitude. Under the ssp245 scenario, significant
differences in GPP can be observed between elevations of 3000 and 4500 m, indicating that,
with further temperature increases and CO2 emissions, vegetation at these elevations is
notably affected.
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In the ssp370 scenario, the elevation band between 3000 and 4500 m exhibits noticeable
changes in GPP across different periods, particularly between 2081 and 2100, which is
markedly higher than that in 2061–2080. However, it can also be observed that the GPP
during 2041–2060 closely aligns with that of 2021–2040, suggesting a gradual increase in the
impact of the temperature and CO2 on the GPP. Besides the 3000–4500 m range, changes
are also noticeable in the 1000–1500 m elevation band.

Under the ssp585 scenario, the range of elevation bands showing significant dif-
ferences across the periods is broader. In addition to the 3000–4500 m elevation band,
significant changes could be observed in the 1000–1500 m range. Although the GPP during
2041–2060 closely aligns with that of 2021–2040, under this scenario, the differences be-
tween 2061–2080 and 2041–2060 are substantially greater than those under the other three
scenarios. This indicates a stronger GPP response under high-emission scenarios. How-
ever, high-emission scenarios may also have negative impacts. The differences between
2081–2100 and 2061–2080 under this scenario are smaller than those under the ssp370
scenario, suggesting that high-emission scenarios do not always favor vegetation growth.

Furthermore, Sen’s slope for the annual GPP during the period of 1982–2018 has been
computed and is presented in Figure 9 to illustrate the spatial distribution of the GPP trends
on the Tibetan Plateau. Sen’s slope is used to determine the change rate for time series
data [46]. The results reveal substantial spatial heterogeneity in the GPP trends across the
region, which is largely attributed to variations in the climatic conditions. Over the past four
decades, regions where the GPP changes passed the significance tests are predominantly
located in the southeastern part of the plateau. The number of significant grid points
gradually decreases from the southeast to the northwest. Notably, areas exhibiting an
increasing GPP trend with statistical significance are mainly found in the Yellow River
Basin and the Eastern Qilian Mountains. Conversely, regions showing a decreasing GPP
trend with statistical significance are primarily located in the middle and upper reaches
of the Yarlung Zangbo River, the upper Nu River, and the Qiangtang region. Overall,
the Northeastern Tibetan Plateau shows an increasing GPP trend in the next few decades,
whereas the GPP is decreasing along the Himalayas from the southeast to the northwest.

When considered alongside Figure 7, it becomes apparent that the significant trends
coincide with the spatial distribution of the GPP. Specifically, areas with higher GPP also ex-
hibit pronounced and positive trends, indicating that productive vegetation on the Tibetan
Plateau has been more responsive to climate change over the past forty years. Statistically,
43.59% of the area experienced an increasing GPP trend, while 22.31% showed a decreasing
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trend. The remaining regions exhibited no significant change. Among these, areas with
a significant increasing trend account for 16.02% of the total area of the Tibetan Plateau,
whereas those with a significant decreasing trend make up 3.71%. This suggests that the
overall trend on the Tibetan Plateau over the last four decades has been predominantly an
increase in GPP, aligning with the conclusions drawn in Section 4.2.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 8. Average of the predicted future GPP per two decades, varying with elevation, on the Ti-
betan Plateau during 2021–2100 under the (a) ssp126, (b) ssp245, (c) ssp370, and (d) ssp585 scenarios. 

Furthermore, Sen’s slope for the annual GPP during the period of 1982–2018 has been 
computed and is presented in Figure 9 to illustrate the spatial distribution of the GPP 
trends on the Tibetan Plateau. Sen’s slope is used to determine the change rate for time 
series data [46]. The results reveal substantial spatial heterogeneity in the GPP trends 
across the region, which is largely attributed to variations in the climatic conditions. Over 
the past four decades, regions where the GPP changes passed the significance tests are 
predominantly located in the southeastern part of the plateau. The number of significant 
grid points gradually decreases from the southeast to the northwest. Notably, areas ex-
hibiting an increasing GPP trend with statistical significance are mainly found in the Yel-
low River Basin and the Eastern Qilian Mountains. Conversely, regions showing a de-
creasing GPP trend with statistical significance are primarily located in the middle and 

Figure 8. Average of the predicted future GPP per two decades, varying with elevation, on the Tibetan
Plateau during 2021–2100 under the (a) ssp126, (b) ssp245, (c) ssp370, and (d) ssp585 scenarios.

Figure 10 illustrates the GPP trends over the 80 years from 2021 to 2100. Similar to
Figure 9, only grid points where the changes passed the statistical significance tests are
displayed. Under the ssp126 scenario, the majority of the Tibetan Plateau shows no statisti-
cally significant trend in the GPP. The statistical analysis reveals that only 55.39% of the
grid points show significant changes, with 49.52% exhibiting an increasing trend and 5.87%
showing a decreasing trend. This finding is consistent with the conclusions of Section 4.2,
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indicating that the GPP on the Tibetan Plateau follows a pattern of normal fluctuation
without significant trends. In contrast, under the ssp245 scenario, the number of grid points
showing significant changes increases markedly. It is estimated that approximately 86.58%
of the Tibetan Plateau displays significant trends, with 73.17% of the grid points showing an
increasing trend and 13.41% showing a decreasing trend. The grid points with statistically
significant increasing trends are predominantly located in regions with highly productive
vegetation, including the Qilian Mountains, Yellow River, Yangtze River, Lancang River,
and Yarlung Zangbo River areas.
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The spatial distribution patterns under the ssp370 and ssp585 scenarios are largely
consistent with those of ssp245. However, the proportion of grid points with statistically
significant GPP trends continues to rise, reaching 88.94% under ssp370 and 91.04% under
ssp585. Notably, the proportion of points exhibiting a statistically significant increasing
trend is 74.16% for ssp370 and 75.87% for ssp585. In summary, the Tibetan Plateau is pro-
jected to experience an overall increase in vegetation productivity with localized decreases.
There are significant differences in the change characteristics of vegetation productivity
across different sub-regions, reflecting the complex interplay of climatic and environmental
factors influencing the vegetation dynamics. From the Sen slope of the annual GPP, it can
be observed that the increase in the annual GPP in future decades is mainly concentrated
in regions with relatively high GPP, such as the northern regions of the Tibetan Plateau, the
Yellow River Basin, and the Eastern Qilian Mountains.

5. Discussion
5.1. Relative Importance of Environmental Factors

Figure 11 highlights the relative importance of key environmental factors in the
GPP prediction model on the Tibetan Plateau. Among these, longwave radiation (lard),
shortwave radiation (srad), the specific humidity (shum), and speed (wind) are identified as
the five most influential factors. Longwave radiation, in particular, stands out, contributing
25.16% to the overall importance, highlighting its crucial role in regulating the temperature
and water evaporation processes [31]. Interestingly, Lu et al. [31] found that shortwave
radiation is the most significant environmental variable affecting the global GPP, due to
its essential function in driving photosynthesis by providing solar energy at the top of the
atmosphere. The discrepancy between the Tibetan Plateau and the global situation could
be attributed to the fact that shortwave radiation is not the primary factor influencing the
GPP on the Tibetan Plateau. Supporting this, Ma et al. [47] noted that, among seven light
use efficiency (LUE) models on the Tibetan Plateau, only two suggested that radiation was
as influential as water and the temperature in determining the GPP, with the remaining
models considering either the temperature or water as the dominant factors. Additionally,
Figure 11 reveals that srad (15.60%), shum (13.51%), and wind (11.02%) are also significant
contributors, as they collectively influence the temperature and precipitation, which are
closely associated with longwave radiation.

The specific humidity, which represents the moisture content of the air, serves as a
composite indicator influenced by both the temperature and precipitation. It plays a crucial
role in GPP by regulating plant transpiration. Typically, lower specific humidity can increase
the transpiration rates; however, when the humidity levels fall too low, plants may close
their stomata to conserve water, resulting in reduced photosynthesis [48]. Additionally,
as shown in Figure 11, CO2 contributes 6.27% to the overall importance, significantly
impacting the GPP on the Tibetan Plateau, which is consistent with the findings of Li
et al. [49]. The rising atmospheric CO2 concentration enhances the efficiency of light energy
and water use by vegetation, thereby promoting plant growth in this region [50]. In the
alpine grassland ecosystems of the Tibetan Plateau, studies on the CO2 flux dynamics
and plant-limiting factors have shown that the interplay between water and the thermal
conditions is a key determinant of GPP. In humid regions, increasing temperatures can
boost photosynthesis and carbon fixation in plants. Conversely, in arid regions, higher
temperatures may exacerbate soil moisture evaporation, intensifying drought stress on
plants and consequently reducing ecosystem productivity. Overall, despite the fact that
elevated CO2 levels generally have a positive effect on GPP in the Tibetan Plateau, this
effect is moderated by various environmental factors, including the hydrological conditions,
temperature, and atmospheric dryness. In short, these factors collectively and interactively
shape the trends in vegetation productivity within this unique and sensitive ecosystem.
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5.2. Comparison with Prior Studies

In recent years, significant progress has been made in the estimation of GPP on
the Tibetan Plateau. Liao et al. [51] analyzed six common remote sensing GPP products
(GLASS, MODIS MOD17A2, FLUXCOM, VODCA2, an improved EC-LUE dataset, and
VPM data) for the Tibetan Plateau. The results indicated that the MOD17A2 GPP was
the lowest, at 484.04 Tg C·year−1, while GLASS and VODCA2 produced the highest and
most similar estimates, at 827.78 and 827.20 Tg C·year−1, respectively. The improved
EC-LUE, VPM, and FLUXCOM GPP estimates fell between these values, at 714.55, 634.00,
and 587.86 Tg C·year−1, respectively. Ma et al. [52] reported that the annual GPP across the
entire Plateau ranged from 575 to 703 Tg C·year−1, showing a significant upward trend
from 1982 to 2013. In this study, the GPP NIRv data indicated average annual GPP of
790.28 Tg C·year−1 for the Tibetan Plateau from 1982 to 2018. This estimate lies between
the highest values of GLASS and VODCA2 (827.78 and 827.20 Tg C·year−1, respectively)
and the improved EC-LUE (714.55 Tg C·year−1), suggesting that the data used in this study
are reliable.

Although significant progress has been made in global GPP prediction, there is a
noticeable gap in studies specifically focused on the Tibetan Plateau. Most of the existing
studies have concentrated on large-scale projections. For example, Schlund et al. [53]
applied an ML approach to reduce the uncertainties in the GPP estimates derived from
CMIP5, predicting that the global GPP could increase by 39% by the end of the 21st century
under the RCP 8.5 scenario. Similarly, Huang et al. [30] analyzed the future global GPP
trends using datasets from 18 ESMs in CMIP6, showing an overall increase in GPP across
all four SSP scenarios, with the ssp585 scenario indicating the most substantial growth. In
another study, Lu et al. [31] projected that, by 2100, the annual global GPP could reach
115.122 Pg C, 116.537 Pg C, 117.626 Pg C, and 120.097 Pg C under the four SSP scenarios.
Furthermore, Lu et al. [15] employed a deep learning approach to integrate GPP data
from 23 CMIP6 models, producing a high-precision monthly GPP dataset with a spatial
resolution of 0.25◦, spanning 1850 to 2100 across four climate scenarios.

In contrast to global studies, research on GPP prediction on the Tibetan Plateau
is relatively limited. This research gap underscores the critical need for region-specific
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studies, such as the current investigation, which focuses on the Tibetan Plateau. This
study presents a comprehensive projection of the annual GPP on the Tibetan Plateau under
four SSP scenarios. In 2021, the estimated GPP values were 1008.264 Tg C, 992.754 Tg C,
989.377 Tg C, and 998.812 Tg C under ssp126, ssp245, ssp370, and ssp585, respectively. By
2100, these values are projected to shift to 1011.986 Tg C, 1032.679 Tg C, 1044.358 Tg C, and
1055.504 Tg C, reflecting changes of 3.722 Tg C, 39.925 Tg C, 54.980 Tg C, and 56.691 Tg C,
respectively, which correspond to percentage changes of 0.36%, 4.02%, 5.55%, and 5.67%.
In comparison, Lu et al. [31] indicated increases of 1.67%, 3.29%, 4.22%, and 6.05% for the
same scenarios by the end of the century for the global GPP prediction. A comparison of
the GPP projections for the global scale and the Tibetan Plateau reveals that the findings
of this study are reasonable. These findings highlight the possible changes in vegetation
productivity on the Tibetan Plateau under different climate scenarios, providing valuable
insights for future ecological and environmental planning in this sensitive region.

5.3. Limitations

This study forecasts the seasonal and annual GPP from 2021 to 2100 across four
SSP scenarios using a CNN model to identify significant relationships between environ-
mental factors and GPP. However, challenges remain in understanding the biochemical
mechanisms through which environmental changes impact vegetation growth. Nutrient
availability is crucial for vegetation growth but has not been considered in the development
of more effective ML models. The accuracy of GPP forecasts is largely dependent on the
quality of the input data, with potential discrepancies arising from the GPP NIRv dataset,
which relies on satellite-based near-infrared reflectance and may not accurately capture
the historical GPP. Additionally, the inherent uncertainty in future climate projections
complicates GPP predictions, as even advanced ESMs struggle to accurately simulate fu-
ture climatic conditions. The vegetation dynamics in the region are likely influenced by a
combination of climatic and human factors. Human activities, including afforestation and
ecological restoration, can enhance GPP and improve vegetation’s carbon sequestration
capacity, contributing to the goals of “carbon peaking” and “carbon neutrality”. Studies
suggest that the contributions of climate and human activities to GPP increases are compa-
rable, accounting for 48–56% and 44–52%, respectively [54]. Future research should focus
on the interactions between natural processes and anthropogenic influences on vegetation
growth on the Tibetan Plateau.

Integrating physical models with ML approaches to simulate GPP presents a promis-
ing avenue to enhance the predictive accuracy and understanding of vegetation dynamics.
Physical models, grounded in ecological and biological principles, provide a mechanistic
understanding of the processes influencing GPP, including photosynthesis, respiration, and
nutrient cycling. On the other hand, ML models excel in capturing complex, non-linear
relationships within large datasets, making them highly effective in identifying patterns
and trends that may not be apparent through traditional modeling approaches. By combin-
ing these two methodologies as a physics-informed ML model [55,56], one can leverage
the strengths of each, using physical models to inform the structure and parameters of ML
algorithms, while employing ML to refine and improve the physical model predictions
based on empirical data. This hybrid approach can also enhance the ability to incorporate
diverse data sources, including remote sensing, ground-based measurements, and historical
climate records, thereby enhancing the predictive power of GPP simulations. Additionally,
integrating these methodologies may facilitate a more comprehensive understanding of
the interactions between environmental factors, vegetation dynamics, and anthropogenic
influences. Future studies should explore specific frameworks and case studies that exem-
plify this integration, ultimately contributing to more robust and adaptable models for the
prediction of GPP in diverse ecological conditions.
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6. Conclusions

This study successfully utilized a CNN model to predict the impacts of 21st-century
climate change on the GPP in the Tibetan Plateau. By comprehensively considering en-
vironmental factors, including climate variables, CO2 concentrations, and topographical
attributes, the CNN model demonstrated outstanding performance in simulating historical
GPP data, showcasing excellent robustness. This validates its robustness and reliability in
predicting future changes in GPP.

This study forecasted GPP variations under four different SSP scenarios, and the
key findings are as follows. (1) The predictions indicate a general increasing trend in
GPP for the Tibetan Plateau throughout the 21st century across all scenarios examined,
except ssp126. Notably, under the ssp585 scenario, the GPP is projected to rise significantly,
potentially reaching annual global GPP of 1050.307 Tg C by 2100, reflecting a 5.67% increase
relative to the 2021 levels. (2) A seasonal analysis indicates a pronounced increase in GPP
during spring and autumn, likely linked to the temperature conditions, which extend the
growing season for plants. (3) An elevation band between 3000 and 4500 m was identified
as particularly sensitive to climate change, showing a marked GPP response. (4) Significant
GPP increases would occur in the Eastern Tibetan Plateau, including the Qilian Mountains
and the upper reaches of the Yellow and Yangtze Rivers. (5) Future research directions
should emphasize the potential of integrating physical models with ML approaches to
enhance the GPP prediction accuracy.

This study concludes that the potential for GPP increments under climate change con-
ditions is limited; therefore, enhancing human intervention is crucial to achieving carbon
neutrality objectives. The findings provide scientific support for the formulation of ecologi-
cal conservation and carbon management strategies that are responsive to climate change.
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