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Abstract: The increased intensity and frequency of extreme climate events (ECEs) have significantly
impacted vegetation phenology, further profoundly affecting the structure and functioning of ter-
restrial ecosystems. However, the mechanisms by which ECEs affect the end of the growing season
(EOS), a crucial phenological phase, remain unclear. In this study, we first evaluated the tempo-
ral variations in the EOS anomalies in Northern China (NC) based on the Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from 2001 to 2018. We then used
event coincidence analysis (ECA) to assess the susceptibility of EOS to four ECEs (i.e., extreme heat,
extreme cold, extreme wet and extreme dry events). Finally, we examined the dependence of the
response of EOS to ECEs on background climate conditions. Our results indicated a slight decrease
in the proportion of areas experiencing extreme heat and dry events (1.10% and 0.66% per year,
respectively) and a slight increase in the proportion of areas experiencing extreme wet events (0.77%
per year) during the preseason period. Additionally, EOS exhibited a delaying trend at a rate of
0.25 days/a during the study period. The susceptibility of EOS to ECEs was closely related to local
hydrothermal conditions, with higher susceptibility to extreme dry and extreme hot events in drier
and warmer areas and higher susceptibility to extreme cold and extreme wet events in wetter regions.
Grasslands, in contrast to forests, were more sensitive to extreme dry, hot and cold events due to
their weaker resistance to water deficits and cold stress. This study sheds light on how phenology
responds to ECEs across various ecosystems and hydrothermal conditions. Our results could also
provide a valuable guide for ecosystem management in arid regions.

Keywords: autumn phenology; extreme climate events; climate change; Northern China

1. Introduction

The timing of life-history events of organisms, that is, phenology, is highly sensitive to
climate change [1–3]. Phenological shifts profoundly impact ecosystem functioning and
stability, further significantly influencing surface energy fluxes and carbon balance [4–6].
As a result, growing efforts have been made over the last decade to elucidate how plant
phenology shifts under climate warming [7–10]. Autumn phenology has been shown to
play a more significant role than spring phenology in driving inter-annual variations in
plant carbohydrate reserves and ecosystem productivity [11–13]. However, changes in
autumn phenology and the underlying mechanisms of the phonological response to climate
change are not yet fully understood [14–16].

In recent decades, global warming has markedly increased the frequency and intensity
of extreme climatic events (ECEs) like droughts, floods, heatwaves and cold waves [17–19].
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These events can significantly disrupt the normal phenological cycles of vegetation [19–21].
Satellite data and field observations consistently indicate the substantial effects of ECEs
on autumn phenology [22–24]. However, the effects of ECEs varied widely depending
on the intensities, duration and frequencies of these events, and they also varied across
diverse vegetation types. For instance, high heat stress has been shown to accelerate
vegetation senescence in the Tibetan Plateau [21], whereas moderate heat stress delayed leaf
senescence in temperate deciduous forests in the United States [25]. In arid biomes, extreme
precipitation events tended to extend the end of the growing season (EOS), while in humid
biomes, extreme wet events induced premature leaf discoloration [26]. Continuous drought
has been shown to facilitate leaf senescence in autumn, exhibiting strong lagging and
cumulative effects [27,28]. Conversely, increased drought stress in summer and autumn
retarded the EOS in deciduous forests and alpine steppe [24,25,29]. Given the diverse
and complex roles of ECEs, a thorough investigation of the impact of ECEs on autumn
phenology is critically needed.

Most research on vegetation responses to extreme climatic events (ECEs) has focused
on the long-term relationships between vegetation and climatic extremes, typically employ-
ing conventional statistical methods such as correlation and linear regression [23,30,31].
However, few studies have considered the discrete nature of extreme events, i.e., extreme
events occur only when values exceed thresholds near the upper or lower limits [32,33].
Thus, attributing vegetation growth events to concurrent extreme climate events is partic-
ularly challenging. Event coincidence analysis (ECA) provides an effective approach to
addressing this challenge [33]. Different from the traditional statistical methods (i.e., corre-
lation, linear regression), ECA specifically concentrates on the simultaneous occurrence of
extreme events. This approach considers that the response of plants to climatic factors is
typically nonlinear and plant growth is adversely affected only when climatic thresholds
are exceeded [34,35]. Therefore, ECA would be a better tool for the attribution of vegetation
phenology anomalies [36].

Northern China (NC) is a vast region characterized by diverse and complex climates
and encompasses extensive forests and grasslands [37–39]. In addition, NC is known for its
persistent wind, frequent sandstorms and soil erosion and thus is a climate-sensitive region
with a fragile ecological environment [40]. In recent years, NC has experienced significant
warming and drying trends, leading to a substantial increase in the frequency of extreme
heat and drought events [41,42]. These changes are projected to have profound effects
on vegetation phenology and surface ecological processes [42]. Nevertheless, systematic
studies on EOS responses to extreme climates in NC remain limited, and the mechanisms
driving these responses are still not fully understood.

In the study, we utilized the EOS obtained from the Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetation Index (EVI) to assess the influence of four ECEs
(i.e., extreme hot, cold, wet and dry events) on EOS across different climate backgrounds
and vegetation types in NC. This study aimed to (1) evaluate the temporal trend of the ECEs
and EOS anomalies; (2) use the ECA method to evaluate the probability of simultaneous
occurrences between EOS anomalies and ECEs, and (3) assess the susceptibility of EOS to
ECEs across divergent background climate and vegetation types. We hypothesized that
though the impact of all ECEs on EOS dynamics may vary across different ecoregions, the
effects of extreme hot and extreme dry events would be more prominent than those of
extreme cold and extreme wet events. Our findings could shed light on the mechanism of
extreme climate effects on ecological communities and support the efficient management
of ecosystems, particularly in arid regions with fragile ecological balances.

2. Materials and Methods
2.1. Study Area

Northern China (NC) is located between latitudes 31.29 and 54.59◦N and longitudes
73.41 and 135.10◦E (Figure 1). The elevation of the NC region decreases gradually from
west to east. The landform of this region is complex and diverse, comprising mountains,
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plateaus, basins, hills and plains. The region is characterized by a temperate climate, with
the mean annual temperature ranging from −5.21 ◦C to 17.88 ◦C and the annual cumulative
precipitation ranging from 20.41 mm to 1829.11 mm over 2001–2018. The precipitation
shows a distinct east-to-west gradient, which results in corresponding changes in the
vegetation across the region. The dominant types of natural vegetation in this region
comprise coniferous forests, broadleaf forests, steppes and meadows. Forests are mainly
distributed in the northeast and east, while grasslands are primarily located in the north
and northwest.
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2.2. Datasets

The Normalized Differential Vegetation Index (NDVI) and Enhanced Vegetation
Index (EVI) based on the Moderate Resolution Imaging Spectroradiometer (MODIS)
over 2001–2018 were used to extract the EOS time series. NDVI and EVI datasets were
extracted from the MOD13C1 (v.6), which has a temporal resolution of 16 days and a
spatial resolution of 0.05◦. These datasets provide detailed quality assurance flags that fa-
cilitate the accurate monitoring of vegetation phenology and have been extensively utilized
for investigating phenological responses to climatic change at both global and regional
scales [22,30].

Climate data, including 3-hourly temperature and daily precipitation during 2001–2018,
were acquired from the China Meteorological Forcing (CMF) dataset, which has a spatial
resolution of 0.1◦. The CMF dataset is a fusion of remote-sensing products, reanalysis datasets
and in situ station data [43]. It is highly effective in reducing bias and is widely used in
climate studies across China [44]. We aggregated the 3-hourly and daily data into monthly
values and derived four climate variables, i.e., monthly maximum temperature, monthly
minimum temperature, monthly mean temperature and monthly accumulated precipitation.

Vegetation type data were obtained from the Vegetation Maps of China, which has a
proportional scale of 1:1,000,000. The high accuracy of these land cover data ensures the
retention of real information [39,45]. We converted the polygon layer into a 0.1◦ × 0.1◦

raster dataset and identified four dominant vegetation biomes in NC, that is, coniferous
forests, broadleaf forests, steppes and meadows, to study the impact of climate extremes
on autumn phenology.



Remote Sens. 2024, 16, 3724 4 of 17

2.3. Methodology
2.3.1. Extraction of Vegetation Phenology

To eliminate the impacts of areas with sparse vegetation, we first excluded pixels
with an annual NDVI below 0.1 or an annual EVI below 0.08 [16,24]. Next, we used a
Savitzky–Golay (SG) filter to smoothen the NDVI (or EVI) time series for reconstructing
the curve of annual NDVI (or EVI). The SG filtering method, which eliminates noise while
preserving the original shape and width of the signal, has been widely utilized for data
smoothing and noise reduction [46]. The moving window was set to 4, and the quadratic
function was used to fit the curve with an iteration time of 20 [46].

We determined the EOS of individual years using two algorithms, i.e., the thresholds
and changing characteristics in the temporal NDVI (or EVI) profile. Next, the averaged
EOS obtained from these two methods was utilized to minimize the uncertainty associated
with different algorithms.

The first method used was based on a dynamic-threshold approach [47,48]. This
method defines the annual threshold using the NDVI (or EVI) ratio:

Xratio =
X − Xmin

Xmax − Xmin
(1)

where X, Xmax and Xmin are the daily NDVI (or EVI), the maximum NDVI (or EVI) and the
minimum NDVI (or EVI) values in a year, respectively. The EOS was determined as the
date when Xratio decreased to 0.5 [16].

Another method was a double-logistic approach. This method does not require
thresholds or other empirical constraints and has been fast developed and widely used to
extract phenology on a regional scale [49]. In this study, a double logistic function with a
seven-parameter was applied to fit the NDVI (or EVI) time series [49].

y(t) = a1 + (a2 − a7t)
[

1
1 + e(a3−t)/a4

− 1
1 + e(a5−t)/a6

]
(2)

where y(t) represents NDVI (or EVI) at day t, a1 refers to the background NDVI (or EVI)
and a2 represents the difference between the background and the amplitude of the late
summer and autumn plateau in NDVI (or EVI) units. a3 and a5 represent the midpoints in
the days of the year of the transitions for green-up and senescence, respectively. a4 and a6
are normalized slope coefficients. a7 refers to the “greendown” parameter that accounts
for the NDVI (or EVI) greendown phenomenon in the mid-summertime. The EOS was
determined as the date when the curvature change rate reached its local extrema.

The bilinear interpolation algorithm was finally applied to interpolate the EOS data
from 0.05◦ to 0.1◦ to match the spatial resolution of the climatic data.

2.3.2. Definition of ECEs and EOS Anomalies

We focused on four ECEs, i.e., extreme hot (characterized by maximum temperature),
extreme cold (characterized by minimum temperature), extreme wet and extreme dry events
(both characterized by accumulated precipitation). For each pixel, the length of preseason
ranged from the month where the mean multiyear average EOS occurred to its preceding
three months, as the climate during this period is closely relevant to EOS [50]. Given that
the EOS in NC ranges from September to November (Figure S1), we specified the preseason
as June to September, July to October and August to November for pixels where the
multiyear mean EOS was located in September, October and November, respectively. Next,
for each pixel, we calculated the climate indices characterizing each ECE (i.e., maximum
temperature, minimum temperature, accumulated precipitation) in the preseason period in
each year.

To identify the extreme events, we first applied trend elimination on the preseason
climate (or EOS) time series to remove the long-term trends [35]. Then, we defined extremes
based on the standardized anomalies (measured in standard deviation (STD)). Specifically,
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we employed two different thresholds, i.e., 1 STD and 1.5 STD [19,35]. Extreme hot and
extreme wet events were defined as occurrences when the corresponding characterizing
variable exceeded 1 (or 1.5) STD, while extreme cold and drought events were defined
as occurrences when the corresponding characterizing variable fell below 1 (or 1.5) STD.
Similarly, positive EOS anomalies and negative EOS anomalies were defined as EOS
standardized anomalies exceeding or falling below 1 (or 1.5) STD, respectively.

λi =
Xi − mean(X)

std(X)
(3)

where λ indicates the standardized anomaly, Xi indicates the value of the climate variable
(or EOS) during the preseason of the year i, mean(X) represents the multi-year average
value of the specific climate variable (or EOS) and std(X) represents the STD value of the
specific climate variable (or EOS).

2.3.3. Trends of ECEs and EOS Anomalies

To analyze the temporal trend of the area affected by ECEs and EOS anomalies, we first
identified the areas (number of pixels) where each ECE (or EOS anomalies) occurred each
year. Subsequently, we employed a linear regression analysis with the year serving as the
independent variable and the number of pixels experiencing ECEs (EOS anomalies) serving
as the dependent variable. The positive and negative regression coefficients indicated an
increase and a decrease in the areas affected by ECEs (or EOS anomalies) over the study
period, respectively.

2.3.4. Coincidence Rate (CR) between ECEs and EOS Anomalies

We employed the ECA method to calculate CRs between EOS anomalies and
ECEs [19,35]. CRs were used to represent the ratio of the number of coincident ECEs
and EOS anomalies to the total number of ECEs from 2001 to 2018. Higher and lower CRs
indicated higher and lower susceptibilities of EOS to ECEs, respectively [35].

To detect the robustness of the results, we performed a shuffle test to evaluate the
statistical significance of the CR [19]. The sequence of ECEs was randomly shuffled, while
the sequence of EOS anomalies was kept the same. Next, the CR for the random time series
was calculated. After repeating this process 1000 times, the CR of the shuffled sequence
was compared to that of the initial sequence. CRs that fell outside 99.5% of the surrogate
distribution were considered significant.

To explore the relationship between the EOS response to ECEs and the background
climate, we plotted heat maps displaying CRs in different colors, with the preseason
temperature and precipitation as the x-axis and the y-axis, respectively.

2.3.5. EOS Sensitivity to Climate Extremes

The CRs indicate the probability of simultaneous occurrences between EOS anomalies
and ECEs, but how EOS responds to varying intensities of ECEs is unknown. To address
this problem, we additionally assessed the sensitivity of EOS (recorded as St) to ECEs.

First, we converted the anomaly of climate extremes (in STD) to absolute values. Next,
we divided the vegetation anomalies by the absolute values of the ECEs and averaged the
results for the corresponding extreme years [19]. The results (in STD/STD) are expressed
as the deviations in EOS due to the unit of climate extremes, and the positive and negative
signs indicate a delay and advance in EOS caused by the particular extreme climate
event, respectively.

3. Results
3.1. Temporal Variations in ECEs and EOS Anomalies

We explored the spatial distribution and change in the areas affected by ECEs and
EOS anomalies (Figures 2 and 3). The multiyear mean proportion of the affected areas
was highest for extreme hot events (16.16%), followed by extreme cold events (16.14%),



Remote Sens. 2024, 16, 3724 6 of 17

extreme wet events (15.72%) and extreme dry events (14.57%). Regarding changes in the
proportion of affected areas, the proportion of extreme hot and extreme dry events exhibited
a marginally significant (p = 0.06 and p = 0.07) decreasing trend of 1.10% and 0.66% per
year, respectively. In contrast, extreme wet events showed a marginally significant increase
of 0.77% per year (p = 0.06). Unlike these events, the change in the proportion of areas
affected by extreme cold events was not significant (p = 0.16).

Figure 2. Trends in the proportion of areas affected by extreme climate events in the preseason
period during 2001–2018. The lines represent the linear fitting lines and the shaded areas are the 95%
confidence bands of the fits.
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We analyzed the temporal variation in EOS across NC and found that it exhibited
notable spatial heterogeneity (Figure S2). In total, 69.11% of the areas exhibited a trend
towards delayed EOS, with 10.21% being significant (p < 0.05). The delayed EOS was mainly
distributed in eastern Inner Mongolia. On the contrary, advanced EOS was predominantly
observed in northeastern China and the northern Tibetan Plateau. Across the entire study
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region, EOS exhibited a delaying trend at a rate of 0.25 days/a during the period 2001–2018.
For EOS anomalies, no significant trend (p > 0.1) was observed in either negative or positive
EOS anomalies (Figure 3).

3.2. CR between ECEs and EOS Anomalies

We compared the spatial distribution of CR between ECEs and EOS anomalies based
on 1 and 1.5 STD and found a similar spatial pattern for both (Table S1, Figures S3 and S4).
Therefore, we used only the CR based on 1 STD in the subsequent analyses.

The CR between negative EOS anomalies and ECEs, calculated using the original
sequence of ECEs, was significantly larger in 87.31% of the pixels compared to the values
obtained by randomly shuffling the ECEs time series (Figure S5). Similarly, for positive
EOS anomalies, the observed CR in 72.52% of the pixels was significantly greater than that
derived from the shuffled sequence. These findings suggest that EOS anomalies and ECEs
were not randomly associated, indicating a strong relationship between EOS anomalies
and ECEs.

Spatial heterogeneity in the total rate of coincidence was observed for each EOS
anomaly (Figure 4) Negative EOS anomalies exhibited high coincidence with all ECEs,
with the total CR exceeding 0.5 in 73.33% of the pixels. This coincidence was particularly
pronounced in regions near the Tibetan Plateau, where the total CR exceeded 1. In contrast,
positive EOS anomalies exhibited a lower coincidence with ECEs, with the total CR below
0.5 in 67.80% of the pixels. In addition, no distinct spatial variation was detected in CR for
positive EOS anomalies.
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Among the extreme events, the CRs between the negative EOS anomalies and extreme
dry (CRdry_N), hot (CRhot_N), cold (CRcold_N) and wet (CRwet_N) events were 0.31, 0.28,
0.24 and 0.14, respectively (Figure 5). This result indicated that extreme dry, hot and cold
events were more closely related to negative EOS anomalies compared to extreme wet
events. Spatially, the effects of these events varied across regions and vegetation types
(Figure 4). For instance, extreme dry events substantially impacted negative EOS anomalies
in steppes and meadows, where most CRdry_N values exceeded 0.3. Extreme hot events
dominated the occurrence of negative EOS anomalies in 28.30% of pixels, especially in
broadleaf forests and steppes. In 22.11% of the pixels, particularly in the meadow biome,
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extreme cold events had a greater impact on EOS anomalies than other events. In contrast
to the aforementioned climate events, extreme wet events were more closely relevant to the
occurrence of positive EOS anomalies, with a mean CRwet_P of 0.23. This vital effect was
primarily observed in the eastern regions and at the edge of the Tibetan Plateau.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 4. Spatial distributions of the coincidence rates (CRs) between EOS anomalies and extreme 
climatic events (ECEs) in Northern China. (a) Total CR between the negative EOS anomalies and 
ECEs. (b) Total CR between the positive EOS anomalies and ECEs. (c) The CRs between the nega-
tive EOS anomalies and individual ECEs. (d) The CRs between the positive EOS anomalies with 
individual ECEs. Only climate extremes with the highest CRs are displayed at each pixel in (c,d). 

 
Figure 5. Percentage of the pixels of coincidence rates (CRs) between EOS anomalies and extreme 
climate extremes (ECEs) and the averaged CR for each ECE. The dark and light colors indicate the 
CRs are significant and non-significant, respectively.  

3.3. Dependency of CR on Local Climate Conditions 
We found that CRhot_N, CRcold_N and CRdry_N displayed a distinct pattern along the 

preseason temperatures or precipitation gradients (Figure 6). Specifically, an increase in 
the preseason temperature was markedly associated with a higher CRhot_N, indicating 
that the early EOS events were more affected by heat stress in warmer regions. CRcold_N 
and CRdry_N were significantly associated with preseason precipitation, with CRcold_N 
showing a positive and CRdry_N showing a negative correlation. Oppositely, for CRwet_N, 
the correlations with local climates were found to be insignificant, implying the absence 
of a clear pattern in the negative effect of extreme wet events on EOS along the local cli-

Figure 5. Percentage of the pixels of coincidence rates (CRs) between EOS anomalies and extreme
climate extremes (ECEs) and the averaged CR for each ECE. The dark and light colors indicate the
CRs are significant and non-significant, respectively.

3.3. Dependency of CR on Local Climate Conditions

We found that CRhot_N, CRcold_N and CRdry_N displayed a distinct pattern along the
preseason temperatures or precipitation gradients (Figure 6). Specifically, an increase in
the preseason temperature was markedly associated with a higher CRhot_N, indicating
that the early EOS events were more affected by heat stress in warmer regions. CRcold_N
and CRdry_N were significantly associated with preseason precipitation, with CRcold_N
showing a positive and CRdry_N showing a negative correlation. Oppositely, for CRwet_N,
the correlations with local climates were found to be insignificant, implying the absence of
a clear pattern in the negative effect of extreme wet events on EOS along the local climate.
In the case of the CR between positive EOS anomalies and ECEs, CRwet-P exhibited a
significant positive correlation with precipitation, meaning the extreme wet events resulted
in more delayed EOS events in wetter regions (Figure 7). However, the CRs for other ECEs
(i.e., CRhot-P, CRcold-P and CRdry-P) did not exhibit clear tendencies along temperature or
precipitation gradients, suggesting that the response of positive EOS anomalies to these
climate events were less influenced by background climate conditions.

We further analyzed the CRs between EOS anomalies and the relevant ECEs across
the hydrothermal conditions for each vegetation type. This analysis aimed to investigate
the consistency and variation in the susceptibilities of EOS to ECEs across different biomes.

Figure 8 shows the CRs for each climate event in all biomes, and we found that CRs
varied among biomes. Specifically, the CRhot_N of broadleaf forests (CRhot_N = 0.31) was
higher than that of steppes (CRhot_N = 0.28), meadows (CRhot_N = 0.27) and coniferous
forests (CRhot_N = 0.22), indicating that the EOS in broadleaf forests was more susceptible
to extreme hot events compared to that in other biomes. Additionally, extreme wet events
emerged as a more crucial factor for EOS in forests (CRwet_P = 0.26) than in grasslands
(CRwet_P = 0.21). In contrast, the CRcold_N and CRdry_N were higher in steppes and mead-
ows, suggesting that extreme cold and extreme dry events exerted a profound impact on
EOS in grasslands.
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and to the right of heat maps indicate the mean CRs against the preseason temperature in each bin
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50 mm precipitation range were excluded to ensure the reliability.
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preseason precipitation in each bin of 50 mm, respectively. The blue lines represent the linear fitting
lines of CRs. ** p < 0.01. Pixels that occur less than ten times within a 1 ◦C and 50 mm precipitation
range were excluded to ensure the reliability.
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Figure 8. Distribution of coincidence rates (CRs) between EOS anomalies and extreme climate
extremes along preseason temperature and precipitation gradients. (a) CR of negative EOS anomalies
and extreme hot events. (b) CR of negative EOS anomalies and extreme cold events. (c) CR of positive
EOS anomalies and extreme wet events. (d) CR of negative EOS anomalies and extreme dry events.
The shaded areas show the standard deviation. Note: Pixels that were fewer than 10 occurrences
within a 1 ◦C temperature and a 50 mm precipitation range were excluded to ensure the reliability.

The dependency pattern of CRs on background climates was generally consistent
across vegetation types (Figure 8). Specifically, a higher CRhot_N was observed in warmer
regions, while CRcold_N and CRwet_P increased with rising precipitation. For extreme dry
events, it exhibited mild variations in CR across biomes. To be specific, broadleaf forests
and steppes showed a decreasing trend in CRdry_N with increasing precipitation, whereas
the other two biomes did not exhibit a distinct trend along precipitation gradients.

3.4. Sensitivity of EOS to ECEs

The sensitivities of EOS to ECEs across various background hydrothermal conditions
are illustrated in Figure 9. We observed that the sensitivity of EOS to extreme heat (Sthot)
was initially positive and gradually decreased with rising temperature in regions with
temperatures below 5 ◦C. In areas with temperatures exceeding 5 ◦C, Sthot reversed to
negative. This result indicates that the advancement effect of hot events was higher in
warmer regions. Stcold was positive in regions with precipitation below 200 mm. Conversely,
in areas with more than 200 mm of precipitation, Stcold reversed to negative and decreased
with increasing precipitation, that is, extreme cold events accelerated EOS, and this effect
became more prominent with higher precipitation levels. In the case of the sensitivity
of EOS to extreme wet events, Stwet continued to increase with increasing precipitation,
implying that EOS was more sensitive to extreme cold events in wetter areas. Regarding
Stdry, it remained consistently negative for all vegetation types but varied among biomes
along precipitation gradients. Specifically, the Stdry in forests and steppes increased with
higher precipitation levels, while the Stdry in meadows showed no distinct trend along the
precipitation gradient. This observation suggests that the negative impact of drought events
on EOS in forests and steppes diminished with increasing precipitation, while the EOS
response to drought events in meadows showed no clear pattern along the precipitation
gradient. These findings indicate that the pattern of the sensitivities of EOS to ECEs
across various temperature and precipitation gradients closely resembles the pattern of
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CRs, further suggesting that CR patterns may be influenced by the sensitivities of EOS to
extreme climate conditions.
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For the variations in the sensitivity of EOS to ECEs across different vegetation types
(Figure 9), EOS in grasslands responded more sensitively to extreme dry (St = −0.25), hot
(St = −0.16) and cold (St = −0.09), while the EOS in forests was more susceptible to extreme
wet events (St = 0.11).

4. Discussion
4.1. Changes in ECEs and EOS

In this study, we found that extreme cold events and extreme hot events in preseason,
i.e., generally summer and autumn, slightly decreased over 2001–2018. Since extreme cold
and extreme hot events were characterized by a minimum temperature and maximum
temperature, respectively, this finding suggests that the temperature increase was more
prominent at night than during the day. Our findings align with the global diurnal asym-
metric warming in recent years, with stronger nighttime warming compared to daytime
warming on the global land surface [47]. In terms of moisture conditions, we observed
that extreme wet events slightly increased, while drought occurrences decreased, which
supports the fact that prolonged droughts have reduced in frequency and precipitation has
displayed more significant fluctuations in grasslands in northern China [24]. In addition to
summer and autumn, significant changes in climate extremes have also occurred during
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spring and winter. For instance, cold events have diminished, while heat events have be-
come more prevalent during these seasons in temperate China [38]. Additionally, drought
events in winter and spring have shown an increasing trend across most of China [51].
These extreme climate changes in the spring and winter seasons can affect phenology and
should not be ignored.

Consistent with the previous studies in China that identified a delaying trend in au-
tumn phenology [52,53], our findings similarly reveal a delayed EOS and an expansion of
areas experiencing delayed EOS events from 2001 to 2018 in Northern China. These delayed
EOS and increased EOS anomalies suggest an extension of the growing season, which
could potentially enhance vegetation productivity and carbon assimilation [54,55]. For
instance, a delay of 3 d yr−1 in leaf senescence would lead to an increase of 5 g C m−2 yr−1

in net ecosystemic productivity in late summer in forests [56]. Given the ongoing climate
warming and associated increase in extreme climate events, vegetation phenology is ex-
pected to change significantly [18]. Therefore, it is crucial to examine the effects of extreme
climates on the shifts in EOS and further assess the functions and sustainability of terrestrial
ecosystems [1,57].

4.2. Regulation of Background Climates on the Response of EOS to ECEs

We found that extreme dry and extreme hot events were the primary drivers of EOS
anomalies in Northern China, which corroborates previous reports demonstrating that
drought and heat stresses had a noticeable influence on autumn phenology in many temper-
ate areas [30,58]. We observed that the negative effects of extreme drought and hot events
on EOS were more pronounced in drier and warmer regions, respectively. Consistent with
our study, existing studies also highlight the strong dependence of the EOS response to
extreme climates on local hydrothermal conditions. For instance, a previous study found
that drought was the main factor contributing to the advancement of EOS in warm regions
in alpine and temperate grasslands of China [59].Moreover, recent research suggested that
advancement in leaf senescence due to drought was predominantly observed in warmer
and drier regions [22]. Several factors may explain these phenomena. First, the study
regions are characterized by higher evapotranspiration and lower soil moisture. High
evapotranspiration between the saturated leaf interior and the ambient air could lead to
stomata closure and prevent excessive xylem pressure [60], further severely limiting photo-
synthesis and carbon assimilation [61]. Second, abscisic acid, which regulates the activities
of antioxidant enzymes and mitigates cellular damage under high-temperature conditions,
may become less effective under frequent extreme heat, resulting in delayed EOS [24].
Lastly, heat stress can also catalyze protein degradation in plants [19,62], accelerating leaf
senescence [63,64].

At the community level, we found that grasslands, including steppes and meadows,
were more susceptible to extreme hot and extreme dry events compared to forests. The
finding is consistence with other studies suggesting that autumn phenology in grasslands
exhibits a more pronounced response to heat and drought stresses than in forests [30,65].
The disparity in responses to heat events between forests and grasslands may be attributed
to the fact that high temperatures could accelerate the evaporation of plants, leading to
increased soil water loss [39], and this effect is more pronounced in grasslands, which pri-
marily grow in drier environments. Consequently, grasslands are more sensitive to extreme
hot events than forests. In terms of the response to drought events, the difference between
forests and grasslands may be related to the species-specific physiological structures. Wa-
ter availability plays a limiting factor for plant growth in arid environments [66]. Herbs
typically have shallower roots and thus primarily absorb water at the surface soil layer [67].
Therefore, they are more vulnerable to drought events [68]. By contrast, deep-rooted plants,
such as forest trees, are less likely to be affected by water stress due to their ability to access
deeper water reserves [69,70]. Accordingly, forests are less susceptible and exhibit slower
responses to drought events compared to grasslands [71,72].
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We found that the influence of extreme cold events on early EOS events was more
pronounced in high-precipitation regions across all vegetation types. This observation
aligns with the finding that wet and cold conditions at high altitudes facilitate earlier
EOS in Central Asia [30]. The underlying reason may be the elevated autumnal frost
damage due to higher moisture levels at low temperatures, which increases the risk of
injury to plant cells and tissues, leading to earlier leaf discoloration [29,73]. On the other
hand, high soil moisture in colder areas could limit nutrient availability to plants, thereby
constraining plant growth [74]. Consistent with previous studies demonstrating a higher
sensitivity of shrubland to extreme cold compared with forests in arid areas [30], we
observed that grasslands were more susceptible to cold events than woody plants. This is
likely because the low temperatures in grasslands act as a limiting factor, thereby enhancing
the susceptibility of herbs to frost damage [75]. Furthermore, the greater accumulation
of antifreeze proteins, cryoprotective compounds and sugars and higher productivity in
forests may contribute to their lower sensitivity to cold stress [76]. For instance, studies
have shown that higher sugar levels in forest vegetation help modulate tissue osmolality
and retain the stability of the leaf membranes under low temperatures [11,77].

In the present study, extreme wet events generally resulted in delayed EOS, and
the susceptibility of EOS to extreme wet events increased under wetter conditions. This
finding supports the evidence of positive sensitivities of autumn phenology to excessive
wetness in drylands [78]. This phenomenon may be attributed to the typically dry con-
ditions of the target region, where increased precipitation could significantly mitigate
these dry conditions [79]. Interestingly, the coincidence rates between extreme wet events
and delayed EOS events for coniferous forests decreased when precipitation exceeded
approximately 700 mm (Figure 8c). This reduction may be due to the high soil moisture in
coniferous forests, which creates an anaerobic environment in the plant root zone under
excess precipitation, thereby inhibiting vegetation growth [80,81].

4.3. Limitations of the Study

The study has several limitations. First, the relatively coarse spatial resolution of
satellite data and the uncertainty in phenological metrics extraction algorithms may have
contributed to inaccuracies in phenology data. Thus, higher spatial resolution satellite
data and optimized approaches for extracting phenology information are urgently needed.
Additionally, autumn phenology can be influenced by other factors, such as solar radiation,
atmospheric CO2 levels [82], and nutrient availability [83]. However, accounting for all
these factors in large-scale remote sensing applications is challenging due to their number
and complexity. Consequently, the study focused solely on the key drivers, i.e., extreme
temperature events and extreme precipitation events, which are well recognized for their
substantial impact on phenology. Future research should consider additional climatic
and ecological factors to provide a more comprehensive understanding of changes in
autumn phenological events. Moreover, this study concentrated on individual extreme
climate events, overlooking the potential effects of compound extreme climate events on
vegetation phenology. However, compound extreme events might exert more profound
impacts on ecosystems than their univariate counterparts [18]. Future research on the
effects of compound extreme events, utilizing a combination of remote sensing and in
situ data collected through field sampling and experiments, is essential to enhancing
our understanding of the mechanisms underlying autumn phenological responses to
climate change.

5. Conclusions

Using the EOS time series extracted from MODIS NDVI and EVI, we examined the
response of autumn phenology to extreme climate events in Northern China. Our analysis
revealed a slight decrease in the areas experiencing extreme heat and dry events and a
slight increase in the areas experiencing extreme wet events from 2001 to 2018. In addition,
we observed a delaying trend of EOS during the study period. The susceptibility of EOS to
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ECEs was closely related to local hydrothermal conditions, with higher susceptibility to
extreme dry and extreme hot events in drier and warmer areas and higher susceptibility
to extreme cold and extreme wet events in wetter regions. Among the vegetation types,
grasslands were more sensitive to extreme dry, hot and cold events, whereas forests were
more susceptible to extreme wet events. This study enhances our comprehension of the
autumn phenological response to multiple extreme climates across various biomes and local
hydrothermal environments. Future field manipulative experiments focusing on additional
climatic factors and compound extreme climates are necessary to further understand the
mechanisms underlying the autumn phenology response to climate change.
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the CRs of positive EOS anomalies and extreme climate events based on the threshold of 1 (left) and
1.5 (right) STD. Figure S5: Spatial distributions of the significance of CRs for negative (a) and positive
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