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Abstract: The Tianshan Expressway plays a crucial role in China’s “Belt and Road” strategy, yet
the extreme climate of the Tianshan Mountains poses significant traffic safety risks, hindering local
economic development. Efficient detection of hazardous road surface conditions (RSCs) is vital
to address these challenges. The complexity and variability of RSCs in the region, exacerbated
by harsh weather, make traditional surveillance methods inadequate for real-time monitoring. To
overcome these limitations, a vision-based artificial intelligence approach is urgently needed to
ensure effective, real-time detection of dangerous RSCs in the Tianshan road network. This paper
analyzes the primary structures and architectures of mainstream neural networks and explores their
performance for RSC recognition through a comprehensive set of experiments, filling a research
gap. Additionally, T-Net, specifically designed for the Tianshan Expressway engineering project, is
built upon the optimal architecture identified in this study. Leveraging the split-transform-merge
structure paradigm and asymmetric convolution, the model excels in capturing detailed information
by learning features across multiple dimensions and perspectives. Furthermore, the integration of
channel, spatial, and multi-head attention modules enhances the weighting of key features, making
the T-Net particularly effective in recognizing the characteristics of snow-covered and icy road
surfaces. All models presented in this paper were trained on a custom RSC dataset, compiled from
various sources. Experimental results indicate that the T-Net outperforms fourteen once state-of-the-
art (SOTA) models and three models specifically designed for RSC recognition, with 97.44% accuracy
and 9.79% loss on the validation set.

Keywords: snow and ice disaster; RSC recognition; deep learning; neural network

1. Introduction

The Tianshan Expressway is a critical transportation artery in Xinjiang, which plays a
crucial role in the economic development of the region. Furthermore, the perennial snow
accumulation in the Tianshan region, accounting for one-third of China’s snow resources,
significantly exacerbates snow and ice hazards on the roadways. From October to March,
extreme weather phenomena such as snowfall, snow accumulation, and blowing snow, as
well as ice formation in mountainous areas, pose severe risks to transportation, human lives,
and property. These conditions represent a significant meteorological hazard, disrupting
the normal operation of expressways in Northern Xinjiang during the cold season and
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significantly impacting local economic development. Therefore, it is imperative to develop
an effective method for the real-time surveillance of road surface conditions (RSCs) on the
Tianshan Expressway.

In recent years, various methods for RSC recognition have been proposed, which can
be categorized into contact and non-contact approaches [1]. Contact approaches primarily
rely on embedded sensors, including capacitive sensors [2–5], fiber optic sensors [6,7], and
resonant sensors [8]. Although these detection devices typically achieve high accuracy on
clean surfaces, the presence of various types of impurities on road surfaces can significantly
affect measurement accuracy. Additionally, the installation and maintenance of contact
sensors require cutting the road surface, potentially disrupting traffic flow and reducing
the lifespan of the road. As a result, capacitive, optical, and resonant methods have been
applied within a restricted scope of RSC recognition. Non-contact approaches primarily
rely on light sources and photoelectric detectors, including polarization detection [9–11],
infrared detection [12,13], and multi-wavelength detection [14]. These optical detection
technologies position the light source device at a certain height near the road and fix the
light receiving device on the opposite side, using a wired transmission method. The high
costs of installation, communication, and maintenance, coupled with substantial power
consumption, make dense installation of these systems along road sections challenging,
thereby also limiting their applicability in certain scenarios.

Recent advancements in deep learning have led to the emergence of camera-based
approaches [15–25]. This non-contact method, relying on camera images for RSC recogni-
tion, has achieved higher accuracy compared to traditional methods. Pan et al. conducted
a comparative study on the performance of four convolutional neural network (CNN)
models (VGG16, ResNet50, Inception-v3, and Xception) in addressing RSC recognition
problems, identifying ResNet50 as the optimal model for recognizing winter RSCs [15].
Dewangan et al., proposed a CNN-based network for complex scene road recognition
called RCNet [18]. Huang et al., developed a transfer-learning model based on Inception-v3
for RSC recognition and used a residual neural network to segment flooded road areas [20].
Yang et al., tackled the challenges of complex and variable road scenes, low recognition rates
of traditional machine-learning methods, and poor generalization capability by proposing
an RSC-recognition algorithm based on residual neural networks [22]. Chen et al. ad-
dressed the issues of high cost and limited detection range in conventional hardware-based
RSC-detection technologies by proposing a high-speed RSC detection method based on a
U-Net fusion model [25].

Despite the fact that deep-learning models for RSC recognition have shown promise,
most rely on pre-trained architectures with only superficial adjustments, such as the inte-
gration of attention mechanisms. However, the selection of these models is often not well
justified, lacking rigorous comparisons with alternative structures or architectures. Most of
them are trained on public datasets such as ImageNet and CIFAR. Therefore, it is crucial
to compare their performances on specific RSC datasets, as they may not be suitable for
RSC recognition. Current research has largely overlooked a comprehensive evaluation of
various neural network designs for RSC recognition, which is a critical gap in the field.
Addressing this gap is essential for advancing the development of more robust and effective
RSC recognition systems. Given this situation, this study aims to develop a more effective
method for recognizing RSCs on the Tianshan Expressway, which is crucial for enhancing
road safety. The main contributions of the research are summarized as follows.

1. A custom dataset covering six types of RSCs was compiled by using highway cameras,
mobile lenses, and online resources. Subsequently, illumination correction and stan-
dardization processing were implemented to ensure compatibility with deep-learning
models. In view of the scarcity of publicly available standardized datasets of road
surface meteorological conditions internationally and the relative shortage of picture
resources of road surface conditions in extreme weather, this dataset has contributed
invaluable resources for improving the accuracy of the RSC recognition models.
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2. To overcome the limitations of existing RSC recognition methods, a novel model,
T-Net, was proposed. It adopts a split-transform-merge paradigm with four distinct
branching blocks, multiple attention mechanisms, and three trainable classification
heads, allowing it to capture the diversity and complexity of the RSCs. Meanwhile, in
order to fill the research gap and answer the question of which structure or architecture
of the deep-learning model should be selected for an RSC recognition scenario, the
performance differences of deep learning neural networks with different structures
and architectures were explored and analyzed.

3. The T-Net constructed is particularly beneficial for engineers and policymakers fo-
cused on road safety and transportation infrastructure in extreme climates such as
those common in the Tianshan region. By exploring various combinations in convolu-
tion methods, attention mechanisms, loss functions, and optimizers, this study offers
practical solutions for real-time RSC recognition, bridging the gap between theoretical
research and practical application.

The remainder of this paper is organized as follows: Section 2 outlines the develop-
ment of classical image recognition neural networks and RSC recognition models, Section 3
describes the preparation of the dataset and the architecture of the T-Net model, Section 4
provides the experimental settings and results, Section 5 presents a comprehensive discussion
based on experimental outcomes, and Section 6 gives a summary of the paper.

2. Related Work

From our perspective, the latest networks are not always superior to older ones. Al-
though new network architectures typically introduce more advanced algorithms and
technologies, they do not consistently achieve superior performance in certain scenarios.
Performance depends on various factors, including the complexity of the task, characteris-
tics of the dataset, and the adaptability of the model. Therefore, a review of existing neural
network architectures and RSC recognition models was conducted in preparation for the
subsequent experiments in this section.

2.1. Different Features and Structures of Neural Networks

The rapid advancement of neural networks began in 2012 with the advent of deep-
learning techniques and advancements in computational resources, which led to significant
breakthroughs in computer vision. In the field of image recognition, neural networks can
be categorized as follows:

From a design philosophy and core mechanism perspective, neural networks can
be classified into two primary types: CNN-based and transformer-based. In CNN-based
neural networks, two main design structures are prevalent. The first is the sequential (or
chain) structure, typically formed by sequentially stacking a series of convolutional and
pooling layers to create a linear network flow. Examples include AlexNet [26], VGG [27],
ResNet [28], and others. The simplicity and intuitiveness of this structure render it facile to
understand and implement. Notably, ResNet introduced residual connections, laying the
foundation for deeper convolutional neural networks. The second type is the multi-branch
structure, also known as the Inception structure. Xie et al. described this as a split-transform-
merge model paradigm [29]. This structure uses multiple branches at the same level with
different convolutional kernels or pooling operations, concatenating the output of each
branch, as seen in GoogLeNet [30] and the Inception series [31,32]. The advantage of the
multi-branch structure lies in its ability to simultaneously capture features at different
scales and levels, enhancing the network’s expressive power. In transformer-based neural
networks, although their design principles and mechanisms differ from CNN-based models,
most still adopt a sequential connection structure. Examples include the Vision Transformer
(ViT) [33], the Swin Transformer [34], and others. It is worth noting that the ViT represents
a pioneering milestone by effectively integrating the self-attention mechanism from the
transformer architecture into computer vision. Despite the fact that transformer-based
models have demonstrated remarkable performance on benchmarks such as ImageNet,
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surpassing traditional CNNs and advancing the field of neural network research, they still
encounter challenges, including a high number of parameters, demanding computational
requirements, a lack of spatial inductive bias, limited adaptability to diverse tasks, and
training complexities.

In terms of application scenarios, networks are mainly categorized as either standard
or lightweight. Standard networks typically include models that excel on large-scale tasks,
characterized by larger parameters and higher computational complexity. Examples include
ResNet, ResNeXt, GoogLeNet, Inception, Inception-ResNet, ViT, ResViT, Swin Transformer,
DenseNet [35], ConvNeXt [36], and others. Notably, ConvNeXt, proposed in 2022, demon-
strates performance comparable to transformer-based networks when the convolutional
architecture is well designed. In contrast, due to the increasing demand for neural net-
works in resource-constrained environments, studies [37–44] have increasingly focused
on the development of lightweight neural networks. Recent examples specifically de-
signed for mobile devices and embedded systems include MobileNet [40], EfficientNet [41],
MobileViT [42], EfficientViT [43], and others. The core designs of MobileNet consist of
depthwise separable convolution and width multipliers, which significantly reduce the
computational cost and parameter count. EfficientNet achieves optimal performance
through a compound scaling method. MobileViT adopts a hybrid CNN and transformer
architecture, enhancing network convergence and inference speed through a CNN while
incorporating spatial information through a transformer to improve network transferability.
EfficientViT, the latest lightweight deep-learning model, incorporates a sandwich layout
and cascaded group attention as fundamental components, surpassing existing efficient
models and achieving an optimal balance between inference speed and accuracy.

Based on design approaches, neural networks can be divided into two major types:
manually designed networks and neural architecture search (NAS) networks. Manual
design of neural network architecture excels in flexibility and interpretability. Examples
include GoogLeNet, DenseNet, ConvNeXt, and others. However, manual design is limited
by the challenge of fully exploring potential data features, as effective neural network
structure design requires significant expertise and experimentation. NAS methods aim
to automate this process, providing more efficient discovery and optimization of neural
network architectures. High-performance networks derived from NAS include MobileNet,
EfficientNet, RegNet [44] and others. Although NAS methods have achieved good results,
they also face several challenges, including high demands on computational resources,
complexities in defining effective search spaces, uncertainties in performance evaluation,
and limitations in generalization and applicability. Addressing these challenges is crucial for
advancing NAS methods to enhance their efficiency and reliability in practical applications.

As discussed above, a wide range of neural network structures and architectures
are used in image recognition, with key features and design methods outlined in Table 1.
However, many networks are optimized on datasets such as ImageNet and CIFAR, which
do not necessarily guarantee good performance on other datasets. In practical applications,
a suitable network architecture should be chosen based on a comprehensive consideration
of task scenarios, data resources, computational resources, and other factors.

2.2. RSC Recognition Models

In recent years, deep learning neural networks for RSC recognition have gained
widespread attention. In 2019, Pan et al., compared the performance of four CNN models
(VGG16, ResNet50, Inception-v3, and Xception) to solve road condition classification
problems. The results indicated that ResNet50 is the optimal model for classifying winter
road surface conditions [15]. Yang et al. proposed an Inception-v3 model based on transfer
learning to address the low accuracy of conventional methods for recognizing wet and
dry RSC [16]. In 2020, Lee et al., introduced a convolutional network to identify black ice
on roads to prevent traffic accidents of automated vehicles [17]. In 2021, Dewangan et al.,
developed the RCNet to tackle the challenges of complex scenes, varied road structures,
and inappropriate lighting conditions on RSC recognition tasks [18]. In 2022, Wang et al.,
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addressed the issue of low accuracy on RSC recognition tasks using an improved Inception-
ResNet-v2 algorithm [19]. Huang et al., employed a transfer-learning model based on
Inception-v3 for road surface slippery condition recognition and used a full-resolution
residual network to segment waterlogged areas on roads [20]. Xie et al., developed a
city RSC model using a pretrained CNN model to fill gaps in city highway condition
recognition [21]. Yang et al., addressed the challenges of complex and variable road
surface slippery condition recognition, low recognition rates of conventional machine-
learning methods, and poor generalization capabilities by proposing a road surface slippery
condition recognition algorithm based on high/low attention residual neural networks [22].
In 2023, Lee et al. constructed a deep-learning architecture for detecting black ice on roads
using a pretrained ResNet-v2 and compared the performance of different models. The
results showed that R101-FPN is the best model [23]. Kou et al., used a ResNeSt network
for RSC recognition and proposed an active suspension control algorithm based on RSC
recognition, improving performance of the suspension system effectively [24]. Chen et al.,
tackled the issues of high cost and limited detection range of conventional hardware-based
RSC recognition technologies by proposing a high-speed RSC recognition method based
on a U-Net fusion model [25].

Table 1. Networks with different key features or design methods.

Classes Model and Version Key Feature or Design Method

Normal
network

AlexNet [26] sequential structure
VGG [27] sequential structure

GoogLeNet [30] multi-branch structure
Inception [31] multi-branch structure
ResNet [28] sequential structure with residual connection

Inception-ResNet [32] multi-branch structure with residual connection
ResNeXt [29] multi-branch structure with residual connection

DenseNet [35] sequential structure with dense connection
ViT [33] sequential structure with self-attention

ResViT [33] sequential structure with residual connection and self-attention
Swin Transformer [34] sequential structure with self-attention in shifted window

ConvNeXt [36] ResNet based on Swin Transformer design idea

Lightweight
network

ShuffleNet [37,38] hand-designed CNN architecture
MobileNet [39,40] NAS CNN architecture
EfficientNet [41] NAS CNN architecture

RegNet [44] NAS CNN architecture
MobileViT [42] hand-designed CNN-Transformer hybrid architecture

EfficientViT [43] NAS CNN-Transformer hybrid architecture

While the aforementioned models have demonstrated significant advantages for RSC
recognition, most of them rely on pretrained models and were fine-tuned on their specific
datasets, or only minor modifications such as adding attention mechanisms were made to
the original architectures. There is no reason why they chose that model. Notably, there
is a clear research gap in the current body of work on road surface recognition, as few
existing studies on road surface condition recognition have thoroughly investigated or
compared the performance of different neural network structures and architectures from
previous works.

3. Materials and Methods
3.1. Dataset

Based on statistical records of extreme weather conditions affecting traffic control on
the Tianshan Expressway and the analysis of meteorological data obtained along the routes
(available at https://cxfw.jtyst.xinjiang.gov.cn/home/index, accessed on 13 January 2024),
the severity of ice and snow hazards on the Tianshan Expressway was categorized into
road icing, blowing snow, and heavy snow. Given this situation, a custom dataset was

https://cxfw.jtyst.xinjiang.gov.cn/home/index
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compiled for the Tianshan Expressway using highway cameras, mobile lenses, and online
resources. Among them, road icing and blowing snow, as extreme weather phenomena,
have relatively low numbers. To ensure the balance of data samples and prevent the model
from over-learning the features of a certain type, data augmentation was carried out for all
to increase the number of images to 1500. The detailed sample size is shown in Table 2. The
dataset includes the following road surface types: (1) dry road; (2) fully snowy road; (3) icy
road; (4) snow-blowing road; (5) snow-melting road; and (6) wet road. Examples of these
data types are illustrated in Figure 1.

Table 2. Distribution of dataset.

Road Categories Dry Fully Snowy Icy Snow-Blowing Snow-Melting Wet

Original 898 499 275 92 336 402
Augmentation 1500 1500 1500 1500 1500 1500
Sample size (MB) 28.6 17.2 36.0 19.8 38.1 27.6
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3.2. Data Preprocessing

Carrying out data augmentation prior to splitting the dataset into training, validation,
and test sets may introduce potential correlations among these sets. This could undermine
the independence of the validation and test sets, compromising the accuracy and reliability
of model performance evaluations. To mitigate this issue, the dataset is firstly divided into
three distinct sets and data augmentation is subsequently applied to each set independently.
The specific processing steps are as follows:

• Data Resizing: The images were resized to 224 × 224 pixels, a standard size in deep
learning due to its balance between computational efficiency and model performance.
This size is widely used in pretrained models, such as those trained on ImageNet, and
has proven successful in models such as the VGG and ResNet.

• Dataset split: The dataset was randomly divided into training, validation, and testing
sets, comprising 60%, 20%, and 20% of the overall dataset, respectively.
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• Adjustment of Brightness: Road surface conditions are often complex and variable,
leading to issues such as occlusion between objects and non-uniform lighting. These
problems manifest as regions of excessive brightness or darkness in images, which can
obscure or blur critical details. Additionally, these factors can cause different types
of road surfaces to appear similar, thereby increasing the difficulty of recognition. To
address these challenges, an adaptive correction algorithm based on a two-dimensional
gamma function was employed to adjust image illumination intensity [45]. The results
of this correction are shown in Figure 2.

• Data Augmentation: Data augmentation is a crucial step for addressing dataset im-
balance, where some labels have significantly more images than others. This method
generates additional data from existing samples by applying transformations such as
flipping, rotating, cropping, scaling, and color adjustments. In this study, the OpenCV
and NumPy libraries were employed for data augmentation. By applying random flip-
ping, random translation, random rotation, and Gaussian noise addition, the number
of images was increased to 9000.

• Data Normalization: Pixel values were normalized to zero mean and unit standard
deviation to accelerate model convergence. The mean values of the dataset were [0.550,
0.565, 0.568] and standard deviations were [0.082, 0.082, 0.085] for the red, green, and
blue channels, respectively.
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3.3. Network Architecture

T-Net employs a unique structural paradigm known as the split-transform-merge
framework comprising four distinct Conv blocks, multiple attention mechanisms, and three
classification heads. This framework aims to comprehensively capture the diversity of RSCs
by leveraging information along different dimensions. The entire process of compressing
and extracting information from feature image to linear tensor, including the changes
in feature map dimensions and the number of channels, is illustrated in Figure 3. For
example, given a 224 × 224 pixels image as input, after passing through Conv Block-1,
the feature map size changes to 111 × 111, and the number of channels increases from
the initial 3 channels (RGB) to 32. Subsequently, after passing through Conv Block-2
and Conv Block-3, the feature map becomes 109 × 109 × 64. Notably, each white “Out
Layer” represents 32 channels. The codes and models used in this study can be accessed at
https://github.com/Elijah0405/T-Net, accessed on 4 March 2024.

https://github.com/Elijah0405/T-Net
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extracting feature information from image to linear tensor. The white cubes represent the “Out Layer”
that comes after every convolutional layer, or pooling layer, which has 32 channels.

The intermediate sections of the model introduce a convolutional block attention
module (CBAM) to enhance the focus on critical information after merging each branch.
CBAM combines spatial and channel attention to improve the weighting of essential infor-
mation throughout the model. Furthermore, T-Net incorporates asymmetric convolutions
in the second and third branches to increase sensitivity to fine-grained details in images.
Experimental results demonstrate the significant benefits of asymmetric convolutions in
improving classification accuracy.

In the final classification stage, T-Net introduces an innovative feature that incorpo-
rates three distinct classification heads to compress information from multiple channels into
six channels using various strategies. This design aims to enhance the model’s adaptabil-
ity and performance. The first classification head combines the multi-head self-attention
(MHSA) module with fully connected layers, allowing the model to effectively collabo-
rate among multiple heads, each focusing on different features, thereby comprehensively
capturing critical information. The second classification head integrates the CBAM with
fully connected layers, further emphasizing crucial information and enhancing the model’s
accuracy for RSC recognition. The third classification head relies solely on fully connected
layers to facilitate information integration. Trainable coefficients are incorporated into each
classification head, allowing the model to dynamically adjust these coefficients during train-
ing. This adaptability ensures superior performance under varying conditions. Detailed
structural parameters of the model are listed in Table 3.

3.3.1. Conv Layer

Specifically, four Conv modules were designed, each comprising a convolution layer,
normalization layer, and activation layer. Conv1 applies a 3 × 3 kernel with a stride of 2
to reduce image size and modify the number of channels. Conv2 employs a 3 × 3 kernel
with a stride of 1 to increase the number of channels while reducing the image size by
2 pixels. Conv3 uses a 1 × 1 kernel to increase the number of channels. Conv4 utilizes an
asymmetric kernel to extract fine-grained features. These modules are the key elements of
the T-Net. The procedure applied by the Conv structures can be expressed as follows:

C(a, b) = ∑x
p=1 ∑y

q=1 I(a + p − 1, b + q − 1)× K(p, q) (1)
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
Mean (Minibatch) : µB = 1

m ∑m
i=1 xi

Variance (Minibatch) : σ2
B = 1

m ∑m
i=1(xi − µB)

2

Normalize : x̂l =
xi−µB√
(σ2

B+ϵ
)

Scale&Shift : yi = Yx̂l + β = BNY,β(xi)

(2)

ReLU = max(0, x) =
{

0, x < 0
x, x > 0

(3)

Equation (1) represents the convolution process where C(a, b) is the output result
of the convolution operation at position (a, b), while I(a + p − 1, b + q − 1) is the input
information of the image at position (a + p − 1, b + q − 1), where a and b iterate from
1 to X − x + 1 and Y − y + 1, respectively (with X being the image width and Y being
the image height). K(p, q) is the convolution parameter at position (p, q), representing the
weight learned during the training process. The summation over p and q indicates that the
convolution kernel moves across the entire input image, generating new output values at
position (a, b) with each movement. The size of the kernel is determined by x and y.

Table 3. Structural parameters of T-Net.

Seq Layers Patch
Size/Stride/Padding Output Size

1 Conv1 3 × 3/2/0 111 × 111 × 32
2 Conv2 3 × 3/1/0 109 × 109 × 64
3 Conv3 3 × 3/1/1 109 × 109 × 64

4 Branch 1-1 MaxPool 3 × 3/2/0 54 × 54 × 64
5 Branch 1-2 AvgPool 3 × 3/2/0 54 × 54 × 64
6 Branch 1-3 Conv1 3 × 3/2/0 54 × 54 × 96

7 CBAM 54 × 54 × 224

8
Branch 2-1

Conv3 1 × 1/1/0 54 × 54 × 64
9 Conv2 3 × 3/1/0 52 × 52 × 96

10

Branch 2-2

Conv3 1 × 1/1/0 54 × 54 × 64
11 Conv4 7 × 1/1/3 54 × 54 × 64
12 Conv4 1 × 7/1/3 54 × 54 × 64
13 Conv2 3 × 3/1/0 52 × 52 × 96

14 CBAM 52 × 52 × 192

15
Branch 3-1

Conv1 3 × 3/2/0 25 × 25 × 96
16 Conv4 3 × 1/1/1 25 × 25 × 96
17 Conv4 1 × 3/1/1 25 × 25 × 96

18
Branch 3-2

Conv3 1 × 1/1/0 52 × 52 × 96
19 MaxPool 3 × 3/2/0 25 × 25 × 96

20
Branch 3-3

Conv3 1 × 1/1/0 52 × 52 × 96
21 AvgPool 3 × 3/2/0 25 × 25 × 96

22 Branch 3-4 Conv1 3 × 3/2/0 25 × 25 × 96

23 CBAM 25 × 25 × 384

24 Conv1 3 × 3/2/0 12 × 12 × 512

25
Branch 4-1

Transformer 1 × 1 × 512
26 Linear 1 × 1 × 6

27
Branch 4-2

CBAM 12 × 12 × 512
28 MaxPool 12 × 12/1/0 1 × 1 × 512
29 Linear 1 × 1 × 6

30
Branch 4-3

MaxPool 12 × 12/1/0 1 × 1 × 512
31 Linear 1 × 1 × 6
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The batch normalization process is expressed in Equation (2), where µB is the average
value, m is the input minibatch, σ2

B is the variance, x̂l is the result of the normalization,
and Y and β are the learnable parameters.

Equation (3) is the activation function, where x represents the input data. The deriva-
tive of the ReLU function is always equal to 1 in the positive region, avoiding the occurrence
of a vanishing or exploding gradient problem.

3.3.2. Pooling Layer

The non-significant features can be diminished by applying a pooling operator with
an average value or by mapping a subregion to its maximum value:

Pavg(I) =
1
T ∑T

u=1 iu (4)

Pmax(I) = maxiu (5)

where vector i comprises the activation values from the respective pooling regions of T
pixels in the image. In the downsampling strategy scenario presented here, Equation (5) is
applied to the T-Net.

3.3.3. Channel and Spatial Attention

The channel and spatial attention mechanisms in T-Net are referred to as the con-
volutional block attention module (CBAM). The CBAM module, shown in Figures 4–6,
describes the calculation process for each attention map.
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Figure 4. The structure of the channel and spatial attention module [46]. The module comprises two
sequential sub-modules: channel attention and spatial attention. After each merging operation in
T-Net, CBAM adaptively refines intermediate feature maps, amplifying the weights of key features to
enhance their prominence.
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spatial feature representation.

The overall computation process of the CBAM module can be summarized as follows:

F′ = Mc(F)⊗ F
F′′ = Ms

(
F′)⊗ F′ (6)

Given an intermediate feature map F ∈ RC×H×W as input, then the channel attention
module generates a one-dimensional channel attention map Mc ∈ RC×1×1, and the spa-
tial attention module generates a two-dimensional spatial attention map Ms ∈ R1×H×W .
where ⊗ denotes element-wise multiplication.

In the channel attention module, the input feature map undergoes global average
pooling and global max pooling separately. The results of average pooling and max pooling
are then processed using a shared multilayer perceptron. The outputs of the shared multi-
layer perceptron are summed and then passed through a sigmoid activation function to
obtain the channel attention map, which provides weights ranging from 0 to 1 for each
channel in the input feature map. Finally, the weights are applied to the input feature map
through multiplication, channel-wise. The computation process of the channel attention
mechanism can be expressed as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) (7)

where σ denotes the sigmoid function, W0 ∈ RC/r×C, and W1 ∈ RC×C/r.
In the spatial attention module, the input feature map undergoes average pooling

and max pooling respectively along the channel dimensions. These results are stacked
and passed through a standard convolutional layer to reduce the number of channels to 1.
After applying the sigmoid activation function, a two-dimensional spatial attention map
is generated, providing weights ranging from 0 to 1 for each spatial location in the input
feature map. Finally, the weights are applied to the input feature map through element-wise
multiplication. The specific calculation process is as follows:

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

])) (8)

where σ denotes the sigmoid function and f 7×7 represents a convolution operation with
the filter size 7 × 7.
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3.3.4. Multi-Head Self-Attention

Multi-head self-attention mechanisms are formed by a number of self-attention mech-
anisms, as illustrated in Figure 7 and expressed as follows:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (9)

where headi represents the attention mechanisms Attention
(

QWQ
i , KWK

i , VWV
i

)
, with the

trainable parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and

WO ∈ Rhdv×dmodel . Where WQ
i , WK

i , and WV
i are the query, key, and value transformation

matrices for headi, and WO is the output transformation matrix. Each attention mechanism
represents a distinct space, and multiple mechanisms enable the derivation of diverse rep-
resentation spaces. Each mechanism utilizes unique Query, Key, and Value weight matrices,
which are initialized randomly. Consequently, multi-head attention allows the model to
collectively attend to information across various representation subspaces and positions.
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Figure 7. Multi-head attention [47] consists of several attention layers running in parallel.

4. Results
4.1. Performance Testing of Different Network Architectures for RSC Recognition

Comparative results of performance differences among various networks on the cus-
tom RSC dataset were presented in this section. Based on the neural network classifications
described in Section 2.1, several network structures and architectures in different versions
were selected, as detailed in Table 4. Various combinations of hyperparameters, including
the number of epochs, learning rate, batch size, and weight decay, along with different
optimizers such as SGD and Adam, were systematically explored. These efforts aimed
to address overfitting and underfitting issues, ultimately optimizing the performance of
each model. The loss function employed was cross-entropy loss, and the primary learning
rate strategy was cosine decay. To further evaluate the effectiveness of these networks,
key metrics such as parameter counts, FLOPs, accuracy, and loss were employed. The
loss value, derived from the cross-entropy loss function, measures how closely the pre-
dicted probabilities align with the actual labels, with lower cross entropy indicating better
alignment. Specifically, the training set loss reflects how well the model fits the training
data, while the validation dataset loss indicates its ability to transfer and generalize to
unseen data.
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Table 4. Comparison with different structures and architectures networks.

Model and Version #param. (M) FLOPs (G) Accuracy Loss

VGG-16 134.29 15.48 90.50% 66.47%
Inception-v4 48.35 12.73 96.11% 19.74%

ResNet-18 11.18 1.81 94.50% 21.79%
ResNet-50 23.52 4.09 93.78% 22.40%

Inception-ResNet-v2 30.37 9.27 97.05% 11.12%
ResNeXt-50 22.99 4.23 96.39% 15.26%

DenseNet-121 6.96 2.83 96.89% 12.87%
ViT-base 85.80 0.20 90.44% 59.00%

Swin Transformer-base 86.75 0.18 87.67% 55.32%
ConvNeXt-base 87.57 0.65 93.00% 69.20%

T-Net 6.03 1.69 97.44% 9.79%
ShuffleNet-v2-x2 5.36 0.58 95.27% 15.18%
EfficientNet-b0 4.02 0.38 92.83% 29.50%
EfficientViT-m2 3.96 0.20 88.17% 36.99%

MobileNet-v3-large 4.21 0.22 93.39% 23.78%
MobileViT-small 4.94 0.85 94.17% 27.11%

As shown in Table 4, the T-Net achieves the highest accuracy at 97.44% and the lowest
loss at 9.79%, outperforming other models in both 6.03 M parameters and 1.69 GFLOPs.
Inception-ResNet-v2 follows closely with an accuracy of 97.05% and a loss of 11.12%,
but at the cost of greater model complexity, with 30.37 M parameters and 9.27 GFLOPs.
DenseNet-121 ranks third, delivering a strong performance with 96.89% accuracy and
12.87% loss, while maintaining a relatively low parameter count of 6.96 M. Other high-
performing models, such as the ResNeXt-50 and the Inception-v4, also achieve accuracies
exceeding 96%, but with higher losses of 15.26% and 19.74%, respectively. In contrast,
models such as the VGG-16, ViT-base, and ConvNeXt-base, which have large parameter
sizes, tend to be less efficient and are more susceptible to overfitting, resulting in diminished
performance. Figure 8 further highlights the superiority of the T-Net, with its performance
curves consistently outperforming those of other models on both the training and validation
sets, indicating that it has greater efficiency and generalization capabilities.
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For lightweight networks, Table 4 demonstrates that the ShuffleNet-v2-x2 achieves the
highest accuracy of 95.27% and the lowest loss of 15.18%. In contrast, the EfficientViT-m2
exhibits the lowest accuracy of 88.17% and the highest loss of 36.99%. Other models, such as
the EfficientNet-b0, the MobileNet-v3-large, and the MobileViT-small, display accuracy and
loss that fall between these extremes. As shown in Figure 9, despite the ShuffleNet-v2-x2
having a slower convergence trend on the training set, with its curve positioned further
inward, it surpasses all other lightweight models on the validation set, indicating strong
robustness and generalization capability. Contrary to the performance of the ShuffleNet-v2-x2,
the EfficientViT-m2 performs well on the training set with the fastest convergence trend, but
it performs the worst on the validation set.
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4.2. Comparsion with Specilized RSC Recognition Networks

Based on the review in Section 2.2, three RSC classification models were selected for
evaluation: RCNet, Inception-ResNet-v2 with SE module, and ResNet18 with high/low
attention. Meanwhile, the original Inception-ResNet-v2 and ResNet18 were added for
comparison. The experimental setup followed the guidelines outlined in Section 4.1.

As shown in Table 5, the performance comparison highlights significant variations
among the models in terms of accuracy, computational cost, and model complexity. The
T-Net achieves the highest accuracy at 97.44% with the lowest loss of 9.79%, while main-
taining a relatively low computational load of 1.69 GFLOPs and a parameter count of 6.0M.
The Improved Inception-ResNet-v2 model, integrated with the SE module, demonstrates
exceptional performance, achieving an accuracy of 97.39% and a loss of 10.32%. In compar-
ison, the standard Inception-ResNet-v2 exhibits a slight decrease in accuracy to 97.05% and
an increase in loss to 11.12%. The ResNet18 model, utilizing high/low attention, shows
significant enhancements with an accuracy of 94.94% and a loss of 17.84%. This marks an
improvement of 0.44% percentage points in accuracy and a reduction of 3.95% in loss com-
pared to the original model. Notably, both versions maintain similar parameter counts and
computational demands, indicating that the proposed improvement effectively enhances
model performance without imposing a substantial increase in computational burden.
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Table 5. Comparison with specialized RSC recognition neural networks.

Model and Version #param. (M) FLOPs (G) Accuracy Loss

RCNet 3.78 5.48 89.33% 33.32%
Inception-ResNet-v2

with SE module 31.87 8.62 97.39% 10.32%

Inception-ResNet-v2 30.37 9.27 97.05% 11.12%
ResNet18 with

high/low attention 11.88 2.02 94.94% 17.84%

ResNet-18 11.18 1.81 94.50% 21.79%
T-Net 6.03 1.69 97.44% 9.79%

As illustrated in Figure 10, the T-Net consistently outperforms the other models
during the first fifty epochs, showing a clear advantage in both accuracy and loss variations.
While the performance of the T-Net remains superior in the early stages, the Improved
Inception-ResNet-v2 begins to close the gap in the latter epochs, converging to nearly the
same validation accuracy and loss by the final epoch. This convergence reflects the strong
learning capabilities of both models, however the T-Net retains its advantage with fewer
parameters and lower computational costs, as outlined in Table 5.
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4.3. Ablation Experiment

The previous two subsections provided a comprehensive exploration of various deep
learning neural network structures and architectures for RSC recognition. In this subsection,
a systematic experiment is conducted to assess the impact of removing or replacing key
components within T-Net, aiming to identify the specific modules that contribute to the
enhancement of the model performance.

Table 6 shows that the CBAM and MHSA modules both enhance performance, with
CBAM demonstrating more effectiveness in boosting accuracy and reducing loss. The
removal of the CBAM module results in a decrease in accuracy to 95.94% and an increase
in loss to 14.77%. The exclusion of the MHSA module leads to a reduction in accuracy
to 96.89% and an increase in loss to 12.73%. Although the MHSA module significantly
increases the parameter count, it fails to bring about a substantial improvement in accuracy.
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Substituting asymmetric convolutions with regular convolutions leads to a 0.66% decrease
in accuracy and a 0.55% increase in loss, while the employment of group convolutions
results in a substantial 4.27% drop in accuracy and a 23.96% rise in loss. Finally, the switch
from ReLU to Hswish has a slight effect, with a 0.32% decrease in accuracy and a relatively
large 4.18% increase in loss.

Table 6. Comparison of ablation experiment results.

#param. (M) FLOPs (G) Accuracy Loss

Baseline 6.03 1.69 97.44% 9.79%
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4.4. Confusion Matrix and Model Evaluation

To further evaluate the performance of T-Net, a confusion matrix was constructed to as-
sess its accuracy in predicting different RSCs, as shown in Figure 11. Various
metrics [48–50], such as accuracy, recall, specificity, precision, F1-score, area under the
receiver operating characteristic curve (AUC), and false discovery rate (FDR) were calcu-
lated from the confusion matrix using true positive (TP), false negative (FN), true negative
(TN), and false positive (FP) values, as detailed in Table 7. The results for each subdataset,
including dry road, fully snowy road, icy road, snow-blowing road, snow-melting road,
and wet road, are presented in Table 8.
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Table 7. Brief description of evaluation metrics.

Evaluation Metrics Expression

Accuracy TP+TN
TP+TN+FP+FN

Recall TP
TP+FN

Specificity TN
TN+FP

Precision TP
TP+FP

F1-score 2∗TP
2∗TP+FP+FN

AUC 1
2

(
TP

TP+FN
+ TN

TN+FP

)
FDR 1 − TN

TN+FP

Table 8. Performance evaluation of T-Net.

Categories Accuracy Recall Specificity Precision F1-Score AUC FPR

dry road 0.988 0.943 0.997 0.986 0.964 0.970 0.003
fully snowy road 0.996 0.980 0.999 0.997 0.988 0.990 0.001

icy road 0.993 0.990 0.993 0.967 0.979 0.992 0.007
snow-blowing road 0.996 0.990 0.995 0.977 0.988 0.998 0.005
snow-melting road 0.983 0.940 0.992 0.959 0.949 0.966 0.008

wet road 0.971 0.930 0.979 0.900 0.915 0.955 0.021

Table 8 presents the classification performance of the model on six different road
surface categories. Overall, the model performs well in RSC recognition, especially for
the fully snowy road and snow-blowing road. The accuracy, recall, specificity, and AUC
are all close to 1, indicating that the model has an extremely high discrimination ability
for these two RSCs, and the FPRs are only 0.001 and 0.005, respectively. Meanwhile,
the performance on dry roads is also quite excellent, with an accuracy of 0.988 and a
specificity of 0.997, meaning that the model can accurately identify the vast majority of
dry road samples. However, the performance on snow-melting roads and wet roads is
slightly inferior. Although the accuracy is still relatively high, achieving 0.983 and 0.971,
respectively, their precision and F1-score are slightly lower compared to other categories,
especially the precision on wet road surfaces, which is only 0.9.

5. Discussion
5.1. Comparison and Analysis of Different Neural Networks for RSC Recognition

For the sequential structure models, VGG, ResNet18, ResNet50, and DensNet were
selected. The choice of the two ResNet versions is due to their differing structures—BasicBlock
in ResNet18 and Bottleneck in ResNet50. However, the residual connections in ResNet do not
achieve optimal performance under complex and variable road surface conditions. Notably,
the deeper ResNet50 model is more prone to overfitting, highlighting that increasing
network depth alone does not necessarily improve performance, especially when handling
high-dimensional and complex data. Remarkably, DenseNet-121 exhibits outstanding
performance levels despite not utilizing the split-transform-merge structure. The dense
connectivity in DenseNet enables greater feature reuse and smoother information flow
throughout the network, which mitigates the risk of gradient vanishing and enhances its
learning capacity, making it particularly well-suited for RSC recognition.

For the multi-branch structure models, Inception-v4, Inception-ResNet-v2, ResNeXt-50,
and T-Net were selected. Inception-ResNet-v2 and ResNeXt-50 demonstrate strong per-
formance, primarily due to their split-transform-merge paradigm and effective residual
connections. This architectural design enables models to capture features across multiple
scales and perspectives, promoting feature reuse and enhancing their recognition capabili-
ties in complex environments. Among the five top-performing models, T-Net stands out
for its efficiency, achieving a balanced trade-off between parameter count, computational
cost, and accuracy. This success is attributed to the integration of the split-transform-merge
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structure paradigm, spatial attention, channel attention, and self-attention mechanisms,
which heightens the sensitivity of the model to critical features and enables the capture of
complex patterns effectively.

For transformer-based models, the ViT and Swin Transformer were assessed. While
the ViT achieves higher accuracy, the Swin Transformer proves more effective in reducing
loss, suggesting that the sliding window mechanism plays a pivotal role in improving
model robustness and generalization. However, a notable overfitting trend is observed
in transformer-based models, particularly during the latter stages of training, including
ConvNeXt, which is inspired by the design structure of the transformer. Consequently,
an early stopping mechanism is recommended to preserve generalization and prevent
excessive fitting to training data in these models.

For the lightweight models, ShuffleNet-v2-x2 is distinguished by its use of a channel
shuffle mechanism, achieving superior accuracy and low loss despite its higher parameter
count. This demonstrates the effectiveness of its carefully designed architecture in balancing
complexity and performance. In contrast, the lower accuracy of the EfficientViT-m2 suggests
limitations associated with its self-attention mechanisms, which may require more extensive
training or larger datasets to fully achieve its potential.

In conclusion, the success of top-performing models such as the Inception-ResNet-v2,
ResNeXt-50, and DenseNet-121 for RSC recognition can be attributed to their multi-branch,
residual, and dense connection architectures, which enable these models to capture intricate
features from diverse perspectives. Moreover, these outcomes underscore the importance of
integrating advanced modules, such as CBAM, MHSA, SE, high/low attention, and channel
shuffle. Incorporating these elements can further bolster the robustness and performance of
models in practical applications, ensuring they are better equipped to handle the challenges
posed by RSC recognition.

5.2. Key Modules in T-Net

The ablation experimental results underscore the importance of several key modules
in enhancing the performance of T-Net, particularly CBAM and asymmetric convolutions.
CBAM introduces spatial and channel attention mechanisms that effectively prioritize
important information within feature maps, significantly enhancing the ability to capture
essential details. In contrast, the MHSA module has a limited impact on the improvement
of accuracy. The increase in parameters does not lead to a significant improvement in
performance, indicating that the MHSA plays an auxiliary rather than a key role in the
overall architecture.

On the other hand, asymmetric convolutions demonstrate relatively larger benefits
than normal convolutions in feature extraction, significantly impacting both accuracy and
loss. By utilizing varying kernel sizes, asymmetric convolutions effectively capture multi-
scale features, leading to improved model performance for RSC recognition. Additionally,
the use of group convolutions, which reduce computational demands by dividing chan-
nels, results in marked performance declines. This suggests a trade-off between model
complexity and accuracy, highlighting the importance of balancing these factors during
network design.

In summary, the integration of CBAM and asymmetric convolutions emerges as a
pivotal strategy for enhancing the performance of T-Net. Future research should aim to
further optimize these attention mechanisms and convolutional structures to achieve better
outcomes while maintaining computational efficiency. This exploration will likely provide
valuable insights for refining T-Net and improving its capabilities in various applications.

5.3. Advantage and Limitation of T-Net

T-Net shows outstanding performance in various road surface categories, with partic-
ularly high accuracy in fully snowy roads and snow- blowing roads. The results reveal the
strong ability of the model to distinguish these critical road surface conditions, which is
essential for applications that require precise identification of hazardous situations. The
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high recall for fully snowy roads further indicates its effectiveness in identifying dangerous
conditions, significantly reducing the risk of undetected hazards. Additionally, the high
specificity scores for fully snowy roads and dry roads highlight the reliability of the model
in minimizing false positives and ensuring accurate classification of non-hazardous condi-
tions. However, it should be noted that the high recognition rate for blowing snow might
be due to the limited sample size, enabling the model to fully grasp the characteristics of
the available data.

Despite its advantages in accurately identifying snowy and dry road surface condi-
tions, the model has significant limitations, especially for wet roads. The recall for this
category implies a potential risk of insufficient detection of hazardous wet conditions,
which is crucial for road safety. Similarly, the precision for wet roads suggests a relatively
higher FPR, indicating frequent misclassification of other road categories as wet. This prob-
lem could result in inappropriate responses, such as unnecessary warnings or inefficient
resource allocation. The F1-score for wet roads further reflects the constraints in this case.
The cause of this phenomenon lies in the fact that the wet road surface inherently possesses
a relatively high reflectivity, which is highly similar to that of the icy road, the melting-snow
road, and the darker dry road. This is a challenging issue for RSC recognition.

6. Conclusions

Conventional methods have fallen short of meeting the real-time RSC monitoring
requirements of the Tianshan Highway network, failing to align effectively with practical
needs. Against this backdrop, this study introduces T-Net, an innovative neural network
designed under a split-transform-merge paradigm. T-Net is purposefully built to monitor
road conditions in real time and accurately detect ice and snow hazards, providing robust
support for road safety assurance.

T-Net achieves an impressive balance between inference speed and accuracy, showcasing
significant advantages. It surpasses 14 previous SOTA models and 3 networks specifically
tailored for RSC tasks. Notably, models with multi-branch architectures, residual connec-
tions, and dense connections—such as Inception-ResNet-v2, ResNeXt-50, DenseNet-121, and
T-Net—demonstrated superior performance for RSC recognition. The T-Net, in particular,
delivered remarkable results, achieving a classification accuracy of 98.7%, a recall of 96.2%,
a specificity of 99.3%, a precision of 96.4%, an F1-score of 96.4%, an AUC of 97.9%, and an
FDR of 0.8%.

While these outcomes are promising, it is essential to acknowledge certain limitations
of the T-Net. For instance, it has a greater probability of misclassifying the wet roads as other
roads, and its performance in the complex environment of the Tianshan Highway network
still awaits further validation. Future research will aim to address these shortcomings by
continuously optimizing the architecture of T-Net and integrating it into a comprehensive
road monitoring system to establish robust RSC data engineering. Additionally, a semantic
segmentation variant of T-Net will be developed. Future experiments will also investigate
how the performance of model evolves as dataset sizes increase, aiming to enhance its
applicability for RSC recognition.
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