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Abstract: It is usually hard to obtain adequate annotated data for delivering satisfactory scene
classification results. Semi-supervised scene classification approaches can transfer the knowledge
learned from previously annotated data to remote sensing images with scarce samples for satisfactory
classification results. However, due to the differences between sensors, environments, seasons, and
geographical locations, cross-domain remote sensing images exhibit feature distribution deviations.
Therefore, semi-supervised scene classification methods may not achieve satisfactory classification
accuracy. To address this problem, a novel semi-supervised subcategory centroid alignment (SSCA)-
based scene classification approach is proposed. The SSCA framework is made up of two components,
namely the rotation-robust convolutional feature extractor (RCFE) and the neighbor-based subcat-
egory centroid alignment (NSCA). The RCFE aims to suppress the impact of rotation changes on
remote sensing image representation, while the NSCA aims to decrease the impact of intra-category
variety across domains on cross-domain scene classification. The SSCA algorithm and several com-
petitive approaches are validated on two datasets to demonstrate its effectiveness. The results prove
that the proposed SSCA approach performs better than most competitive approaches by no less than
2% overall accuracy.

Keywords: domain adaptation; scene classification; feature distribution bias; neighbor-based
subcategory centroid alignment; rotation-robust convolutional feature extractor

1. Introduction

In recent years, the successful emission of high-resolution remote sensing satellites has
made them significant for land-cover classification. Scene classification can extract high-
level semantic information from remote sensing images, which has been widely applied to
land-cover classification [1,2]. The traditional supervised scene classification methods that
have achieved great success are usually dependent on the availability of abundant samples.
However, it is usually hard to label adequate annotated data for satisfactory results [3,4].
To solve this problem of insufficient samples, semi-supervised domain adaptation methods
have been studied for decades, which can transfer the knowledge learned from previously
labeled data to images with limited labeled data [5–7]. According to [8], three categories
of semi-supervised domain adaptation approaches that are utilized for classifying remote
sensing images are as follows:

1. Invariant feature selection methods [9–11]. The features that are robust to the
domain or spectral shift are derived based on the original features for training a more
discriminative classifier. This family of methods cannot perform well on heterogeneous
domain adaptation tasks.
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2. Classifier adaptation methods [12–14]. Here, the classifier trained from previously
labeled samples takes into account the target unlabeled samples to adapt the source classi-
fier to the target data. It may not adapt well when the probability distribution bias between
different high-resolution remote sensing images is strong.

3. Data distribution adaptation approaches [15–17]. This type of method is aimed at
making the data from different domains share similar data distributions, which allows for
the classifiers obtained from existing labeled data to classify target images with different
feature distributions.

The previously labeled data and the remote sensing images to be classified usually
have different feature spaces and highly different probability distributions. For these rea-
sons, we mainly study data distribution adaptation approaches. The purpose of studying
data distribution adaptive methods is to solve the problem of data distribution deviation
between existing sample labels and remote sensing images to be classified, due to dif-
ferences in geographical environments, locations, seasons, imaging modalities, etc. [18].
Semi-supervised data distribution adaptation methods explore the hidden relationships
between previously labeled data and unlabeled images when limited data are available.
Therefore, it is important for them to learn image representations that are insensitive to
domain shifts. The dictionary learning approaches that belong to data distribution adap-
tation methods can provide domain-insensitive sparse representations. The advantage of
dictionary learning methods is that they can represent the high-dimensional information in
remote sensing images by a linear combination of multiple visual dictionary features [19].
Dictionary learning methods have demonstrated better domain adaptation performance
than some of the existing semi-supervised methods, including manifold alignment [20],
transfer component analysis [21], and class centroid alignment (CCA) [22]. However,
several issues still remain that negatively influence the learning of domain-insensitive
feature representations.

1. The rotation variance may contribute to the feature distribution bias. Figure 1
shows examples of scene images with rotation variance. The spatial distribution of objects
in high-resolution remote sensing images usually has random directions because remote
sensing images taken overhead have different shooting angles. Consequently, the rotation
robustness should be considered in feature representations.

Figure 1. Examples of scene images with rotation variance: (a) airport and (b) residential.

2. A great data distribution bias exists in instances across domains, exacerbating the
severity of high intra-class diversity and increasing the difficulty of classification. The intra-
class diversity may be caused by different sensors, locations, and natural environments.
Figure 2 shows that the river and airport categories demonstrate very different spectral
characteristics. The high intra-class diversity can increase the difficulty of distinguishing
cross-domain remote sensing images with similar land-cover types.
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Figure 2. The intra-class diversity caused by different locations, sensors, and environments.

In order to handle the rotation variance, existing feature extraction methods are usu-
ally based on manual features or deep learning features. Among them, manual features
are usually integrated with rotation information. A cyclic shift was used to generate a
rotation-invariant LBP feature using the method of [23]. Other representative descriptors
include the circular Fourier histogram of oriented gradient features, which uses orientation
alignment [24], and the rotation-invariant histogram of oriented gradients (HOG) [25],
which utilizes radial gradient transform. Although the above features can perform well
under certain circumstances, their performances are limited in high-resolution remote
sensing images. That is because hand-crafted features may fail to describe the hidden
semantic information well [26]. Deep-learning-based methods incorporate rotation invari-
ance into the existing convolutional neural network (CNN) architectures so as to overcome
the limitations of hand-crafted features. In order to obtain robustness in rotation, spatial
transformer networks [27], transformation-invariant pooling [28], oriented response net-
works [29], the group-equivariant CNN framework [30], and rotation-equivariant vector
field networks [31] have all been proposed. However, the existing CNN feature extractors
usually only use RGB three-channel images for feature extraction, without considering
improving the adaptability of features to the rotation variance of scene images from the
perspective of image representation.

Cross-domain data distribution can be aligned by decreasing the means, subspace
eigenvectors, correlation coefficients, or covariance matrix between domains. Tuia et al. [20]
proposed a manifold alignment approach where the manifolds of cross domains are
matched. Matasci et al. [21] utilized semi-supervised transfer component analysis to
make the means of cross-domains close. Volpi et al. [32] performed feature alignment by
maximizing the correlation coefficient between the data of the cross domains. Li et al. [33]
derived a common kernel space in which the data distributions of two heterogeneous cross-
domains are aligned. Sparse representation with reconstruction strategies and methods
based on low-rank representations are proposed to reduce the differences in the target
representation [34]. However, the above methods ignore the fact that intra-category variety
exacerbates the effect of improving the feature spatial distribution deviation on cross-
domain scene classification.

The highlights in this paper are as follows:

• The proposed RCFE incorporates rotation robustness into convolution feature extractor
where both rotation-invariant HOG images and original images are considered as
the input, which can reduce the impact of spectral shift and rotation variance on
feature extraction.

• We proposed the NSCA method by moving the target features toward the relevant
subcategories of their source domain features in order to reduce the deviation between
feature distributions across domains.

• The proposed SSCA framework with RCFE and NSCA achieves a classification accu-
racy that is better than that of most of existing methods on two testing datasets.
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The rest of this article is arranged as follows. The key theory of the proposed SSCA
algorithm is described in Section 2. The descriptions of the datasets, the experimental
setup, and the experimental results are provided in Section 3. Feature visualization and
experiment analysis are provided in Section 4. Finally, we outline our conclusions and
potential future research work in Section 5.

2. Materials and Methods

We propose an SSCA framework to classify the land-cover types of scene images with
limited samples. Figure 3 depicts the overall flowchart of the proposed SSCA framework.

Figure 3. The overall flowchart of the proposed SSCA framework.

Step 1. Rotation-invariant HOG images are generated for original images in different
domains. Different colors in rotation-invariant HOG images represent different magnitudes.

Step 2. The original images and their corresponding rotation-invariant HOG images
are the input of RCFE to extract rotation-robust convolutional features.

Step 3. Move the feature of target images towards their corresponding subcategories of
source domain images in the feature space whose direction is determined by the proposed
NSCA to obtain optimized convolutional features.

Step 4. Based on the previously labeled data and moved target features, train an SVM
classifier and predict each unlabeled target image.

2.1. Generating Rotation-Invariant HOG Images

Rotation-invariant HOG images which have been successfully applied to object detec-
tion of remote sensing images can help to reduce the negative influence of rotation variance
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that may decrease the ability of convolutional features to distinguish diverse land-cover
types. The process of obtaining rotation-invariant HOG images is as follows.

First of all, the Fourier HOG is calculated based on the remote sensing scene image I.
The gradient map D of the image I in the horizontal and vertical directions is calculated
according to Equation (1). The Fourier HOG F̂m(x) is calculated based on the gradient
map D(x) of the image through Equation (2), where e−imΦ(D(x)) is the Fourier basis and
Φ(D(x)) is the gradient direction. Fourier HOG feature map F̂m is normalized to obtain F̃m
through Equation (3), where N is the smoothing convolutional kernel.

D = ∇I (1)

F̂m(x) = ∥D(x)∥e−imΦ(D(x)), m ∈ Z (2)

F̃m = F̂m/
√
∥D∥2 ∗ N (3)

Then, Fourier HOG is used to generate regional features. Regional features B are com-
puted by convolutions with circular harmonic basis functions Up,q through Equation (4).
In Equation (5), the Pp(r) is the radial function and q is the rotation order of the output
function. Compute the convolution between the basis function Up,q and the Fourier HOG
F̃m and generate the feature describing the HOG features in the region covered by Up,q.

B = Up,q ∗ F̃m (4)

Up,q = Pp(r)eiqφ (5)

Finally, generate final rotation-invariant features based on the regional features B.
The complex-valued features B are separated into real and imaginary parts to generate
real-valued rotation-invariant images.

The obtained rotation-invariant HOG image can also reduce the spectral differences
between different color spaces to a certain extent. Figure 4 shows original images in different
color spaces along with their rotation-invariant HOG images. As shown in Figure 4b,d,
rotation-invariant HOG images demonstrate less spectral difference compared with their
corresponding original images. Therefore, rotation-invariant HOG images can reduce the
spectral shift and rotation variance in some color spaces. In order to incorporate rotation
variance into convolutional feature extraction, original images and their corresponding
rotation-invariant HOG images are used as input of the RCFE.

Figure 4. Rotation-invariant HOG images in different spectral conditions. (a,c) Original images in
different color spaces. (b,d) The rotation-invariant HOG images of (a,c).
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2.2. Rotation-Robust Convolutional Feature Extractor

The input of existing convolutional neural network extractors is usually three-channel
spectral data, without considering that rotation-invariant information may exist in remote
sensing images. The proposed RCFE method uses three-channel spectral data as well as
rotation-invariant images as the input of CNN models, which is conducive to reducing the
negative impact of rotation variances of scene classification on convolutional features.

The rotation-robust convolutional feature extractor requires training with original
images and rotation-invariant HOG images. However, the initial weights of existing CNN
models are usually pre-trained with the ImageNet dataset, which is not conducive to the
training and convergence of CNN models. Considering the scale variance in diverse land-
cover types, multi-scale images are generated for input images. Three different scales are
used in the experiments undertaken in this study, and the proportion between the adjacent
scales is set to 0.5. As shown in Figure 5, the proposed method downsamples the image to
obtain input images of three different scales including scale level 1, scale level 2, and scale
level 3. The scale levels are defined in the order of decreasing resolution. That is to say,
scale level 1 is the finest scale, namely, the original image size. Scale level 3 is the coarsest
scale. ResNet 101 [35] is used as the backbone for feature extraction. The coarser CNN is
fine-tuned on images of scale level 3. Then the finer CNN is initialized with the pre-trained
coarser weights and fine-tuned with the finer images. The feature extractor trained from
the finest-scale images is used to provide initial features for the NSCA method.

Figure 5. The structure of the rotation-robust convolutional feature extractor. Different colors of label
mean different scene categories.

2.3. Neighbor-Based Subcategory Centroid Alignment

Because of the feature distribution bias caused by diverse sensors, locations, seasons,
or nature environments, the classifier trained from the source labeled data may deliver poor
performance in classifying target images. Moreover, the remote sensing images demonstrate
higher within-class spectral differences between source labeled data and target data and
the within-class spectral difference may aggravate the feature distribution bias. Moving the
target features toward the direction of their corresponding source labels can help to increase
classification accuracy by decreasing the distribution difference between source and target
features. That is because similar feature distributions between source and target features
can make the classifier trained from the source labeled data classify the target data well.
But how to determine the direction of the moving target images still needs investigating.
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The difference between existing CCA and the proposed NSCA method is that the
existing CCA method moves target features toward the mean of difference between each
neighbor image feature vector and its corresponding class centroid as shown in Figure 6a.
However, the target image will not be moved toward its corresponding source class when
a target image is close to source labeled data that are far from the centroid of its own class.
That is because high within-class diversity in some land-cover categories and source labeled
data that are far from the corresponding class centroid but close to another class centroid
may lead to inaccurate moving direction. Therefore, the NSCA method proposes to move
target features toward a more accurate direction by replacing the class centroid with a
subcategory centroid as shown in Figure 6b. The new direction calculates the difference
between each neighbor image feature vector and its corresponding center of predicted
subcategories of classes rather than predicted classes. The new direction can increase the
possibility of finding corresponding classes for target images. The difference between the
moving directions of the proposed NSCA and those of the existing CCA is depicted in
Figure 6a,b. The details of NSCA can be illustrated as follows.

Figure 6. The difference between the moving directions of the existing CCA method and the proposed
NSCA method. (a) The moving direction of CCA. (b) The moving direction of NSCA. (c) The
determination of moving direction for (a,b).

Let Xs ∈ Rd×ns denote source features extracted from the RCFE with labels Ys ∈ N1×ns .
Xt ∈ Rd×nt represents target features extracted from the RCFE, where d reflects the feature
dimension. ns and nt are the source and target image number. Xts ∈ Rd×nt represents
moved target features. Ω = [Ω11, . . . , Ω1k, . . . , ΩC1, . . . , ΩCk] represents k×C subcategories
clustered from Xs. k is the subcategory number in each class and C is the class number. Yt is
the target pseudo subcategories obtained by a classifier of k × C subcategories trained from
Xs and Ys. Ω and Yt are used to calculate the moving directions for the NSCA method.

To determine the moving direction dij, one subcategory Ωij is represented by its cluster
center. The centroid of one target subcategory is calculated by the mean of target feature
vectors whose pseudo subcategory is the corresponding subcategory. Then the domain shift
can be represented by the discrepancy dij between the centroid of same subcategory in di-

verse domains Uij
s and Uij

t . The dij, Uij
s , and Uij

t are shown in Equations (6)–(8), respectively.

dij = Uij
s − Uij

t , i ∈ [1, C], j ∈ [1, k] (6)

Uij
s =

∑
ysi∈Ωij

xsi

Nij
s

(7)

Uij
t =

∑
yti∈Ωij

xti

Nij
t

(8)
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where Uij
s and Nij

s represent the mean and quantity of the previously labeled data belonging
to the j-th subcategory of the i-th class, respectively. Uij

t and Nij
t are the mean and number

of target feature vectors predicted as the j-th subcategory of the i-th class. Then each moved
target feature becomes xts = xt + dij.

The moving direction dij of target features may be inaccurate when a target image
is wrongly predicted. The nearest neighbors of it may be correctly predicted and the
association between target features and their nearest neighbors needs keeping after moving.
Therefore, the optimized direction that considers nearest neighbors is in Equation (9).

d =

C×k
∑

j=1

M
∑

i=1
δ(yi, Ωj)dij

M
(9)

where M represents the nearest neighbor number. The pseudo labels of all neighbors are
denoted as YN = [y1, . . . , yM] and δ(yi, Ωj) is calculated as Equation (10):

δ(yi, Ωj) =

{
1 yi = Ωj
0 otherwise

(10)

Algorithm 1 describes the procedure of the NSCA approach as follows.

Algorithm 1 NSCA approach description

1: Input: target features Xt, target labels Yt, source features Xs, source labels Ys, category number
C, nearest neighbor number M, subcategory number k.
2: Output: target features after moving Xts.
3: Source features of all categories Xs are divided into k × C subcategories with k-means. There
exist k subcategories in each category, Ω = [Ω11, . . . , Ω1k, . . . , ΩC1, . . . , ΩCk] represent all
subcategories. The source and target images belong to Ωij are considered as label Ωij.
4: While predictions Yl

t is not convergent do
5: A classifier of k × C subcategories is trained based on Xs, Xt and Ω.
6: When the iteration l is set to 1, the predicted label Yl

t for Xt is predicted by the trained
classifier.
7: Us and Ul

t is estimated based on Ω and Yl
t .

8: dij is calculated for each subcategory Ωij based on Equations (6)–(8).
9: Find M nearest neighbors for each target feature, whose direction is calculated by
Equation (9).
10: Each target feature xl

t is moved based on xl
ts = xl

t + d
11: The moved target feature Xl

ts is predicted by the classifier in step 5.
12. The predicted label is updated in the iteration l + 1
13: End while
14: Return Xl

ts

3. Results
3.1. Dataset Partition and Description

NWPU-RESISC45 [36] and RSI-CB256 [37] are selected as training datasets for experi-
ments in this paper, which provide rich image variations and high within-class diversity
with a varied resolution from 0.3 to 3 m. And two datasets have category complementarity
and can cover the category types of the target domain. Twenty percent of the labeled data
from UC Merced [38] and SIRI-WHU [39] are used as the validation set for parameter
selection. Eighty percent of the unlabeled data from SIRI-WHU and UC Merced datasets
are used as the test set for accuracy evaluation. The validation set and the test set should be
collected at different times, locations, and sensors from the source domain training samples.
The image resolutions of UC Merced and SIRI-WHU are 0.3 m and 0.6 m, respectively.
The two datasets are collected at different times and locations from the training data, so
UC Merced and SIRI-WHU are selected as target domain data. Figures 7 and 8 show
the examples of categories in the training dataset and testing dataset, respectively. There
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are large differences in spectral and spatial distribution between the source domain and
the target domain samples. Table 1 describes the class number used in the experiments.
Common classes existing in the testing and training dataset are used. ✕ represents no
samples in this category.

Figure 7. Display of scene sample labels for 21 categories in the training dataset.

Figure 8. Display of scene sample labels in the testing dataset. (a) Examples of 21 classes in the
UC Merced dataset. (b) Original large image of SIRI-WHU dataset. (c) Examples of 6 classes in the
SIRI-WHU dataset.

NWPU-RESISC45 dataset: The dataset originally contains 45 scene categories, and we
selected 21 of them as training data for this article. The scene images with size of 256 × 256
are all clipped from Google Earth imagery.

RSI-CB256 dataset: The dataset originally contains 35 scene categories, and we selected
8 of them as training data for this article. This dataset is also with a size of 256 × 256. These
scenes are with a resolution ranging from 0.3 to 3 m in the RGB space.

UC Merced dataset. This dataset contains 21 categories, with a size of 256 × 256 and
0.3 m resolution. Figure 8a depicts the examples of 21 categories in the UC Merced dataset.

SIRI-WHU dataset. This dataset is from Montgomery, Ohio in the USA (latitude
32◦22′N, longitude 86◦2′E). The original image size is 10,000 × 9000 and with a resolution
of 0.6m. The original image is divided into patches of 256 × 256. This dataset contains
six categories. Figure 8b,c depict the original large image and the examples of six categories
in the SIRI-WHU dataset.



Remote Sens. 2024, 16, 3728 10 of 18

Table 1. Division of experimental datasets for each category.

Class
Training Dataset Validation Dataset Testing Dataset

NWPU-RESISC45 RSI-CB256 UC Merced SIRI-WHU UC
Merced SIRI-WHU

airport 700 351 20 ✕ 80 ✕

baseball 700 ✕ 20 ✕ 80 ✕

beach 700 ✕ 20 ✕ 80 ✕

buildings ✕ 1014 20 ✕ 80 ✕

chaparral 700 ✕ 20 ✕ 80 ✕

dense residential 700 ✕ 20 ✕ 80 ✕

farmland 700 644 20 512 80 1549
forest 700 1082 20 286 80 1148

freeway 700 223 20 105 80 420
golf course 700 ✕ 20 ✕ 80 ✕

harbor 700 ✕ 20 ✕ 80 ✕

intersection 700 ✕ 20 ✕ 80 ✕

medium residential 700 ✕ 20 271 80 1084
mobile homepark 700 ✕ 20 ✕ 80 ✕

overpass 700 ✕ 20 ✕ 80 ✕

parking lot 700 467 20 45 80 182
river 700 539 20 13 80 52

runway 700 ✕ 20 ✕ 80 ✕

sparse 700 ✕ 20 ✕ 80 ✕

storage tank 700 1307 20 ✕ 80 ✕

tennis court 700 ✕ 20 ✕ 80 ✕

3.2. Experimental Setup

The proposed SSCA approach and some competitive methods are compared to demon-
strate its effectiveness. The optimum hyperparameters of the SSCA including the number
of subcategories in each category k and number of nearest neighbors M are calculated by
the validation dataset. The sensitivity analysis of these two parameters was performed
when fixing other parameters. ResNet101 [35] is the CNN model to extract initial features.
We choose SVM as the classifier for the method proposed in the paper. SVM can handle
high-dimensional features and nonlinearly separable data by using kernel functions. In the
case of scarce samples, SVM has good robustness and generalization ability.

Five data distribution adaptation methods are compared with the proposed SSCA
method to ensure the competitive accuracy of the SSCA framework in data distribution
adaptation methods. This family of methods covers existing dictionary learning methods
including domain-adaptive dictionary learning (DADL) [40], incremental dictionary learn-
ing (IDL) [41], class centroid alignment (CCA), and asymmetric adaptation of deep features
(AADF) [42].

Four adversarial domain adaptation methods including semi-supervised center-based
discriminative adversarial learning (SCDAL) framework [13], adversarial discriminative
domain adaptation (ADDA) [43], conditional adversarial domain adaptation (CADA) [44],
and collaborative and adversarial network (CAN) [45] are compared with the SSCA method
to show its competitiveness over the adversarial domain adaptation techniques.

In the experiments, features of the RCFE are utilized for methods including the
proposed NSCA, CCA, DADL, and IDL. The role of the rotation-invariant HOG images
and NSCA is evaluated by performing ablation studies. The optimum experimental setup
of all baseline methods and the proposed framework is shown in Table 2.

Four different evaluation metrics were calculated to assess the classification perfor-
mance, mainly including confusion matrix, overall accuracy for each category, overall
accuracy, and kappa coefficient. Among them, kappa coefficient provides a more reliable
consistency measure than simple accuracy by taking into account the accidental factors of
classification, which ranges from −1 to 1. Here, −1 means completely inconsistent, 0 means
random guess, and 1 means completely consistent.
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Table 2. The experimental setup of the proposed method and comparison methods.

Types of Methods Methods Experimental Parameter Settings

Data distribution
adaptation methods

SSCA k = 25, M = 7 for UC Merced dataset;
k = 15, M = 5 for SIRI-WHU dataset.

DADL Sparsity level T = 0.4, tradeoff parameter λ = 0.3, η = 10, the
codebook size s = 1300, the stopping threshold 0.9.

IDL
The tradeoff parameter λ = 0.05 and normalization parameter

σ2 = 0.05, the codebook size s = 1300, and the number of supportive
samples Q = 50.

CCA Number of the nearest neighbors M = 5, the parameters of SVM are
the same as those in SSCA.

AADF
256-dimension features by DAE network in [46], dropout value is 0.5,
learning rate is 0.1, momentum is 0.5, regularization parameter is 0.5,

batch sizes are [100, 80, 60, 40, 20, 10].

Adversarial domain
adaptation methods

SCDAL p = 4, τ = −0.2 , β = 0.5, λ = 0.5, M = 250, N = 300, k = 20, m = 0.05.

CADA Batch size 128; learning rate and momentum are the same as in the
domain adversarial neural network (DANN) [47].

CAN
The initial learning rate is 0.0015, which is decreased gradually after

each iteration, as in DANN. The weight decay, momentum, and batch
size were 3 × 10−4, 0.9, and 128.

ADDA Batch size is 128, maximum iterations are 20,000, and learning rate is
1 × 10−4.

3.3. Comparison Experiment

Table 3 describes the overall accuracy of all compared approaches shown in Section 3.2.
The proposed SSCA method performs better than compared approaches by at least 2%
because it can decrease the influence of intra-category variety and rotation variance for
decreased distribution bias. SSCA is a method between the middle-level feature method and
the high-level feature method. This method takes spectral images and rotation-invariant
images as input and uses the neural network trained with coarse-scale images as the initial
weights of higher-scale images to obtain the deep features of the source and the target
images. The NSCA method is able to narrow the distance between the deep features
extracted from across domain images. Therefore, our method can reduce the negative
effects of rotation changes, spectral bias, and cross-domain intra-class differences on feature
extraction and obtain more robust land-cover classification results.

Table 3. Comparison with previous methods in two datasets, UC Merced and SIRI-WHU.

Method UC Merced SIRI-WHU

The proposed SSCA 0.9314 0.9177
SCDAL 0.9118 0.8958
ADDA 0.8723 0.8617
CADA 0.8938 0.8850
CAN 0.8972 0.8756

DADL 0.8670 0.8425
IDL 0.8625 0.8541
CCA 0.8528 0.8478

AADF 0.8981 0.8730

The SCDAL framework delivers the second-highest classification accuracies since it
also makes the spatial distance of source and target images closer in the feature space.
The existing dictionary learning methods including SSCA, DADL, IDL, CCA, and AADF
deliver poorer classification performance because they ignore the discriminative ability of
the learned dictionary, which may lead to confusion with similar land-cover types. CAN or
CADA delivers poorer performance because the training and testing datasets have diverse
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feature distributions. CCA, ADDA, and AADF can make target features close to source
features but they do not address the data distribution bias from the image representation.

3.4. Ablation Experiment

Table 4 shows the classification accuracy of ablation studies in both datasets. The
rotation-invariant HOG image plays a more important role than only input original input
images since it can decrease the impact of both spectral shift and rotation variance. The
NSCA method is more significant in increasing accuracy since it can decrease the negative
influence of high intra-category variety on feature representations from different domains.

Table 4. Ablation studies of the proposed method of UC Merced and SIRI-WHU datasets.

Method UC Merced SIRI-WHU

The proposed SSCA framework 0.9314 0.9177
Without rotation-invariant HOG 0.9119 0.9043

Without the NSCA method 0.8933 0.8748

The classification results in Figure 9a are clipped in three locations. As shown in
Figure 9b–e, the classification maps are generated for the SIRI-WHU dataset so as to have
an intuitive feeling of the land-cover classification results. The NSCA method plays a more
important role than the rotation-invariant HOG image because the NSCA method can
reduce the feature distribution bias by reducing the impact of intra-class diversity on the
adaptation process. And the classifier has a high discrimination ability for the moved target
domain features.

Figure 9. Visualization of classification results produced by the ablation studies for the SSCA method
in the SIRI-WHU dataset when performing semi-supervised domain adaptation. (a) The three clipped
patches (A), (B), and (C). (b) The proposed SSCA framework. (c) Without rotation-invariant HOG
images but with the original images for feature extraction. (d) Without the NSCA. (e) Ground-truth
map. (f) Clipped land-cover maps in location (A). (g) Clipped land-cover maps in location (B).
(h) Clipped land-cover maps in location (C).

Confusion exists in farmland/forest, freeway/residential, and parking lot/residential,
as can be seen in Figure 9f–h. This confusion occurs mostly in the method without the NSCA
method and least in the proposed SSCA framework. Rotation-invariant HOG images and
NSCA can reduce data distribution deviation to varying degrees, which leads to different
land-cover mapping performances.
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4. Discussion
4.1. Confusion Analysis

According to the confusion matrix of the SSCA method provided in Figure 10, we
can analyze the misclassified categories of the scene classification results. The kappa co-
efficient is calculated based on the confusion matrix. The kappa coefficient of the UC
Merced dataset is 0.976, and the kappa coefficient of the SIRI-WHU dataset is 0.902,
both of which are close to 1, further proving that the proposed method has good clas-
sification performance. Confusion exists in the UC Merced dataset for medium residen-
tial/dense residential, runway/forest, tennis court/intersection, and storage tank/building
as shown in Figures 10a and 11a–d. Confusion occurs in freeway/parking lot, river/forest,
residential/parking lot, and residential/freeway for the SIRI-WHU dataset as shown in
Figures 10b and 11e–h. Figure 10a,c,e,g share similar backgrounds including buildings,
trees, or soil while diverse spatial distributions of similar objects including buildings or
vehicles may lead to a confusion in Figure 11b,d,f,h.

Figure 10. Confusion matrices of the SSCA method. (a) UC Merced dataset. (b) SIRI-WHU dataset.
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Figure 11. Examples of major confusion of two benchmark datasets. (a) Runway and forest. (b) Dense
residential and medium residential. (c) Tennis court and intersection. (d) Storage tank and building.
(e) Parking lot and freeway. (f) Residential and freeway. (g) River and forest. (h) Parking lot
and residential.

As shown in Figure 12, the above four images are scene examples of building, dense
residential, medium residential, and mobile homepark. The above images are composed
of buildings, but the types and spatial distributions of buildings are different. Since it
is impossible to understand the criteria used by sample annotators to distinguish the
above four categories, it is difficult for humans to distinguish the above categories. The
misclassification of our method mainly occurs in the situation of small inter-class differences.
Due to the lack of guidance from prior knowledge of spatial distribution, our method in
this paper also struggles to accurately distinguish these types of scenes.

Figure 12. Examples of scenes with diverse spatial distributions. (a) Building. (b) Dense residential.
(c) Medium residential. (d) Mobile homepark.

4.2. Feature Visualization

Figure 13 shows the feature visualization comparison results before and after perform-
ing NSCA. As shown in Figure 13, the proposed NSCA approach plays an important role
in increasing classification accuracy since it can address overlapped categories well by
making the topologies of target data and source data similar in the feature space.
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Figure 13. Visualization of spatial distribution before and after feature alignment. (a) The unadapted
features of UC Merced. (b) The adapted features of UC Merced. (c) The unadapted features of
SIRI-WHU. (d) The adapted features of SIRI-WHU.

4.3. Sensitivity Analysis

When performing semi-supervised domain adaptation, the effects of the nearest
neighbor parameter M and the subcategory parameter k on the overall accuracy were
studied on the test dataset. The classification accuracy in Figure 14 increases at first before
decreasing. For the number of subcategories, too many subcategories may lead to a lower
performance in those categories with relatively low within-class diversity. If the number of
nearest neighbors is too large, some nearest neighbors may have a negative influence on
determining the moving direction of the target image.

Figure 14. The parameter analysis of the classification accuracy in the testing data. (a) Number of
subcategories. (b) Number of nearest neighbors.
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5. Conclusions

A semi-supervised subcategory centroid alignment method for cross-domain scene
classification called SSCA is presented in this paper, which is used to increase the classifica-
tion performance when limited target labeled data are available. In the SSCA framework,
our method introduces the HOG feature map based on the three-channel image and uses
the HOG feature map with small spectral differences and rotation invariance to improve
the adaptability of features to spectral differences and rotation variance. In addition, the
NSCA method is improved based on the CCA method to further increase the model’s
ability to distinguish different types of objects by decreasing the feature distribution bias.

The experimental results show that the SSCA framework with RCFE and NSCA
outperforms previous representative domain adaptation approaches. The ablation studies
with the SSCA framework also show that the rotation-invariant HOG images and the
NSCA can increase the performance with overall classification accuracy improvements of
1.2 and 4.1%, respectively. The feature visualization results demonstrate the effectiveness
of moving target features toward corresponding subcategories of the source domain in
reducing intra-category variety and feature distribution bias across domains.

However, the SSCA method has limitations in distinguishing scenes composed of
similar objects but with different spatial distributions because the prior information of
spatial distribution is not incorporated into the SSCA. We will further address this issue in
future work.
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