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Abstract: The significance of detecting faint and diminutive space targets cannot be overstated, as
it underpins the preservation of Earth’s orbital environment’s safety and long-term sustainability.
Founded by the different response characteristics between targets and backgrounds to aberrations,
this paper proposes a novel aberration modulation correlation method (AMCM) for dim and small
space target detection. By meticulously manipulating the light path using a wavefront corrector via a
modulation signal, the target brightness will fluctuate periodically, while the background brightness
remains essentially constant. Benefited by the strong correlation between targets’ characteristic
changes and the modulation signal, dim and small targets can be effectively detected. Rigorous
simulations and practical experiments have validated the remarkable efficacy of AMCM. Compared
to conventional algorithms, AMCM boasts a substantial enhancement in the signal-to-noise ratio
(SNR) detection limit from 5 to approximately 2, with an area under the precision–recall curve of
0.9396, underscoring its ability to accurately identify targets while minimizing false positives. In
essence, AMCM offers an effective method for detecting dim and small space targets and is also
conveniently integrated into other passive target detection systems.

Keywords: aberration modulation; signal correlation; low signal-to-noise ratio; target detection

1. Introduction

According to the European Space Agency, as of December 2023, there are about
11,500 artificial satellites in Earth orbit, of which approximately 2500 are in a faulty state.
Uncontrolled satellites may deviate from their intended orbit, potentially colliding with
other satellites and generating a large amount of space debris, posing a significant safety
threat to the entire Earth orbit environment [1]. Due to the strong skylight background
during the day, most existing space target observation devices work at night, which severely
limits the effective observation time of space targets [2]. Therefore, it is necessary to conduct
research on detection technologies for such space targets with small size and low SNR.

Traditional weak and small target detection methods can be divided into visual
saliency methods (known as local information-based methods) and low-rank and sparse
decomposition methods (known as data structure-based methods) [3]. The visual saliency
method simulates the way human vision focuses on weak and small targets in natural
scenes and finds potential target locations by utilizing evaluation indicators such as gradi-
ent and contrast. Nie et al. designed a multi-scale local uniformity measure by combining
intra-block features and inter-block features [4]. Li et al. proposed a local adaptive con-
trast measure based on regularized LSK structure to distinguish target blocks and texture
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clutter blocks [5]. Xia et al. adopted the Laplacian model to capture global rarity, and
then combined two local descriptors that enhance local contrast and contrast consistency
to avoid clutter interference [6]. To adaptively determine optimal parameters, Ren et al.
used the multi-objective particle swarm optimization method to search for background
suppression parameters, but the optimization function needs to be executed on real small
targets [7]. In addition to local contrast, local gradient [8] and local standard deviation [9]
are also utilized to generate visual saliency maps, thereby achieving better detection per-
formance. Inspired by the four-leaf model, a saliency map calculation method combining
background suppression and texture collection is proposed to better highlight the small tar-
get [10]. The visual saliency method has high computational efficiency and can effectively
detect weak and small targets in simple backgrounds, but its detection capabilities are
limited in complex backgrounds. Considering that the background of sky images has non-
local autocorrelation [11], researchers have applied low-rank and sparse decomposition
methods to the field of small target detection, transforming the target detection problem
into a mathematical optimization problem of restoring low rank and sparse components.
Zhang et al. constructed image blocks as tensors instead of vectorization to effectively
preserve the target’s structural information [12]. Zhang et al. used the improved tensor
kernel norm to characterize the low-rank nature of background tensors, which reduces
the low-rank redundancy and improves computational efficiency [13]. Due to the fact
that the non-local prior method and local prior method are complementary [14], Pang
et al. adopted directional derivatives to extract target priors and obtain a target saliency
map with a clean background by fusing edge features from four directions [15]. To better
utilize the target’s motion information, Li et al. introduced a strengthened local feature
map based on a temporally constrained Gaussian curvature filter and 3D structure tensor,
and achieved infrared detection of small and dim moving targets [16]. The low-rank and
sparse decomposition method has good performance in weak and small target detection
in complex scenes, but due to the need for iterative calculations, there is a problem of
time-consuming calculation, and it cannot be used in real-time situations.

With the gradual enrichment of computing power and data resources, a class of weak
and small target detection methods represented by deep learning has begun to become a
new research hotspot. Since deep neural networks do not require manual feature design
and have strong nonlinear representation capabilities, weak target detection based on this
method has achieved significant performance improvement. Some researchers attempted
to apply convolutional neural networks [17], Taylor finite difference [18], or multi-scale
local difference [19] to extract small target features, which can enhance target response and
suppress background interference. Considering that the target size is generally small, and
its corresponding high-level semantic features may not be extracted, Yao et al. improved the
FCOS network by removing deep feature layers to improve computational efficiency [20].
After extracting most of the features, self-attention mechanisms are introduced into deep
neural networks for detecting weak and small targets to accurately identify and utilize the
useful features. Wang et al. used a center-point-guided circular-region local self-attention
module (CCRS) to obtain multiple regions of interest and then extract local feature infor-
mation of small targets in the shared-parameter local self-attention (SPSA) module [21].
Zhang et al. proposed an attention-guided pyramid context network (AGPCNet) to esti-
mate the pixel correlation within and between patches so as to highlight the target and
suppress the background. Although deep neural networks have achieved certain results
in detecting infrared small targets, their detection performance heavily depends on the
training dataset. The existing infrared small target datasets (such as MDvsFA_cGAN [22],
SIRST [23], IRSTD-1k [18] and SIRST-V2 [24]) mainly include drones, airplanes, birds,
ships and other targets, but do not include space targets such as Earth orbit satellites and
spacecraft debris. Therefore, it can be foreseen that deep neural networks trained on these
existing datasets will not achieve satisfactory results.

Since space targets are located above the Earth’s atmosphere, they are unlikely to
be detected in cloudy conditions. Therefore, observation equipment, such as ground-
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based telescopes, only performs observations in clear and cloudless weather. In this
way, the problem of detecting space targets becomes how to detect such targets with
extremely low SNR against a pure sky background. Due to the low SNR, most current
target detection algorithms have unsatisfactory performance in detecting space targets.
Apart from researching target detection algorithms, there are few innovative studies on
passive detection optical systems. Increasing the aperture size of the optical system is
another feasible solution to enhance the detection capability of the system, but its volume,
weight, and manufacturing difficulty also increase accordingly. Founded by the difference
in response characteristics between targets and backgrounds to aberrations, this paper
proposes an aberration modulation correlation method (AMCM) for dim and small space
target detection. Unlike traditional algorithm-based target detection methods, AMCM
controls wavefront correctors to apply aberration control to the light path. The target
brightness will fluctuate periodically, while the background brightness remains essentially
constant. Then, through performing modulation signal correlation operations on the
collected image frame sequence, dim and small space targets can be effectively detected.
Both simulations and experiments are conducted to verify that AMCM can achieve better
detection results compared to current traditional algorithm-based target detection methods.

The main contributions of this paper can be summarized as follows:

(1) To detect dim and small space targets, we proposed a target detection method based
on aberration modulation and signal correlation (AMCM).

(2) By performing active aberration modulation using the adaptive optics system and
employing matched filtering for target-related detection, the feasibility and application
potential of AMCM were preliminarily validated based on a self-constructed database
and experiments.

(3) Compared to traditional algorithm-based methods, AMCM achieved effective detec-
tion of targets with an SNR of 2, showing significant performance improvement.

2. Method
2.1. Principle

For ground-based optical observation systems, the space target is typically perceived
as a point light source, while the background can be considered as a large well-distributed
extended source. Therefore, the background signal received by a single detector pixel is the
superposition of sky background noise at different distances in the full field of view of the
detector, which generally follows Poisson distribution, as shown in Figure 1. In the ideal
case without aberration, the energy of the space target is most concentrated on the detector,
showing an Airy disk pattern. The target in the image is characterized by the presence of
abrupt edges and rapid changes in local grayscale values. As aberrations increase, the space
target signal gradually disperses with the peak energy sharply decreases, and eventually
becomes submerged in the background noise. Background noise, due to its continuous
superposition characteristics, usually lacks complex textures and abrupt edges, and the
intensity distribution changes are not significant before and after increasing aberrations.

Figure 2 shows the differences between the distribution characteristics of the target
and background before and after adding different types of aberrations. This simulation
analyzes the Zernike coefficients [25] from the second to the eleventh order, with each
Zernike order having a Peak–Valley (PV) of 2λ. The target distribution characteristics are
represented by the peak brightness of the spot, normalized to the highest value of the ideal
Airy spot center brightness, while the background distribution characteristics are measured
by mean value and standard deviation (Std. deviation).
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Figure 1. Schematic diagram of the aberration response characteristics for target/background.
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Figure 2. The distribution characteristics under different aberrations. (a) Background mean value
and Std. deviation; (b) target peak brightness.

After adding various orders of Zernike aberrations, the mean value and Std. deviation
of the background noise change by less than 0.10%, indicating that the background noise
remains in a random Piston distribution and shows almost no change compared to the
condition without aberrations. The response characteristics of the target signal to different
aberrations are significantly different from background noise. X-tilt and Y-tilt aberrations
mainly affect the position of the target spot on the detector focal plane, with a slight decrease
in the central peak brightness, by less than 2%. Other aberrations have almost no impact on
the position of the spot but mainly affect the spot shape and central peak brightness. These
aberrations cause the spot size to be dispersed to varying degrees, resulting in a decrease
in the central peak brightness of the spot. Among these, defocus aberration (Z4) has the
greatest impact, while coma (Z7&Z8) has the least.

Based on the different response characteristics of the target and background to aberra-
tions, this paper proposes a target detection method based on aberration modulation and
signal correlation, i.e., AMCM.

2.2. Process

Taking the classic adaptive optics system in ground-based astronomical observations
as an example, wavefront sensors are employed to detect wavefront distortions caused
by atmospheric turbulence, and a wavefront corrector (typically a deformable mirror)
completes the closed-loop wavefront correction. So, the deformable mirror (DM) can be
utilized for active aberration modulation, as shown in Figure 3. In this mode, the shape of
the DM dynamically changes according to control signals to generate periodic wavefront
aberrations of specified types and PV values, thus enabling periodic aberration modulation
of the optical system. This method does not require hardware modifications to existing
ground-based telescopes; instead, it involves modifications at the software control level to
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add the corresponding aberration modulation control functions, making it simple, efficient,
and highly feasible.
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Figure 3. Working modes of the DM. (a) Non-working mode; (b) closed-loop correction mode;
(c) active aberration modulation mode.

The entire workflow of AMCM is shown in Figure 4. Firstly, the computer sends
an aberration modulation signal (AMS) to the DM of the ground-based optical telescope
(omitting devices unrelated to AMCM, such as the Hartmann sensor). The DM gener-
ates corresponding additional aberrations. Simultaneously, the focal-plane array detector
receives the synchronous acquisition signals sent by the computer and completes the ac-
quisition of the image frame sequence. After image pretreatment, the frame sequence
undergoes a correlation operation (matched filtering [26]) with the AMS. Then, threshold
segmentation is performed to obtain a binary image based on the relevant significance
(standardized form of covariance). Finally, after binary statistic filtering, the connected
regions in the binary image are identified as the targets detected by AMCM.
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Figure 4. Illustration of the entire AMCM workflow.

2.3. Image Algorithm

To enhance the effectiveness of matched filtering and reduce false alarm rates, pretreat-
ment and post-treatment algorithms are introduced. AMCM employs various mechanisms
for pretreatment and post-treatment.

2.3.1. Pretreatment

AMCM mainly includes three steps in the preprocessing stage: difference of Gaussian
(DoG) filtration [27], local contrast enhancement [28], and neighborhood Std. deviation.

(1) DoG filter
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The DoG filter is defined as follows:

DoG ∆
= Gσ1 − Gσ2 =

1√
2π

(
1
σ1

e
− x2+y2

2σ2
1 − 1

σ2
e
− x2+y2

2σ2
2 ), (1)

where x and y are the coordinates of the image, and σ is the Std. deviation of Gaussian fil-
tration.

The waveform of the DoG filter is shown in Figure 5. Essentially, it is a band-pass filter
that attenuates signal frequencies outside the range of interest. Therefore, the DoG filter
can be used for denoising images, reducing low-frequency artifacts such as illumination
non-uniformity, while enhancing image features such as spots and edges, facilitating the
detection of dim and small space targets. Specifically, when σ1/σ2 is 1.6, the response
characteristics of the DoG filter are comparable to those of the Laplacian of Gaussian filter.
In this paper, guided by the method of detection’s performance, σ1/σ2 is set to 1/3, while
in other scenarios, this value may need to be adaptively adjusted.
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(2) Local contrast enhancement

The human visual system (HVS) possesses excellent complex-scene background-
suppression capabilities, primarily utilizing local contrast variations to determine salient
regions, thereby distinguishing targets from the background [29]. Since there is usu-
ally some contrast information between dim, small targets and their surrounding local
background [30], local contrast is more effective than grayscale information in detect-
ing space targets. This paper introduces the multiscale patch-based contrast measure
(MPCM) method [28] to enhance local contrast, and subsequent correlation operations
are employed to circumvent the deficiency of MPCM in adaptively selecting the optimal
segmentation threshold.

According to the definition by the Society of Photo-Optical Instrumentation Engineers
(SPIE), an infrared target with an area no larger than 9 pixels × 9 pixels is referred to as a
small infrared target. In practical image processing, it is difficult to obtain the target size
as prior information. So, AMCM adopts 3, 5, 7, and 9 as the multi-scale patch sizes to
accommodate targets of different sizes, which support parallel computing. For each scale l,
the image is filtered by eight directional filters DirF for computing the local differences on
different directions.

Dimgk,n = DirFn ⊗ imgk, n = 1, 2, · · · , 8, (2)

where img represents the image filtered by the DoG filter, k represents the frame position of
img in the sequence, and “⊗” represents convolution operation.

Each directional filter has dimensions of 3l × 3l and can be further divided into a
central region of l × l size and 8 edge regions of l × l size each, as shown in Figure 6.
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The following formula characterizes the differences between the center region and 8
different directional regions:

d̃k,t = Dimgk,t ⊙ Dimgk,t+4, t = 1, 2, 3, 4, (3)

where “⊙” represents matrix element-wise multiplication.
In the enhancement of dim and small space targets, the contrast between the target

area and the background area should be as large as possible. So, the minimum value of
∼

dk,t is taken as a patch-based contrast measure (PCM). Once the PCMs at all scales l have
been obtained, the maximum value among them is the MPCM of img, which is denoted as
Mimg and has the same dimensions as img.

(3) Neighborhood Std. deviation

A sliding window with the block size N × N is used to perform the neighborhood
operation on Mimg, which can further enhance the edge information of target and expand
the size of target area. The Std. deviation function is used for this operation, so the central
pixel of the sliding window is replaced by the neighborhood Std. deviation [31]:

Nimg(xs, ys) =

√√√√ 1
N2 − 1

i=xs+ f loor(N/2)

∑
i=xs− f loor(N/2)

j=ys+ f loor(N/2)

∑
j=ys− f loor(N/2)

(Mimg(xi, yj)− µ)2 (4)

µ =
1
N

i=xs+ f loor(N/2)

∑
i=xs− f loor(N/2)

j=ys+ f loor(N/2)

∑
j=ys− f loor(N/2)

Mimg(xi, yj) (5)

where xs and ys are the coordinates of the pixel at the center of the sliding window, xi and
yj are the coordinates of the pixel at the sliding window, and “ f loor()” represents rounding
to the nearest integer less than or equal to the element.

The value of the sliding window size N depends on the target size: when N is
significantly larger than the target size, the standard deviation of the pixels within the
window is relatively small, which will weaken the enhancement effect on the target area;
conversely, when N is significantly smaller than the target size, the standard deviation is
also relatively small when the window is centered on the target. In those situations, the
target is easily classified as a background region by correlation operation. Therefore, in this
paper, the sliding window size N is set to a moderate size of 4, and the binary filter of the
post-processing algorithm is used to fill the holes in the target area.

Repeat the above steps until obtaining Nimg for all frames in one sequence.
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2.3.2. Matched Filtering

The grayscale values of the target pixels vary periodically with the periodic aberrations,
showing a strong correlation with AMS, while the background and noise pixels exhibit weak
correlation. So, the preprocessed and enhanced image frame sequence Nimg undergoes
matched filtering with AMS, and the filtering results are shown as Figure 7. It can be
observed that the difference in correlation levels causes entirely different filtering results.
Based on this, the target area can be effectively selected.
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2.3.3. Post-Treatment

The cross-correlation operation depends on the sample size of two random variables;
that is, the detection performance of AMCM is positively correlated with the number of
frames in the image sequence. However, an increase in the number of frames means that
the time consumption of both hardware acquisition and image processing will increase,
affecting the efficiency and real-time performance of AMCM, thereby limiting its application
range. Therefore, the requirement for the number of frames should be minimized as much
as possible. In this case, the binarized images obtained after threshold segmentation may
still contain some isolated noise points, which are highly correlated with AMS; additionally,
DoG filtering can lead to a hollow effect within larger targets. So, in the post-processing
steps of AMCM, binary statistical filtering [32] is used to remove isolated noise points and
fill in hollow areas within large targets.

3. Results
3.1. Simulation
3.1.1. Data Generation

Existing datasets mostly focus on ground and aerial objects, whose characteristics may
differ from those in space scene target detection. Additionally, existing datasets do not
actively introduce aberrations during the imaging stage; if pseudo-diffusion effects are
achieved through pure image algorithms, there is a significant difference from the actual
physical process of aberrations, making it likely that the trained and validated AMCM
will not function properly in real-world scenarios. Therefore, we built a dataset using
Matlab by superimposing Zernike phase screens on the generalized pupil to achieve active
aberration and atmospheric turbulence loading, which is more closely aligned with the
actual imaging process.

Regarding background noise, the considerations in this paper are as follows: In
the photoelectric detection system, the output noise of the photoelectric detector mainly
includes spatial noise v2

nt and temporal noise v2
ns. Spatial noise v2

nt is generated by the
response non-uniformity of different pixels in the array detector and can be well suppressed
after careful calibration. Temporal noise v2

ns mainly consists of background radiation pho-
ton noise v2

ph, the detector’s own thermal noise v2
J , generation–recombination noise v2

gr,

and 1/f noise v2
1/ f . With the advancement of detector technology, current state-of-the-art

detectors have reached the background limit detection level [33], where the dominant
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noise is background radiation photon noise v2
ph. The discrete-photon-number statistical

distribution of background radiation photon noise can be described by a Poisson distri-
bution. The variance in the random fluctuations in the detector’s output voltage v2

ph is
proportional to the mean number of photons absorbed by the detector over an integration
period Qq [34]. In long-range target detection applications (the targets in this paper are
artificial satellites, space debris, and other space objects, typically at distances of tens
to hundreds of kilometers from the detection system), the external environment mainly
affects the photoelectric detection system through atmospheric turbulence-induced phase
modulation of the incoming light spot and random fluctuations in background photon
noise. Atmospheric turbulence can cause the target image to become distorted, blurred, or
even torn apart, significantly reducing the signal-to-noise ratio of detection. However, the
use of adaptive optics can greatly improve the imaging quality, bringing the telescope’s
imaging quality close to the diffraction limit [35]. Therefore, using Poisson-distributed
random noise to describe background radiation photon noise can effectively simulate the
impact of the external environment on the photoelectric detection system. In this paper,
Poisson-distributed random noise has been used to represent background radiation photon
noise in the image generation stage.

Based on the above premise, to demonstrate the effectiveness of AMCM, multiple sets
of test data are generated by Matlab for simulation evaluation. The test data generation uses
the classic OOK modulation format [36] as the AMS. That is, the image frame sequence is
alternately arranged with aberration-free and aberrated frames. The aberration modulation
type chosen is defocus aberration with a PV of 2λ to maximize the target peak brightness
variation. As a result, a total of 41 sets of test data are generated, covering the SNR range
of 1 to 10. Each dataset contains 30 image frame sequences, with each single frame image
containing about 25 real targets. There is no overlap or contact between targets. Every
real target is 3 × 3 pixels in size, with 1 to 2 pixels of frame-to-frame jump to approximate
real-world scenarios. The dimensions of each single frame image are 128 × 128.

Figure 8 shows two consecutive image frames from an image sequence in the test data
with an SNR of 6.01. The left image is an aberration-free frame where all real targets are
clearly visible and marked with red pentagrams; the right image is an aberrated frame
where defocus aberration with a PV value of 2λ causes all real targets to become blurred
and submerged in the background and noise.
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Figure 8. Continuous frames in the image frame sequence with an SNR of 6.01. (a) Aberration-free
frame; (b) aberrated frame.

The probability and sensitivity of detection are chosen as evaluation metrics to analyze
the detection performance of AMCM. The probability of detection Pd is calculated as the
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number ratio of correctly detected targets to the real targets, and the sensitivity of detection
Ps is calculated as the number ratio of correctly detected targets to total detected targets.

Pd =
the number o f correctly detected targets

the number o f totally real targets
× 100% (6)

Ps =
the number o f correctly detected targets
the number o f totally detected targets

× 100% (7)

3.1.2. Sample Size

Figures 9 and 10 show the detection performance and time consumption of AMCM
under different numbers of image frames in one sequence. The method operates on a
laptop equipped with a 13th Gen Intel Core i9-13900H, utilizing CPU parallel processing
for acceleration in MATLAB R2023b. It can be observed that as the number of frames
increases, both the detection probability and detection sensitivity of the AMCM are im-
proved, proving that the method’s performance indeed depends on the signal correlation
brought by aberration modulation. The higher the number of frames, the less the uniformly
distributed background and random noise fluctuations can maintain high correlation with
the AMS, thus being filtered out to achieve effective target detection. The time consumption
shows a roughly linear positive correlation with the number of frames. When the number
is 8, there is a significant positive deviation in time consumption, indicating that most
of the time is spent on MATLAB’s computational memory allocation and on parts of the
code unrelated to the number of frames. In summary, when the number of frames is 32,
AMCM achieves a probability of around 90%, a sensitivity greater than 90%, and a time
consumption of less than 0.2 s at SNR 2, showing a balanced overall performance.
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Figure 9. Probability of detection curve with different numbers of frames.
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Figure 10. Sensitivity of detection curve with different number of frames.
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Figure 11 shows the time consumption ratio of each part of the image algorithm when
the image sequence consists of 32 frames. The analysis reveals that the MPCM algorithm
used for local contrast enhancement requires calculating four scales of PCM for each image,
resulting in a significantly higher computational load than other parts of the algorithm, thus
having the highest proportion. Relying solely on Matlab’s CPU multi-threading parallel
processing does not achieve effective improvement.
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3.1.3. Aberration Type with Different PV Values

Figures 12 and 13 show the detection performance of AMCM at an SNR of approx-
imately 1.95 when different orders and PV values of Zernike aberrations are used for
aberration modulation. The aberration PV values in Figure 12 are fixed at 2λ. In terms of
results, different aberration types and PV values have different impacts on the AMCM’s
performance but are generally comparable, with no significant differences. Therefore, in
Figure 13, considering that Z5 and Z6, Z7 and Z8, and Z9 and Z10 are the same type of
aberration, only one of each pair is selected to analyze the impact of different PV values.
Specifically, the optimal detection probability is 91.944% for Z6 aberration with a 0.2λ PV
value, and the worst is 87.719% for Z8 aberration with a 0.4λ PV value, a difference of
about 4.2%; the optimal detection sensitivity is 92.38% for Z11 aberration with a 1.0λ PV
value, and the worst is 87.176% for Z4 aberration with a 0.6λ PV value, a difference of about
5.2%. If the impact of different aberration types and their PV values is comprehensively
evaluated using the product of detection probability and detection sensitivity, the difference
between the best and worst combinations in the tested parameter sets exceeds 7%, which is
significant enough in our opinion. However, due to the limited combinations of aberration
types and PV values, the entire parameter space has not been explored, and no pattern of
changes can be summarized; therefore, this paper cannot provide the bona fide optimal
parameter combination. To facilitate a clear comparison of data between contexts, the
subsequent parameter settings for aberration modulation will still refer to the previous
ones, specifically the Z4 aberration with a PV value of 2λ.
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Figure 12. Detection performance at SNR of approximately 1.95 with different aberration modulations.
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Figure 13. Detection performance at SNR of approximately 1.95 with different PV values. (a) Probability
of detection; (b) sensitivity of detection.

3.1.4. AMS

Since the selection of aberration PV values does not significantly affect the detection
performance of the method, choosing OOK modulation for AMS remains more appropriate.
However, it is still necessary to analyze different modulation cycles and duty cycles,
as shown in Figures 14–16. The number of frames in the frame sequence is set to 64.
Analysis shows that when the duty cycle of the modulation signal is fixed at 0.5, the
detection performance of the method decreases as the modulation cycle increases; when
the modulation cycle is fixed at four frames and the duty cycle increases from 0.25 to 0.75,
the detection probability of the method increases while the detection sensitivity decreases,
making a duty cycle of 0.5 the most balanced. When both the duty cycle and the modulation
cycle are random, the detection performance of the method is comparable to that of the
OOK modulation signal with a modulation cycle of four frames and a duty cycle of 0.5.
Therefore, the optimal performance of AMCM corresponds to the OOK modulation signal
with a modulation cycle of two frames and a duty cycle of 0.5. The reason is that at this
point, the modulation frequency is maximized, allowing for target detection using the
difference between the noise randomness and the strong correlation of the target within the
shortest number of frames.
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Figure 14. OOK modulation signals with different cycles and duty cycles.
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Figure 15. Probability of detection curve with different OOK modulation signals.
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Figure 16. Sensitivity of detection curve with different OOK modulation signals.

3.1.5. Classification Performance

The performance of AMCM is evaluated by using the precision–recall (PR) curve [37].
On the PR curve, the horizontal axis represents the recall ratio and the vertical axis rep-
resents the precision ratio, depicting the precision performance at different recall levels.
Compared to other classification model evaluation tools, the PR curve focuses more on the
accuracy of positive sample classification, making it suitable for the highly imbalanced
positive and negative samples in this paper. The definitions of recall and precision are
equivalent to the method’s detection sensitivity Ps and detection probability Pd, respectively.

Figure 17 shows the PR curve of AMCM when the SNR is 2. The area under the PR
curve is the average precision at different recall levels, representing the overall quality of the
prediction results. Additionally, the larger the balance point (where precision ratio is equal
to recall ratio), the better the method’s performance. AMCM achieved an area under the
curve of 0.9396 and a balance point value of 0.9, indicating good prediction performance.
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3.1.6. Horizontal Comparison

Finally, AMCM is compared with several traditional algorithm-based detection meth-
ods, including the infrared patch-image model (IPI) [11], double-neighborhood gradient
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method (DNGM) [38], and MPCM method [28]. These methods represent different ap-
proaches to detecting dim and small targets: IPI is based on image data structure, DGNM
on local intensity and gradient, and MPCM on local contrast. These methods are either
classic or efficient methods in their respective fields, and their effectiveness has been val-
idated in numerous studies. Moreover, most single-frame detection methods can serve
as pretreatment for AMCM, such as the MPCM used in this paper. By comparison, the
improvement in detection performance of traditional methods due to aberration modula-
tion and signal correlation becomes more evident. Figures 18 and 19 show that AMCM
achieves a higher detection probability due to the use of active aberration modulation
and signal cross-correlation operations, with detection sensitivity metrics significantly
outperforming other methods. It also means that by adjusting the parameters of AMCM,
detection probability can be further improved at the expense of slightly reduced detection
sensitivity. Considering both detection probability and detection sensitivity, AMCM can
effectively detect targets with an SNR of around 2, while traditional algorithms (such as
DNGM) typically can only effectively detect targets with an SNR of about 5. Thus, AMCM
has a stronger capability for detecting dim and small targets.
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Figure 18. Horizontal comparison of detection probabilities for different methods.
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3.2. Experiment

To further validate AMCM’s usability, an aberration modulation experimental device
as depicted in Figure 20 is established. This device is adapted from Thorlabs’ adaptive
optics kit AOK8/M. The laser (Thorlabs CPS635R), regarded as a point target at infinity, is
transmitted to the DM (Thorlabs DMH40/M-P01) via a two-stage beam expansion system
consisting of L1-L2 and L3-L4. The integrating sphere (LBTEK LBIS-LPS100-3) is employed
to simulate an overall uniform background with random fluctuations. The light source is
a halogen lamp (LBTEK LBHL2000-20W), connected to the integrating sphere through a
fiber bundle illustrated in Figure 20b. The background light is combined with the laser
in the shared optical path via a beam combiner, then transmitted to the DM through the
beam expander system comprising L3 and L4. The deformable mirror directs the target and
background lights to the receiving aperture (Thorlabs MVL35M1), which are then imaged
by the focal plane array detector (Thorlabs CS2100M-USB).
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Figure 20. Aberration modulation experiment. (a) Beam path diagram; (b) physical illustration.

By applying an aberration modulation signal to the deformable mirror and syn-
chronously capturing image frames with the detector, a sequence of aberration-adjusted
image frames is obtained. The experiment also employs OOK modulation format and
defocus aberration, consistent with the simulation. It is worth noting that when generating
defocus aberration using a deformable mirror, some coma aberration is additionally pro-
duced due to the structure of the deformable mirror. However, this has no adverse effect
on AMCM. The control block diagram of aberration modulation and image acquisition is
shown in Figure 21.
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Figure 21. Control block diagram in the experiment.

Due to the limitations in the precision of target intensity control and SNR calculation,
the experiment cannot collect image frame sequences at very small SNR intervals like the
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simulation. Therefore, this paper only collected four sets of image data with different SNRs,
which are 1.94, 2.9, 6.2, and 10.5, covering low-, medium-, and high-SNR scenarios. Two
consecutive frames from four different SNR image frame sequences of the experimental
data are presented in Figure 22. For each SNR, 2000 sequences are collected to evaluate the
method’s performance as accurately as possible, due to the presence of only one target in
a single-frame image, which is marked with red pentagrams. Each sequence consists of
100 rames, maintaining consistency with the simulation conditions. The different positions
of the target in each sequence are simulated by adjusting the camera’s region of interest
(ROI) window. It is noteworthy that due to the position of the integrating sphere, the
background of obtained images shows significant non-uniformity, characterized by a higher
center and lower surroundings, which poses greater demands on the detection method.
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The processing results of the experimental data by different methods are shown
in Figures 23 and 24, with all adjustable parameters of the methods being the same as
those used in simulations. AMCM still demonstrates superior detection performance
compared to other methods, effectively detecting images with an SNR of around 2. Due
to the background non-uniformity, which does not meet the assumption of non-local self-
similarity, IPI’s effectiveness is greatly compromised, making it difficult to effectively detect
targets. The detection performance of MPCM at low SNR (<3) is significantly worse than
the simulation data. The reason is that the segmentation threshold of MPCM cannot be
adaptively adjusted based on scene changes. Both the DNGM and AMCM exhibit good
robustness. Since the experimental setup does not dynamically simulate atmospheric
turbulence, the collected sequence frame data lack a dynamic correction process. As a
result, the image frames are relatively ideal and maintain a high correlation with the AMS,
potentially leading to an overestimation of AMCM’s performance. This issue needs to be
further discussed and analyzed in future field experiments.
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The adaptive optics system of the 1.8m ground-based telescope at Lijiang Observatory
has been basically modified to be compatible with the AMCM method. However, due to
the rainy season in Lijiang from May to October each year, this paper has not yet obtained
sufficient field data, and therefore cannot analyze the effectiveness and robustness of the
AMCM method under actual atmospheric scenarios, nor discuss the impact of various
atmospheric factors (such as different levels of atmospheric turbulence and cloud cover) on
the method’s performance. Simultaneously, an indoor atmospheric turbulence simulation
experiment platform will also be established, with the core aim being to use numerical
simulation methods to generate atmospheric turbulence phase screens and load them onto
a spatial light modulator, causing corresponding phase distortions in the beam. Given that
the current work has basically demonstrated the feasibility and application potential of
AMCM, research on atmospheric scenarios will be one of the key tasks in the next stage.

4. Discussion
4.1. Features and Applications of the Method

The core principle of the AMCM for target detection is phase-locked amplification.
Phase-locked amplification technology has been widely applied in the fields of spectral
analysis [39] and temperature measurement [40], amongst others. In optical signal measure-
ment, phase-locked amplification typically uses an electronically controlled chopper [41] to
modulate (chop) continuous light into periodic intermittent light at a certain frequency. The
echo signal of the light source, along with the noise signal, is input into the phase-locked
amplifier, and the frequency that matches the reference frequency will pass through the
low-pass filter, while signals at other frequencies, such as noise signals, will be filtered out.

However, in the field of passive imaging, detection systems do not rely on external
energy sources but merely receive the light energy emitted by the target object and back-
ground radiation. Therefore, traditional phase-locked amplification techniques cannot
independently modulate the target signal periodically. This paper proposes a novel phase-
locked amplification method, AMCM, by introducing wavefront correctors, such as DM
and liquid crystal spatial light modulators, to perform periodic aberration modulation on
optical detection systems. This method leverages the differences in aberration response
characteristics between the target and background, introducing periodic features in ad-
dition to common features such as target intensity, morphology, and local contrast. It
successfully utilizes the periodic nature of the target and the irregular, chaotic nature of
noise to achieve effective detection of lower signal-to-noise ratio targets. The algorithm’s
effectiveness has been validated through simulations and indoor experiments, and the next
step will be to conduct field experiments. Additionally, due to the relative maturity of
wavefront correctors, AMCM can be easily transferred from adaptive optics astronomical
telescopes to other passive imaging systems, especially those used for long-distance target
detection in the infrared band.

4.2. Factors Affecting Algorithms

The detection effectiveness of the cross-correlation operation depends on the sample
size, which has been verified in Section 3.1. This is because, as the number of image frames
increases, the target signal maintains a high positive correlation with the aberration modu-
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lation signal, while the correlation of randomly varying noise signals tends to zero, thereby
enabling AMCM to effectively filter out noise even at higher bandwidths. However, a high
frame count significantly increases hardware acquisition and algorithm processing time,
making it difficult for AMCM to handle moving targets and thus limiting its application
scope. Therefore, reducing the frame count requirement and increasing parallel processing
speed are key optimization directions for AMCM to move towards practical application.
The following optimization methods are worth studying: first, by designing non-local
metasurfaces [42] to implement DoG filtering in the optical simulation domain, thereby
alleviating the limitations on method speed and power consumption caused by the increase
in image scale, and second, by using hardware accelerations [43] such as GPU and FPGA
to improve the performance of image algorithms, especially the local contrast enhancement
part. Speed improvement not only enhances real-time performance but also allows for
target detection in a larger field of view within the same time frame, assuming the target
resolution is the same.

Also, due to the limited repeat precision of the DM’s surface control, the introduced
periodic aberrations fluctuate and atmospheric turbulence also varies over time, causing
the residual aberrations after the DM compensates for wavefront distortions to be time-
varying as well. The above restrictions lead to varying degrees of energy dispersion of
the target in each cycle, meaning the actual reference signal does not perfectly match
the target variations, thus affecting the cross-correlation effectiveness and reducing the
detection performance. This may explain to some extent why AMCM’s performance in the
experiments described in Section 3.2 is inferior to the simulations in Section 3.1.

4.3. Future Research Directions

Based on the characteristics and shortcomings of AMCM, future research directions
mainly include the following.

4.3.1. Method Combination

On the image processing algorithm side in this paper, AMCM currently uses the
MPCM to enhance dim and small targets and suppress the background and noise. The
principle of the MPCM method is based on the human visual mechanism, and the advan-
tages of MPCM have been briefly outlined above, especially compared to other methods
with the same principle, such as the Local Contrast Method [44], Improved Local Contrast
Method [45], and Accumulated Center–surround Difference Measure [46]. Considering that
there are multiple principle routes available for detecting dim and small targets, to further
enhance the detection performance of the AMCM method, future research could consider
combining it with other passive target detection methods, such as the infrared patch-image
(IPI) method based on image data structure [11], the three-dimensional collaborative filter-
ing and spatial inversion (3DCFSI) method [47] based on spatiotemporal information, and
the non-local means filtering (NLM) method based on background feature [48].

4.3.2. Optical Simulation Computing Device

The speed and power consumption of image processing algorithms in AMCM are
limited by integrated circuit microelectronics [49], and these limitations increase rapidly
with the scale of the sequence and the size of individual frames. Therefore, it is worth
considering the introduction of a non-local metalens [50] to move steps like edge extraction
from the algorithm side to the hardware side. Additionally, by using end-to-end optimiza-
tion algorithms [51], jointly optimizing the metalens and image processing algorithms can
enhance the processing speed and detection performance of AMCM.

4.3.3. Moving Object Detection

AMCM is currently focused on imaging scenarios mainly involving static or quasi-
static targets, where the inter-frame displacement is still smaller than the target size. When
the target is in motion, its trajectory is inherently continuous, while the noise in the
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image appears randomly and without regularity. Therefore, after introducing aberration
modulation, it is possible to integrate the spatial and temporal information of the sequence
images to achieve the detection of dim and small space targets. Based on the research of
existing multi-frame motion target algorithms, aberration modulation can be considered
in combination with dynamic programming [52], higher-order correlation [53], motion
compensation [54], and adaptive filtering techniques [55] to further enhance the detection
performance of dynamic dim and small targets. However, the computation time of the
algorithms will inevitably increase significantly, making practical application difficult and
improving algorithm efficiency important.

4.3.4. Hyperparameter Search

This paper only analyzes the impact of using a single aberration modulation or differ-
ent periods and duty cycles when the modulation signal adopts the OOK mode on method
performance. Meanwhile, the selection criteria for the values σ1/σ2 of the DOG filter and
the size N of the sliding window in the image algorithm are briefly introduced. However,
the above analyses are relatively independent and discrete, with only one parameter being
changed at a time while others remain fixed. This means that it is difficult for the optimiza-
tion process to traverse the entire parameter space, and the method may fall into a local
optimum. Therefore, algorithm adjustable parameters, aberration types, aberration PV
values, and modulation signals (mode, period, duty cycle, etc.) can be regarded as hyper-
parameters, especially the combination of different types of aberrations and modulation
parameters. Swarm intelligence algorithms such as Bayesian optimization [56], particle
swarm optimization (PSO) [57], and artificial bee colony (ABC) [58] can be introduced to
execute hyperparameter optimization. A cost function can also be developed that com-
bines multiple performance metrics, such as detection probability, false alarm rate, and
computational efficiency, to guide the optimization process.
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