Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data: A Case Study Classifying Urban Trees in Naples, Italy
Abstract
:1. Introduction
- To evaluate the contribution of pansharpening to improving image classification accuracy using hyperspectral data so that it is also useful in an urban setting;
- To apply the method to a real-world problem, specifically urban tree monitoring, through a simple pansharpening application that only uses the more easily accessible panchromatic band.
- It introduces a novel application using pansharpening techniques to improve classification performance by enhancing the spatial resolution of PRISMA hyperspectral data and demonstrates its efficiency with a case study example;
- It demonstrates a practical real-world use of pansharpened image classification for urban tree monitoring, which could help municipalities that are currently struggling to meet international and national policy demands.
2. Materials and Methods
2.1. Study Area
2.2. Pre-Processing and Identification of the Forested Areas
2.2.1. Multispectral Dataset
2.2.2. Hyperspectral Dataset
2.2.3. Pansharpening and Subsetting
2.3. Classification Task
2.3.1. Ground Truth Dataset
2.3.2. HSI1 and HSI2 Classification
3. Results
4. Discussion
5. Conclusions
- introducing a novel application using pansharpening techniques to improve classification performance in urban environments by enhancing the spatial resolution of PRISMA hyperspectral imaging data;
- demonstrating its efficiency by applying the method to a practical real-world use of pansharpened image classification for urban tree monitoring.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASI | Agenzia Spaziale Italiana (Italian Space Agency) |
CAM | Criteri Ambientali Minimi (Minimum Environmental Criteria) |
CNN | Convolutional Neural Network |
DSM | Digital Surface Model |
DTM | Digital Terrain Model |
EnMAP | Environmental Mapping And Analysis Program |
F1 | F1 Score |
GCPs | Ground Control Points |
GSD | Ground Sampling Distance |
GTs | Ground Truths |
HS_DS | Hyperspectral Dataset with 205 bands |
HSI | Hyperspectral Imagery |
HSI1 | Hyperspectral Imagery with GSD = 30 m |
HSI2 | Hyperspectral Imagery with GSD = 5 m |
HSI_mask | Mask of Hyperspectral Dataset |
K | Cohen’s Kappa Coefficient |
MS | Multispectral |
MS_DS | Multispectral Dataset—Pléiades |
NBFC | National Biodiversity Future Center |
nDSM | Normalized Digital Surface Model |
NRRP | National Recovery and Resilience Plan |
OA | Overall Accuracy |
PA | Producer’s Accuracy |
PAN | Panchromatic |
PRISMA | PRecursore IperSpettrale della Missione Operativa (Hyperspectral Precursor of the Application Mission) |
ROI | Region of Interest |
RS | Remote Sensing |
SDG | United Nations Sustainable Development Goal |
SWIR | Short-Wavelength Infrared |
T | Trial |
UA | User Accuracy |
VHR | Very High Resolution |
VNIR | Visible and Near-Infrared |
References
- United Nations World Urbanization Prospects: The 2018 Revision—United Nations Department of Economic and Social Afftair; United Nations: New York, NY, USA, 2019; ISBN 978-92-1-004314-4. Available online: https://www.un-ilibrary.org/content/books/9789210043144/ (accessed on 7 October 2024).
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban Tree Species Mapping Using Hyperspectral and Lidar Data Fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Gouldson, A.; Colenbrander, S.; Sudmant, A.; Papargyropoulou, E.; Kerr, N.; McAnulla, F.; Hall, S. Cities and Climate Change Mitigation: Economic Opportunities and Governance Challenges in Asia. Cities 2016, 54, 11–19. [Google Scholar] [CrossRef]
- Laino, E.; Iglesias, G. Extreme Climate Change Hazards and Impacts on European Coastal Cities: A Review. Renew. Sustain. Energy Rev. 2023, 184, 113587. [Google Scholar] [CrossRef]
- Fu, J.; Dupre, K.; Tavares, S.; King, D.; Banhalmi-Zakar, Z. Optimized Greenery Configuration to Mitigate Urban Heat: A Decade Systematic Review. Front. Archit. Res. 2022, 11, 466–491. [Google Scholar] [CrossRef]
- Tanoori, G.; Soltani, A.; Modiri, A. Predicting Urban Land Use and Mitigating Land Surface Temperature: Exploring the Role of Urban Configuration with Convolutional Neural Networks. J. Urban Plan. Dev. 2024, 150, 04024029. [Google Scholar] [CrossRef]
- Verde, S.; Dell’Acqua, F.; Losasso, M. Environmental Data, Modeling and Digital Simulation for the Evaluation of Climate Adaptation and Mitigation Strategies in the Urban Environment. Sustainability 2024, 16, 2179. [Google Scholar] [CrossRef]
- Dian, Y.; Pang, Y.; Dong, Y.; Li, Z. Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data. J. Indian Soc. Remote Sens. 2016, 44, 595–603. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and Forest Effects on Air Quality and Human Health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Malkoç, E. City-Wide Assessment of Urban Tree Cover and Land-Cover Changes in Edirne Using Web-Based Tools. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 103997. [Google Scholar] [CrossRef]
- Morin, E.; Herrault, P.-A.; Guinard, Y.; Grandjean, F.; Bech, N. The Promising Combination of a Remote Sensing Approach and Landscape Connectivity Modelling at a Fine Scale in Urban Planning. Ecol. Indic. 2022, 139, 108930. [Google Scholar] [CrossRef]
- Valeri, S.; Zavattero, L.; Capotorti, G. Ecological Connectivity in Agricultural Green Infrastructure: Suggested Criteria for Fine Scale Assessment and Planning. Land 2021, 10, 807. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A Review of Benefits and Challenges in Growing Street Trees in Paved Urban Environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Thompson, E.; Herian, M.; Rosenbaum, D. The Economic Footprint and Quality-of-Life Benefits of Urban Forestry in the United States; University of Nebrasca—Lincoln: Lincoln, NE, USA, 2021; pp. 1–89. [Google Scholar]
- Pretzsch, H.; Moser-Reischl, A.; Rahman, M.A.; Pauleit, S.; Rötzer, T. Towards Sustainable Management of the Stock and Ecosystem Services of Urban Trees. From Theory to Model and Application. Trees 2023, 37, 177–196. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Sustainable Urban and Peri-Urban Forestry: An Integrative and Inclusive Nature-Based Solution for Green Recovery and Sustainable, Healthy and Resilient Cities; UNECE: Geneva, Switzerland, 2021; pp. 1–21. [Google Scholar]
- Sustainable Cities and Communities—Goal 11. Available online: https://sdgs.un.org/goals/goal11 (accessed on 1 August 2024).
- New Urban Agenda: H III: Habitat III: Quito 17-20 October 2016; United Nations (UN): Quito, Ecuador, 2017; ISBN 978-92-1-132731-1.
- CREA Giornata Internazionale Delle Foreste: Verso l’Inventario Nazionale 2025—Giornata Internazionale Delle Foreste: Verso l’Inventario Nazionale 2025—CREA. Available online: https://www.crea.gov.it/en/-/giornata-internazionale-delle-foreste-verso-l-inventario-nazionale-2025 (accessed on 23 July 2024).
- Urban Environment and Health—NBFC. Available online: https://www.nbfc.it/en/environments (accessed on 31 July 2024).
- Cena, H.; Labra, M. Biodiversity and Planetary Health: A Call for Integrated Action. Lancet 2024, 403, 1985–1986. [Google Scholar] [CrossRef]
- Fabbrini, F. Italy’s National Recovery and Resilience Plan: Context, Content and Challenges. J. Mod. Ital. Stud. 2022, 27, 658–676. [Google Scholar] [CrossRef]
- Comune di Napoli Manutenzione del Verde ed Igiene Della Città. Available online: https://www.comune.napoli.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/47672 (accessed on 1 August 2024).
- Vihervaara, P.; Auvinen, A.-P.; Mononen, L.; Törmä, M.; Ahlroth, P.; Anttila, S.; Böttcher, K.; Forsius, M.; Heino, J.; Heliölä, J.; et al. How Essential Biodiversity Variables and Remote Sensing Can Help National Biodiversity Monitoring. Glob. Ecol. Conserv. 2017, 10, 43–59. [Google Scholar] [CrossRef]
- Casavecchia, S.; Allegrezza, M.; Biondi, E.; Galli, A.; Marcheggiani, E.; Pesaresi, S.; Taffetani, F.; Tavoletti, S.; Zitti, S.; Bianchelli, M.; et al. Conservation and Management of Biodiversity and Landscapes: A Challenge in the Era of Global Change. In The First Outstanding 50 Years of “Università Politecnica delle Marche”: Research Achievements in Life Sciences; Longhi, S., Monteriù, A., Freddi, A., Aquilanti, L., Ceravolo, M.G., Carnevali, O., Giordano, M., Moroncini, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 483–503. ISBN 978-3-030-33832-9. [Google Scholar]
- Filchev, L. Satellite Hyperspectral Earth Observation Missions—A Review. Aerosp. Res. Bulg. 2014, 26, 191–207. [Google Scholar]
- Qian, S.-E. Hyperspectral Satellites, Evolution, and Development History. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7032–7056. [Google Scholar] [CrossRef]
- Caporusso, G.; Ettore, L.; Rino, L.; Rosa, L.; Rocchina, G.; Girolamo, D.M.; Patrizia, S. The Hyperspectral Prisma Mission in Operations. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Waikoloa, HI, USA, 2020; pp. 3282–3285. [Google Scholar]
- Storch, T.; Honold, H.-P.; Chabrillat, S.; Habermeyer, M.; Tucker, P.; Brell, M.; Ohndorf, A.; Wirth, K.; Betz, M.; Kuchler, M.; et al. The EnMAP Imaging Spectroscopy Mission towards Operations. Remote Sens. Environ. 2023, 294, 113632. [Google Scholar] [CrossRef]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA Imaging Spectroscopy Mission: Overview and First Performance Analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree Species Classification in the Southern Alps Based on the Fusion of Very High Geometrical Resolution Multispectral/Hyperspectral Images and LiDAR Data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Vangi, E.; D’amico, G.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; Chirici, G. The New Hyperspectral Satellite Prisma: Imagery for Forest Types Discrimination. Sens. Switz. 2021, 21, 1182. [Google Scholar] [CrossRef] [PubMed]
- Rosentreter, J.; Hagensieker, R.; Okujeni, A.; Roscher, R.; Wagner, P.D.; Waske, B. Subpixel Mapping of Urban Areas Using EnMAP Data and Multioutput Support Vector Regression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1938–1948. [Google Scholar] [CrossRef]
- Palsson, B.; Sigurdsson, J.; Sveinsson, J.R.; Ulfarsson, M.O. Hyperspectral Unmixing Using a Neural Network Autoencoder. IEEE Access 2018, 6, 25646–25656. [Google Scholar] [CrossRef]
- Acito, N.; Diani, M.; Corsini, G. PRISMA Spatial Resolution Enhancement by Fusion With Sentinel-2 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 62–79. [Google Scholar] [CrossRef]
- Alparone, L.; Arienzo, A.; Garzelli, A. Spatial Resolution Enhancement of Satellite Hyperspectral Data Via Nested Hyper-Sharpening With Sentinel-2 Multispectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 10956–10966. [Google Scholar] [CrossRef]
- De Luca, G.; Carotenuto, F.; Genesio, L.; Pepe, M.; Toscano, P.; Boschetti, M.; Miglietta, F.; Gioli, B. Improving PRISMA Hyperspectral Spatial Resolution and Geolocation by Using Sentinel-2: Development and Test of an Operational Procedure in Urban and Rural Areas. ISPRS J. Photogramm. Remote Sens. 2024, 215, 112–135. [Google Scholar] [CrossRef]
- PRISMA Algorithm Theoretical Basis Document (ATBD). Available online: https://prisma.asi.it/missionselect/docs/ (accessed on 30 July 2024).
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A. Remote Sensing Image Fusion. In Remote Sensing Image Fusion; CRC Press: Boca Raton, FL, USA, 2015; p. 178. ISBN 978-0-429-16822-2. [Google Scholar]
- Galeazzi, C.; Carpentiero, R.; Varacalli, G. The Prisma System and PAN/HYP Instrument. In Proceedings of the 6th EARSeL Imaging Spectroscopy SIG (Special Interest Group) Workshop, Tel Aviv, Israel, 16–18 March 2009; p. 10. [Google Scholar]
- ISTAT Istat Data. Available online: https://esploradati.istat.it/databrowser/#/en/dw (accessed on 20 September 2024).
- Comune di Napoli Bilancio Arboreo e Gestione del Verde Della Città di Napoli. Available online: https://www.comune.napoli.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/29726 (accessed on 1 August 2024).
- ISPRA Uso Del Suolo 2021 | Uso, Copertura e Consumo Di Suolo. Available online: https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/carta-di-copertura-del-suolo/uso-del-suolo-2021 (accessed on 1 August 2024).
- Città Metropolitana Di Napoli—SIT. Available online: https://sit.cittametropolitana.na.it/ (accessed on 2 August 2024).
- Perko, R.; Raggam, H.; Schardt, M.; Roth, P.M. Very High Resolution Mapping with the Pléiades Satellite Constellation. Am. J. Remote Sens. 2018, 6, 89–99. [Google Scholar] [CrossRef]
- Casalegno, S.; Anderson, K.; Cox, D.T.C.; Hancock, S.; Gaston, K.J. Ecological Connectivity in the Three-Dimensional Urban Green Volume Using Waveform Airborne Lidar. Sci. Rep. 2017, 7, 45571. [Google Scholar] [CrossRef] [PubMed]
- LARP Larp Unina/PrismaTool. Available online: https://github.com/LarpUnina/PrismaTool (accessed on 31 July 2024).
- Ghasemi, N.; Justo, J.A.; Celesti, M.; Despoisse, L.; Nieke, J. Onboard Processing of Hyperspectral Imagery: Deep Learning Advancements, Methodologies, Challenges, and Emerging Trends. arXiv 2024, arXiv:2404.06526. [Google Scholar]
- Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review. J. Imaging 2019, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Sothe, C.; De Almeida, C.M.; Schimalski, M.B.; La Rosa, L.E.C.; Castro, J.D.B.; Feitosa, R.Q.; Dalponte, M.; Lima, C.L.; Liesenberg, V.; Miyoshi, G.T.; et al. Comparative Performance of Convolutional Neural Network Weighted and Conventional Support Vector Machine and Random Forest for Classifying Tree Species Using Hyperspectral and Photogrammetric Data. GIScience Remote Sens. 2020, 57, 369–394. [Google Scholar] [CrossRef]
- Delogu, G.; Caputi, E.; Perretta, M.; Ripa, M.N.; Boccia, L. Using PRISMA Hyperspectral Data for Land Cover Classification with Artificial Intelligence Support. Sustain. Switz. 2023, 15, 13786. [Google Scholar] [CrossRef]
- Lou, C.; Al-qaness, M.A.A.; AL-Alimi, D.; Dahou, A.; Abd Elaziz, M.; Abualigah, L.; Ewees, A.A. Land Use/Land Cover (LULC) Classification Using Hyperspectral Images: A Review. Geo-Spat. Inf. Sci. 2024, 27, 1–42. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Jena, B.; Saxena, S.; Nayak, G.K.; Saba, L.; Sharma, N.; Suri, J.S. Artificial Intelligence-Based Hybrid Deep Learning Models for Image Classification: The First Narrative Review. Comput. Biol. Med. 2021, 137, 104803. [Google Scholar] [CrossRef]
- Congalton, R. Accuracy Assessment and Validation of Remotely Sensed and Other Spatial Information. Int. J. Wildland Fire 2001, 10, 321–328. [Google Scholar] [CrossRef]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Naidu, G.; Zuva, T.; Sibanda, E.M. A Review of Evaluation Metrics in Machine Learning Algorithms. In Proceedings of the Artificial Intelligence Application in Networks and Systems; Silhavy, R., Silhavy, P., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 15–25. [Google Scholar]
- Li, J. Satellite Remote Sensing Technologies; Space Science and Technologies; Springer Singapore: Singapore, 2021; ISBN 9789811548703. [Google Scholar]
- Norme per Lo Sviluppo Degli Spazi Verdi Urbani, Italian Republic lawn. 10 of 14/01/2013, GU General Series, n. 27 of 01/02/2013, 13G00031. Available online: https://www.gazzettaufficiale.it/eli/id/2013/02/01/13G00031/sg (accessed on 7 October 2024).
- Criteri Ambientali Minimi per il Servizio di Gestione del Verde Pubblico e la Fornitura di Prodotti per la Cura del Verde, Italian Republic Ministerial decree n. 63 of 10/03/2020, GU general series, n. 90 of 04/04/2020, 20A01904. Available online: https://www.gazzettaufficiale.it/eli/id/2020/04/04/20A01904/sg (accessed on 7 October 2024).
- Rossi, L.; Menconi, M.E.; Grohmann, D.; Brunori, A.; Nowak, D.J. Urban Planning Insights from Tree Inventories and Their Regulating Ecosystem Services Assessment. Sustainability 2022, 14, 1684. [Google Scholar] [CrossRef]
- Shaik, R.; Periasamy, S.; Zeng, W. Potential Assessment of PRISMA Hyperspectral Imagery for Remote Sensing Applications. Remote Sens. 2023, 15, 1378. [Google Scholar] [CrossRef]
Species | GTPs |
---|---|
Pinus pinea | 424 |
Tilia × europaea | 310 |
Platanus × acerifolia | 103 |
Quercus ilex | 51 |
Eucalyptus spp. | 50 |
Total | 938 |
OA | ||||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | Av. | |
HSI1 | 0.65 | 0.67 | 0.65 | 0.60 | 0.61 | 0.64 |
HSI2 | 0.83 | 0.82 | 0.74 | 0.79 | 0.74 | 0.78 |
Interval | 0.14 | |||||
K | ||||||
T1 | T2 | T3 | T4 | T5 | Av. | |
HSI1 | 0.48 | 0.47 | 0.46 | 0.32 | 0.34 | 0.41 |
HSI2 | 0.74 | 0.72 | 0.59 | 0.67 | 0.59 | 0.66 |
Interval | 0.25 |
Species | HSI1 | HSI2 | ||
---|---|---|---|---|
UA | PA | UA | PA | |
Pinus pinea | 0.65 | 0.88 | 0.79 | 0.89 |
Tilia × europaea | 0.63 | 0.67 | 0.84 | 0.86 |
Platanus × acerifolia | 0.31 | 0.11 | 0.68 | 0.60 |
Quercus ilex | 0.27 | 0.12 | 0.35 | 0.27 |
Eucalyptus spp. | 0.56 | 0.14 | 0.82 | 0.34 |
Species | HSI1 (F1) | HSI2 (F1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | Av. | T1 | T2 | T3 | T4 | T5 | Av. | Interval | |
Pinus pinea | 0.75 | 0.78 | 0.74 | 0.71 | 0.73 | 0.74 | 0.86 | 0.86 | 0.81 | 0.83 | 0.81 | 0.84 | 0.10 |
Tilia × europaea | 0.68 | 0.69 | 0.65 | 0.61 | 0.60 | 0.65 | 0.89 | 0.86 | 0.84 | 0.86 | 0.79 | 0.85 | 0.20 |
Platanus × acerifolia | 0.40 | 0.22 | 0.00 | 0.00 | 0.14 | 0.15 | 0.75 | 0.79 | 0.32 | 0.68 | 0.62 | 0.63 | 0.48 |
Quercus ilex | 0.41 | 0.00 | 0.00 | 0.00 | 0.18 | 0.12 | 0.50 | 0.47 | 0.11 | 0.29 | 0.00 | 0.27 | 0.15 |
Eucalyptus spp. | 0.40 | 0.50 | 0.00 | 0.15 | 0.00 | 0.21 | 0.64 | 0.40 | 0.53 | 0.48 | 0.25 | 0.46 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perretta, M.; Delogu, G.; Funsten, C.; Patriarca, A.; Caputi, E.; Boccia, L. Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data: A Case Study Classifying Urban Trees in Naples, Italy. Remote Sens. 2024, 16, 3730. https://doi.org/10.3390/rs16193730
Perretta M, Delogu G, Funsten C, Patriarca A, Caputi E, Boccia L. Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data: A Case Study Classifying Urban Trees in Naples, Italy. Remote Sensing. 2024; 16(19):3730. https://doi.org/10.3390/rs16193730
Chicago/Turabian StylePerretta, Miriam, Gabriele Delogu, Cassandra Funsten, Alessio Patriarca, Eros Caputi, and Lorenzo Boccia. 2024. "Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data: A Case Study Classifying Urban Trees in Naples, Italy" Remote Sensing 16, no. 19: 3730. https://doi.org/10.3390/rs16193730
APA StylePerretta, M., Delogu, G., Funsten, C., Patriarca, A., Caputi, E., & Boccia, L. (2024). Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data: A Case Study Classifying Urban Trees in Naples, Italy. Remote Sensing, 16(19), 3730. https://doi.org/10.3390/rs16193730