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Abstract: Urban trees support vital ecological functions and help with the mitigation of and adaption
to climate change. Yet, their monitoring and management require significant public resources. remote
sensing could facilitate these tasks. Recent hyperspectral satellite programs such as PRISMA have
enabled more advanced remote sensing applications, such as species classification. However, PRISMA
data’s spatial resolution (30 m) could limit its utility in urban areas. Improving hyperspectral data
resolution with pansharpening using the PRISMA coregistered panchromatic band (spatial resolution
of 5 m) could solve this problem. This study addresses the need to improve hyperspectral data
resolution and tests the pansharpening method by classifying exemplative urban tree species in
Naples (Italy) using a convolutional neural network and a ground truths dataset, with the aim of
comparing results from the original 30 m data to data refined to a 5 m resolution. An evaluation
of accuracy metrics shows that pansharpening improves classification quality in dense urban areas
with complex topography. In fact, pansharpened data led to significantly higher accuracy for all the
examined species. Specifically, the Pinus pinea and Tilia x europaea classes showed an increase of 10%
to 20% in their F1 scores. Pansharpening is seen as a practical solution to enhance PRISMA data
usability in urban environments.

Keywords: PRISMA; hyperspectral data; pansharpening; data enhancement; spatial resolution;
geospatial analysis; urban tree classification; biodiversity monitoring

1. Introduction

According to the United Nations’ 2018 World Urbanization Prospects Report, the propor-
tion of the world’s population living in urban areas is expected to exceed 68% by 2050 [1],
with this figure rising to 86% in developed regions. Consequently, cities must address
their social and environmental vulnerabilities regarding the challenges posed by climate
change [2–4]. In urban environments, vegetation plays a pivotal role in terms of its ecologi-
cal functions and its potential as a nature-based solution to the adverse consequences of
climate change [2,5–7]. Trees, in particular, perform important services such as improv-
ing air quality, reducing runoff and erosion, and lowering surface temperatures [2,8,9].
They also contribute to the aesthetics of the landscape and provide habitats and ecological
corridors for a variety of species, increasing connectivity between areas of significant biodi-
versity [10–12]. Furthermore, trees have been shown to promote social cohesion [13] and
economic growth [14]. There is also a growing interest in the carbon storage functions of
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urban trees and peri-urban forests [15]. Policy at all levels, from international to local, has
come to recognize the importance of urban trees for human and ecosystem wellbeing and
makes demands on public administrations to increase, monitor, and manage urban tree
cover accordingly [16]. For example, the United Nation’s Sustainable Development Goal
(SDG) 11.7 [17] and the New Urban Agenda [18] both call for increasing equitable access
to public green spaces. At a national level, the future fourth Italian National Inventory
of Forests and Forest Carbon Pools, planned for 2025, will include an increased focus on
urban forests [19]. The National Biodiversity Future Center (NBFC) [20,21], established as
part of Italy’s post-COVID-19 National Recovery and Resilience Plan (NRRP) [22], is at the
forefront of tackling biodiversity loss in Italy, which threatens essential ecosystem services.

However, implementing such policies is no simple feat. In increasingly complex gov-
ernance systems, it often requires the coordination of very diverse stakeholders, including
professionals and department directors working for municipal administrations, employees
of private companies receiving public tenders, workers who carry out management tasks
as a requirement for receiving public income or as rehabilitation, and non-profit associa-
tions, organizations, and citizens that adopt green spaces or volunteer their time for its
upkeep [23]. Such a complex sharing of responsibility for urban and peri-urban trees and
forests depends on efficient and up-to-date monitoring.

Government agencies can improve their ability to monitor environmental resources
and biodiversity conservation by using innovative tools and techniques. Indeed, informa-
tion on the spatial distribution of tree species and vegetation maps are particularly useful
for biodiversity monitoring [24,25]. The availability of land cover information and the
classification of urban tree species could be greatly facilitated by remote sensing (RS) with
different data sources, such as very high resolution imagery, light detection and ranging
(LiDAR) technology, and hyperspectral imagery (HSI) [2,11]. The spatial resolution, radio-
metric resolution, and temporal resolution of imagery has increased with technological
developments along with the availability of a growing number of satellite platforms [26].
Moreover, thanks to spectroscopy satellite missions, such as The Hyperspectral Precursor of
the Application Mission (PRISMA) or the Environmental Mapping and Analysis Program
(EnMAP) hyperspectral mission, very high spectral resolution has been achieved [27].

PRISMA, launched by the Italian Space Agency (ASI) in 2019, and EnMAP, launched
by the German Aerospace Agency in 2022, are both in operational phases [28,29]. Both high
spectral resolution imaging spectroscopy missions produce data with a 30 km swath width.
PRISMA is a first-generation model to test and advance hyperspectral imaging technology
for practical applications [30]. EnMAP is quite similar and is also an experimental satel-
lite [31]. By exploiting a very high spectral resolution, both missions provide additional
information compared to multispectral missions, with which synergistic applications are
expected [28,31]. Hyperspectral data are widely used for tree classification [32] because
they provide more accurate results [33]. In particular, PRISMA data have shown excellent
results in spectral separability compared to multispectral data [34]. Other platforms are also
expected to become available soon, such as CHIME (Copernicus Hyperspectral Imaging
Mission for the Environment), developed by the European Space Agency [27].

Hyperspectral data at a spatial resolution of 30 m × 30 m are excellent for classifying
images in natural environments [34]. However, this spatial resolution is not ideal in ur-
ban environments, where images are typically composed of spectrally mixed pixels [35],
canopies are fragmented, and are often made up of different species grouped close to-
gether [2]. Viable techniques that overcome these limitations and increase the potential of
using HIS for urban classification include spectral unmixing and subpixel analysis [35,36].
Recent developments in EO technology have also introduced alternatives that improve the
spatial resolution of hyperspectral data using pansharpening, if the panchromatic band is
available, or hypersharpening when data are fused with higher spatial resolution data, if
available [37,38].

Previous studies [37–39] have explored the potential of hypersharpening by showing
that it is appropriate to use multispectral data with a medium resolution satellite, such as
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Sentinel 2, for data fusion with hyperspectral data. This technique requires both overlap-
ping acquisition dates, as well as very reliable geocoding and the spatial alignment of the
two datasets [39]. Pre-processed products that are easily and directly usable are provided
by satellite data distribution agencies. For example, ASI distributes the L2D PRISMA data,
an atmospherically corrected and orthorectified reflectance data [30]. Of course, the or-
thorectification process is an essential step in data fusion involving products from different
sensors, especially regarding areas with complex topography. Moreover, despite the conve-
nience of L2D level preprocessing, the PRISMA technical documentation [40] guarantees a
planimetric accuracy of no more than 200 m for standard preprocessing without ground
control points (GCPs). Thus, fusing data from different satellites in urban areas poses
significant challenges related to such factors as the presence of buildings and complex
topography. Unless spatial misalignments are carefully addressed to avoid unreliable
approximations, these procedures produce outcomes that are not always predictable and
may be more complex compared to pansharpening.

In hypersharpening, algorithms must work with a sharpening image that was ac-
quired by a different satellite and consequently shifted in time and taken from a different
angle [38,41]. The use of coregistered panchromatic images would avoid these problems. It
should be noted that pansharpening only improves the spatial resolution since it only uses
the panchromatic band [38]. It is therefore of interest to understand whether the pansharp-
ening techniques often used to improve image interpretation can also be used to improve
data classification. One of the objectives of the PRISMA satellite, which is a precursor to
the application mission, is to test the feasibility of pansharpening hyperspectral data using
a coregistered pan image [30,42], which can provide greater reliability and simplicity of
use. This paper aims to respond to this challenge and show a case study example of a
practical application.

Specifically, this study’s main objectives are:

1. To evaluate the contribution of pansharpening to improving image classification
accuracy using hyperspectral data so that it is also useful in an urban setting;

2. To apply the method to a real-world problem, specifically urban tree monitoring,
through a simple pansharpening application that only uses the more easily accessible
panchromatic band.

To achieve the first objective, results derived using an unrefined PRISMA image with a
30 m ground sampling distance (GSD) are compared to results obtained from classifying an
enhanced PRISMA image that has a 5 m spatial resolution achieved through pansharpening.
For this comparison, each result is statistically evaluated according to several accuracy
metrics and ground truth points (GTPs).

To achieve the second objective, the study classifies the most common tree species in a
selected region within the metropolitan city of Naples, Italy. Due to its high settlement den-
sity and relatively low amount of urban green spaces, Naples depends on the many services
provided by urban trees, and has been carrying out several initiatives over the past few
years to improve and manage their urban tree cover. Tree inventories are an important tool
in this regard, but take up a significant amount of the public authority’s resources, which
could be used more efficiently with improved knowledge of trees’ spatial distribution.

In order to carry out its objectives, the study is laid out as follows: Section 1 contains
the preceding introduction describing relevant background information and identifying
research objectives and contributions; Section 2 describes the materials and methods
employed, beginning with a brief presentation of the study area, followed by a detailed
explanation of the data preparation, the pansharpening method, and the classification
procedure, including the related selection of ground truths (GTs) and classes; Section 3
contains the results, presenting the accuracy values obtained with the original image (GSD
30 m) and the enhanced image (GDS 5 m); Section 4 discusses key findings in the context of
the literature and concludes with the investigation’s main contributions, their implications
for research and for practice, their limitations, and some suggestions for future directions.

Finally, this study makes the following contributions:
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• It introduces a novel application using pansharpening techniques to improve classifi-
cation performance by enhancing the spatial resolution of PRISMA hyperspectral data
and demonstrates its efficiency with a case study example;

• It demonstrates a practical real-world use of pansharpened image classification for
urban tree monitoring, which could help municipalities that are currently struggling
to meet international and national policy demands.

2. Materials and Methods
2.1. Study Area

The study area, shown in Figure 1, is an urban area located in the western part of the
city of Naples, the regional capital of Campania in southern Italy. This study area presents
an interesting opportunity to test out pansharpening in an urban area. Naples shares many
struggles in managing urban trees common throughout southern Europe.
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The metropolitan city of Naples has a population of just under 3,000,000 individuals
(Istat 2023), and is spread over 1171 km2 with an extremely high population density of
2519 residents per km2 [43]. In the European Commission’s 2023 Quality of Life in European
Cities Perception Survey, only 66% of participating residents reported being satisfied with
their city, placing Naples 5th from the bottom in an investigation of 83 cities across the
European Union (EU), European Free Trade Association (EFTA), the United Kingdom, the
western Balkans, and Türkiye (European Commission, 2023). Aside from poor satisfaction
with employment, safety, government, healthcare, public transport, and cultural facilities,
Naples also stood out as ranking 8th from last for noise (only 38% of participants were
satisfied with the noise level), 5th from last for satisfaction with cleanliness (25% satisfied),
6th from last for being a good place for older people to live (only 55% of participants
agreed), 4th from last for being a good place for families with young children (only 58%
agreed), and 2nd from last for satisfaction with public spaces (45% satisfied). All of these
components contributing to quality of life are strongly related to the presence of urban
green spaces, which provides opportunities for cohesion, abates noise, and improves city
decor, among other benefits. That is why the Sustainable Development Goal (SDG) target
11.7 specifically aims to “provide universal access to safe, inclusive, and accessible green
and public spaces, in particular for women and children, older persons, and persons with
disabilities” [17]. Most relevantly, Naples scored absolutely last for satisfaction with green
spaces in the city (only 31% of residents were satisfied), with the report identifying a strong
correlation between accessibility and spatial distribution.

Specifically, as of the city’s last Tree Audit in 2021, the municipality of Naples included
5,554,236 m2 of green spaces, which were challenging to maintain due to diminishing
staff, which fell by 77% between 2016 and 2021 [44]. Although the city was responsible



Remote Sens. 2024, 16, 3730 5 of 19

for 50 public parks, only 36 of these were open to the public. However, at the time of the
audit, the municipality was active in approving the financing and construction of several
renovations and new parks, as well as for other urban greening measures.

In terms of tree cover, the municipality estimated having about 40,000 trees, based on
a partial inventory of 28,213 specimens. A total of 9% of these were found to be at high or
extreme risk of collapsing. In fact, between 2016 and 2021, 2791 trees had to be removed,
mainly due to collapses or damage caused by extreme weather events. During the same
time span, only 707 new trees were planted. However, at the time of the report, the city
had just approved a plan to plant 5600 trees, replacing collapsed or unstable specimens,
and adding new trees to city streets and public parks [44].

The specific region of interest (ROI) that is analyzed in this study is a 2 × 3 km
rectangle, with an additional 200 m buffer applied to avoid edge effects and potential
errors in subsequent processing. Various reasons have led to the selection of this specific
ROI as an emblematic case for an investigation into urban tree distribution. First of all,
it meets the requirements of being in an urban context characterized by a densely built
environment interspersed with vegetation and a significant presence of tree cover, as shown
in Figure 2 (based on an analysis by the authors using the 10 m spatial resolution ISPRA
2021 Land Cover Map [45]. The ROI is approximately 57% occupied by artificial surfaces,
19% by low vegetation, and the remaining 24% by tree vegetation). Furthermore, this area
is characterized by a complex topography, with an elevation ranging from about 14 m a.s.l.
to about 460 m a.s.l.
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Finally, data coming from different sources were available for the area that could
be used synchronously in order to test out the experimented classification method. In
particular, for research purposes, the Public Greenery office of the Municipality of Naples
made a particularly accurate forest inventory available containing the tree species present
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throughout the ROI, collected between 2016 and 2022 (A. Pepe, personal communication,
March 2024). This information was used as a dataset for GTs. For the same area, a very
high resolution (VHR) Pléiades image acquired on 17 November 2018 is available, along
with a Digital Terrain Model (DTM) and a Digital Surface Model (DSM) collected between
2009 and 2012 and distributed by the Metropolitan City of Naples [46].

The ROI is within an HSI PRISMA view acquired on 4 November 2020. From a tem-
poral perspective, the Pléiades and PRISMA images can be considered contemporaneous
with the GTs, while the information contained in the DTM and DSM is about eight years
older. This time interval was deemed acceptable for distinguishing between areas with
low vegetation and wooded areas. The actual presence of trees was verified through pho-
tointerpretation of the VHR image to ensure the validity of the information contained in
the DSM.

2.2. Pre-Processing and Identification of the Forested Areas

The methodology used for data preparation can be divided into two separate phases.
In the first phase, the Pléiades image underwent preprocessing and then was used within
the ROI in combination with the DTM and DSM difference to define a clipping mask that
only included wooded areas and excluded low vegetation. In the second phase, a subset of
the HSI was selected, both spectrally by eliminating the bands without information, and
spatially by applying step one’s filter with the clipping mask of the wooded areas.

2.2.1. Multispectral Dataset

All multispectral data from the Pléiades satellite is made up of four multispectral
(MS) bands (blue = 0.43–0.55 µm; green = 0.50–0.62; µm; red = 0.59–0.71 µm; near-
infrared = 0.74–0.94 µm), with a spatial resolution of 2 m, and a panchromatic band
with a 0.5 m resolution that covers wavelengths between 0.47 and 0.83 µm of the visible
spectrum [47].

The first phase of data preparation involved preprocessing the Pléiades image acquired
on 17 November 2018 using PCI Geomatica 2017 software. Atmospheric correction was
performed for both the multispectral and panchromatic bands using the ATCOR module,
and pansharpening was carried out using the “High Performance Image Fusion” algorithm
to achieve a 0.5 m resolution and spatial enhancement of the MS bands. Orthorectification
of the image was accomplished using the OrthoEngine module with Toutin’s mathematical
model, utilizing GCPs and the DTM of the metropolitan city of Naples with a 1 m resolution.
The processed data were then clipped to the ROI, resulting in the multispectral dataset
(MS_DS) used for the subsequent phase.

In the second phase, a preliminary classification of the area was performed to distin-
guish trees from the rest of the land cover. The availability of the VHR MS_DS was crucial
for this operation because the hyperspectral data alone, with a GSD of 30 m, would pose
significant scale limitations in detailing individual tree canopies. Therefore, the MS_DS was
segmented using eCognition Essential 1.30 software with the Multiresolution Segmentation
algorithm. The segmented areas corresponding to tree canopies were separated from other
segments in two steps.

The first step involved the separation of only vegetated areas, using the normalized
difference vegetation index (NDVI) and only selecting areas with NDVI > 0.2, through the
Threshold Segmentation/Classification algorithm. NDVI, calculated as a ratio between
near-infrared and red spectral reflectance, leverages the way photosynthesizing leaves
reflect light. On land, NDVI values range from 0 to 1, where 0 indicates no plant cover, and
1 represents dense, healthy vegetation. Following [48], an NDVI threshold (>0.2) was used
to detect all vegetation, including areas with lower photosynthetic activity.

The second step involved the separation of trees from grasslands and shrubs using the
same algorithm but based on the normalized difference between the DSM and the DTM
(nDSM) and only selecting vegetated areas with a height greater than 5 m. A DSM is a
3D model of the Earth’s surface representing everything visible, including objects such as



Remote Sens. 2024, 16, 3730 7 of 19

buildings and vegetation. A DTM is a 3D representation of the Earth’s surface including
bare-ground topography but excluding objects such as buildings and vegetation. This
difference can be used to filter images for analysis, selecting only objects above the terrain.
The vector data obtained at the end of this procedure containing polygons of the wooded
areas was subsequently rasterized with a spatial resolution of 0.5 m and used as a clipping
mask for the hyperspectral dataset (HSI_mask). The HSI_mask is shown in Figure 3.
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2.2.2. Hyperspectral Dataset

PRISMA data are made up of 66 bands in the visible and near-infrared (VNIR) range
(400–1010 nm), 174 bands in the shortwave infrared (SWIR) range (920–2505 nm), which
partially overlap, and one panchromatic (PAN) band (400–700 nm). The spatial resolution
of the VNIR and SWIR is 30 m, while it is 5 m for the PAN. This study uses a level 2-D
product. The data were first processed with a Python script (Prisma Tool) [49] developed
by the authors and freely available.

Using the Prisma Tool, the HDF5 file provided by ASI was converted into the Geo-
Tiff format while simultaneously improving the georeferencing of the four corners of
the view. As expected from the literature, three windows in the infrared range were
completely opaque due to water vapor and other atmospheric gasses, causing a low signal-
to-noise ratio. Thus, the data were filtered based on a statistical analysis using R software
(v. 4.4.1), by removing the bands in the intervals from 1361 nm to 1449 nm, 1803 nm to
1949 nm, and 2483 nm to 2497 nm. This resulted in a hyperspectral dataset composed of
205 bands (HS_DS).

2.2.3. Pansharpening and Subsetting

Using QGIS (v. 3.34), two separate procedures were carried out to derive two HSI
datasets from the HS_DS for classification purposes. For the first HSI (HSI1), the original
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spatial resolution of 30 m was maintained unaltered. For the second HSI (HSI2), the spatial
resolution was increased to 5 m using the panchromatic band, as explained in detail below.
Both HSIs were clipped after a precautionary buffer of 1 km was created around the ROI
to avoid errors in the subsequent spatial alignment operations harmonizing the various
datasets (HS1, HS2, MS_DS, HSI_mask, and GT points).

HSI1 was obtained through a simple merging of the 205 bands from the PRISMA
data. To generate HSI2, four distinct steps were required. In step 1, the 36 bands in the
PAN range (400–700 nm) with a GSD of 30 m were selected and merged into a single
multiband raster file, keeping the value of the pixels contained in each band separate. In
step 2, pansharpening was performed on the merged bands from step 1 using the PAN
band as the sharpening band. This was accomplished using the GDAL library in QGIS and
the Cubic resampling algorithm (4 × 4 Kernel), resulting in a new image with a GSD of 5 m.
In step 3, the remaining 169 bands of the HS were merged, as in step 1, and their spatial
resolution was reduced to 5 m through a downscaling operation, creating 36 new pixels for
each pixel with a GSD of 30 m. In step 4, the pixel values contained in each of the original
pixels with a GSD of 30 m in the 169 bands were preserved and reassigned to the 36 new
pixels generated within each original pixel. The images produced in step 2 and step 4 were
merged into a new multiband raster file, producing HSI2. Figure 4 shows HSI1 and HSI2
before applying the HSI_mask.
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Both HSI1 and HSI2 were subjected to a georeferencing procedure. This was carried
out to align the grids of both raster images and ensure that they matched the clipping mask
of the wooded areas. The operation was carried out in QGIS using Polynomial 2 as the
transformation type and Nearest Neighbor as the resampling method. The GCPs used in
this process were collected using the Pléiades VHR image as a reference image.

Finally, a subsetting selection of HSI1 and HSI2 was performed using the HSI_mask as
a filter to remove all pixels that were not of interest for classification. In the selected subset,
all HSI1 and HSI2 pixels were retained where at least 30% of the pixel area was covered by
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the HSI_mask surface, and thus could be considered as corresponding to wooded areas.
After trials with 40% and 50%, the 30% threshold was selected as the best trade-off for
achieving good classification accuracy while retaining a high number of wooded areas or
individual trees. In this way, the values for pixels in wooded areas were preserved, and the
NoData class was assigned to the portions of the HSI1 and HSI2 images corresponding to
areas not of interest.

2.3. Classification Task
2.3.1. Ground Truth Dataset

The municipality of Naples’ Office of Public Greenery keeps a vector point database
of the tree specimens located in the urban area, including street trees and trees within
public parks. There are approximately 1400 points within the ROI, representing 72 different
species. The main purpose of this study is to compare the classification results of HSI1
and HSI2. For this reason, it was deemed appropriate to select the species for classification
based on their frequency in the GTP dataset. The five species represented by more than
50 points are listed in Table 1, with the exception of Ligustrum lucidum. Other species
represented by less than 50 points were not included in the classification, as they were
represented by an insufficient number of points to validate the results. The Ligustrum
lucidum class was excluded due to the small size of the specimens present in the study
area. Also, all of the points representing the genus Eucalyptus spp. (Eucalyptus globulus,
Eucalyptus sp.) were grouped into a single class included in the classification.

Table 1. This table contains the number of GTPs within the ROI used as reference data for the
classification task.

Species GTPs

Pinus pinea 424
Tilia × europaea 310

Platanus × acerifolia 103
Quercus ilex 51

Eucalyptus spp. 50

Total 938

The positions of the 996 GT points were verified one by one using MS_DS as a basemap
and, where necessary, the points were placed correctly on their corresponding crown. The
number of labeled pixels used as reference data in the following classification procedure
is a little less than the number of GT points listed in the table above and slightly varies in
the classification of HSI1 and HSI2, as the values in the Supplementary Materials show.
This variation is due to the rare cases in which multiple points from the GTP dataset were
located within a single pixel of the 30 × 30 m grid for HSI1 or the 5 × 5 m grid for HSI2. In
these rare cases, a single labeled pixel was derived from multiple GT points.

2.3.2. HSI1 and HSI2 Classification

Deep learning models were used to classify HSI1 and HSI2, as they are able to learn
nonlinear features of hyperspectral data compared to traditional machine learning algo-
rithms [50–52]. The classification of the PRISMA image was performed using a convolu-
tional neural network (CNN) model with a structure that has been shown to be particularly
suitable for land cover studies [53–55].

Specifically, the classification procedure used the plugin AVHYAS in the open-source
software Qgis 3.14. The AVHYAS plugin proposes various models of CNN; in this study,
the model proposed by Hu et al. was chosen for its good results working with hyperspectral
data [53,56]. It consists of five layers: the first layer represents the pixel spectral vector;
followed by a convolutional layer; the max pooling layer; the fully connected layer; and the
output layer.
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The GT points were divided into three groups with different percentages. Thirty
percent of the 938 points were reserved for the final classification test and separated
from the remaining 70%, which was further divided into 70% for CNN training and 30%
for model validation. The random selection of points for each of the three groups was
repeated in a five-fold process assigning points to the training, validation and testing
phases for both HSI1 and HSI2, corresponding to ten separate classification trials. The
experimentation phase was conducted in successive iterations, where, under the same
conditions, different points were selected for the training, validation, and test groups,
alternating the two input HSIs.

In AVHYAS, the learning rate and the number of epochs were the only parameters that
were changed during CNN tuning, while the other parameters were left at their default
settings. Choosing the learning rate is important because if it is too small, it can slow down
the process of adjusting the network weights to find the best solution, and there is a risk of
ending up in a local minimum with a non-ideal solution. Conversely, if the learning rate is
too high, a search for the minimum gradient that reduces the error rate may skip the ideal
solution. An ideal learning rate of 0.001 was chosen, which is one of the most widely used
values in the literature [57], based on the accuracy of the obtained results. The number of
epochs was set to 200, which was empirically found to be an optimal number based on the
accuracy achieved during validation. However, this number sometimes turned out to be
lower due to an automatic arrest of the process to avoid overfitting the data. Both HSI1 and
HSI2 images were classified using the same set of GTPs in each trial.

The quality of the classification was evaluated using some of the most common
accuracy metrics: Overall Accuracy (OA), Kappa Coefficient (K), User Accuracy (UA), and
Producer Accuracy (PA) [58]. Additionally, the F1 score (F1) was calculated, which is a
metric derived from the harmonic mean between UA and PA and is more suitable in the
case of an unbalanced label dataset among the various classes [59,60].

3. Results

This section presents the results obtained from classifying the two images, HSI1 (30 m
GSD) and HSI2 (GSD 5 m). At the beginning of each trial, different points were randomly
assigned to the validation and test groups, separating them from the points used for
training. Specifically, the percentages of the 938 points allocated to the three different
groups are: 30% for the final test of the results, 49% for training the CNN, and 21% for
validating the classification model. In this way, two confusion matrices were generated for
each trial, one for validation and one for testing, from which the accuracy metrics were
measured. The twenty confusion matrices generated from the five trials are included in
the Supplementary Materials along with the OA, K, UA, PA, and F1 values. For brevity,
this section only reports the values related to the test phase of the results, which is deemed
most representative of the trials conducted.

Table 2 contains the OA and the inter-rater reliability K coefficient obtained for every
trial (T) relative to the test phase. The OA ranges in the results in the last row show that,
on average, HSI2 achieves an accuracy value that is 0.14 points higher compared to HSI1.
Similarly, the K values show an inter-rater reliability coefficient of 0.2 higher for the HSI2
image that has undergone pansharpening.

UA and PA are very useful for assessing the underestimation or overestimation of
individual classes [58]. They complement commission error and omission error metrics.
The values of these metrics for each test in the validation phase and in the test phase
are shown in the Supplementary Materials. Table 3 shows the average value of UA and
PA obtained in the test phase for all the trials performed with HSI1 and for all the trials
performed with HSI2. In general, it is evident that the UA and PA values increase when the
HSI2 image is used. The reasons for this improvement are related to the application of the
pansharpening technique and will be discussed below. One aspect that must be emphasized
here is that with the use of the HSI2 image, there is a reduction in both inclusion errors
(commission errors) and exclusion errors (omission errors). This is driven by a substantial
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increase in both UA and PA. In fact, for the classes Pinus pinea and Tilia × europaea, for
which the PA values are slightly higher than the UA values, the HSI2 image makes it
possible to reduce the commission error margin, thus reducing the overestimation. For the
other classes, where the UA values are greater than the PA values and thus underestimation
occurs, a reduction in the omission error is obtained compared to the use of HSI1. The
classes Pinus pinea and Tilia × europaea are slightly overestimated, while all the other classes
are underestimated, using both HSI1 and HSI2. This phenomenon is probably related to
the number of GTs, which is higher for Pinus pinea and Tilia × europaea, allowing a higher
representativeness and avoiding the omission error.

Table 2. This table relates to the test phase and shows the OA and K values obtained for every trial
(T), the relative average values for each HSI and the interval between HSI1 and HSI2 metric averages.

OA

T1 T2 T3 T4 T5 Av.

HSI1 0.65 0.67 0.65 0.60 0.61 0.64

HSI2 0.83 0.82 0.74 0.79 0.74 0.78

Interval 0.14

K

T1 T2 T3 T4 T5 Av.

HSI1 0.48 0.47 0.46 0.32 0.34 0.41

HSI2 0.74 0.72 0.59 0.67 0.59 0.66

Interval 0.25

Table 3. This table refers to the test phase and shows the average values of UA and PA. The average
is calculated for the 5 trials using HSI1 and the 5 trials using HSI2.

Species HSI1 HSI2

UA PA UA PA

Pinus pinea 0.65 0.88 0.79 0.89
Tilia × europaea 0.63 0.67 0.84 0.86

Platanus × acerifolia 0.31 0.11 0.68 0.60
Quercus ilex 0.27 0.12 0.35 0.27

Eucalyptus spp. 0.56 0.14 0.82 0.34

Table 4 shows the results in terms of F1 related to the test phase of the five classification
trials (T) conducted using the two images, HSI1 and HSI2. Furthermore, the table shows
the average F1 obtained per class, along with the range that indicates the improvement
generated by the use of pansharpening. The improved accuracy of the results demonstrates
the effectiveness of pansharpening. With the higher resolution of the HSI2 image, the
classifier can more accurately identify the spectral signature of tree species and assign
pixels to the correct class. In contrast, the lower resolution of the HSI1 image makes this
task more challenging, complicating the classification process. The pansharpening method
makes it possible to emphasize the spectral characteristics of surfaces, even if only in the
panchromatic range, by sharpening the values contained in the lower resolution pixels
without altering the shape of the spectral signatures’ curve. This makes it possible to
distinguish pixels containing a mixed signature from several materials.
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Table 4. This table refers to the test phase and shows the F1 values by class obtained with HSI1 and
HSI2 in each trial (T), the relative average values for each HSI and the interval between HSI1 and
HSI2 metric averages.

Species HSI1 (F1) HSI2 (F1)

T1 T2 T3 T4 T5 Av. T1 T2 T3 T4 T5 Av. Interval

Pinus pinea 0.75 0.78 0.74 0.71 0.73 0.74 0.86 0.86 0.81 0.83 0.81 0.84 0.10

Tilia × europaea 0.68 0.69 0.65 0.61 0.60 0.65 0.89 0.86 0.84 0.86 0.79 0.85 0.20

Platanus × acerifolia 0.40 0.22 0.00 0.00 0.14 0.15 0.75 0.79 0.32 0.68 0.62 0.63 0.48

Quercus ilex 0.41 0.00 0.00 0.00 0.18 0.12 0.50 0.47 0.11 0.29 0.00 0.27 0.15

Eucalyptus spp. 0.40 0.50 0.00 0.15 0.00 0.21 0.64 0.40 0.53 0.48 0.25 0.46 0.25

The fluctuations in F1 across the different trials show how the selection of GTPs for
testing can lead to varying results, especially when the test is conducted with a relatively
small number of points. The columns of average values indicate that higher F1s are achieved
for classes with a greater number of GTPs. Even in cases where the F1 remains at very low
thresholds, a substantial improvement can still be observed following pansharpening with
HSI2, as evident from the last column. The classification results of all experiments with
HSI1 and HSI2 are shown in Figure 5.
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4. Discussion

The investigation’s results demonstrate that the direct use of pansharpening by taking
advantage of the coregistered panchromatic data can lead to excellent classification results
(OA from 0.64 to 0.78) in urban areas with complex topography, dense settlement patterns,
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and fragmented green areas [45]. The UA and PA values can be increased, and both
the commission error and the omission error can be reduced by using the improved
hyperspectral data. The result is an improvement in the reliability of the classification map.

These key findings clearly show that the operation alone significantly improves the
quality of the classification, given that the same conditions and software are used. For
the classes under investigation with a larger number of GTs, the F1 value increased on
average from 0.74 to 0.84 for the Pinus pinea class, and even more significantly went from
0.65 to 0.85 for the Tilia × europaea class. The classification of these two species benefits
from a high number of GTs, and therefore the results confirm the efficiency of the proposed
method. It can be stated that the application of pansharpening in an urban environment
can lead to a considerable improvement in classification accuracy. Although other species
with fewer GTs show even more pronounced improvements, these are less significant due
to the smaller sample size of GTs.

The improved accuracy metrics (OA, K, UA, PA, and F1) show that pansharpening can
be an affordable alternative for high spatial resolution hyperspectral data. The proposed
method enhances spatial resolution by applying pansharpening to the hyperspectral bands
in the range covered by the panchromatic band (400–700 nm), leaving the values recorded
by the hyperspectral sensor in the other bands unchanged. The reconstruction of the
details of the spectral signature and the spatial patterns is definitely more effective with
the use of multispectral data over several intervals of the spectrum (De Luca, 2024 [39]).
However, the pansharpening operation allowed the spatial distribution of the different
surfaces to be highlighted without altering the shape of the spectral signature curve,
especially in the mixed pixels of the 30 m resolution data. This process resulted in a better
distinction of the spectral signature of the studied classes and improved classification
accuracy. Thus, to improve the spatial resolution of the data without using laborious
techniques, pansharpening the PRISMA data with the coregistered panchromatic band is a
viable and accessible option.

One of the most promising applications of remote sensing technology is environmental
resource and biodiversity monitoring. Research has been conducted evaluating the accuracy
of image classification based on various data sources, including very high resolution
imagery, nDSM, and HSI [2,11]. Recent advancements in spectroscopy satellite missions,
such as PRISMA, have made this last option much more accessible. However, existing
open-access satellites provide images at a relatively coarse resolution (30 m or lower),
which works quite well in larger natural environments [34]. However, a finer resolution is
necessary in urban environments where images are typically composed of spectrally mixed
pixels [35], and canopies are fragmented and often made up of different species grouped
close together [2].

Satellite HSIs typically have a spatial resolution of about 30 m and consist primarily
of spectrally mixed pixels in urban contexts [35]. Hyperspectral data with higher spatial
resolution can be acquired from airplane field missions with sensors such as CASI with a
2–5 m spatial resolution, depending on altitude [27], or restricted access satellite missions,
such as TacSat-3 with a 4 m spatial resolution [61]. However, both of these sources pose
data availability and accessibility problems for entities involved in biodiversity monitoring
(government bodies, universities, non-profit organizations, etc.). Airplane missions only
capture a small field of view and private or military high-resolution satellites are either too
costly or too classified to be acquired. Thus, HSI remains one of the best options, if it can be
refined to a higher resolution.

Viable techniques to address these limitations and enhance HSI for urban classifi-
cation include pansharpening and hypersharpening, which improve spatial resolution
by fusing data with higher-resolution sources. In fact, the validity of the pansharpening
or hypersharpening methods to enhance HSI data from PRISMA while preserving the
original spectral characteristics has been demonstrated [39] by comparing the enhancement
result with hyperspectral data acquired at the origin from higher resolution aircraft sensors



Remote Sens. 2024, 16, 3730 14 of 19

(CASI/SASI). However, each one of these techniques has advantages and drawbacks. This
study availed itself of pansharpening for the specific reasons explained below.

Research shows that using pansharpening to adjust the reflectance of hyperspectral
data improves the spatial resolution of the new pixels. However, this process only adjusts
the intensity of the hyperspectral signature based on the panchromatic information, with-
out adding any new radiometric information [38,39,41]. Approaches proposed in other
studies [37–39], which use hypersharpening with Sentinel data, would likely yield even
more accurate results, particularly in flat areas where orthorectification of non-coregistered
images is less challenging. In such a context, Hypersharpening may have some additional
potential compared to single-band pansharpening.

Hypersharpening regards the fusion of higher spatial resolution multispectral data
with hyperspectral data. Each of the multispectral bands is used as a sharpening band, as
opposed to pansharpening, where only the panchromatic band is used. Hypersharpening
allows the corresponding hyperspectral bands to be grouped using the wavelength range
of each multispectral band. Hyperspectral enhancement is thus determined as a function
of the values recorded by the multispectral sensor in different spectral regions, instead of
just once for the entire panchromatic range, as in pansharpening.

However, while this technique certainly has advantages in terms of spectral signature
reconstruction, it also has drawbacks. These are related to the use of scenes acquired by
different satellites, at different times, at different angles, and using a mismatched orthorec-
tification. This method relies on images taken from different satellites in different moments
and thus demands high precision in orthorectification to prevent spatial misalignments
and the overlapping of acquisition dates. Additionally, radiometric differences—due to
factors like noise, sensor sensitivity, and atmospheric correction—can occur even for data
captured on the same day [39].

The pansharpening method proposed in this study uses a coregistered image to sim-
plify processing, principally because the images are taken simultaneously, thereby avoiding
the need for overlapping acquisition dates and complicated preprocessing (geocoding
and the spatial alignment of the two datasets). Thus, it is the more practical choice for
biodiversity monitoring in urban contexts.

5. Conclusions

This study aimed to achieve both a technical and a practical objective: to evaluate the
contribution of pansharpening to improve image classification accuracy using hyperspec-
tral data, so that it is also useful in urban settings; and, to apply this method to a real-world
problem, specifically urban tree monitoring, through a simple pansharpening application
that only uses the more easily accessible panchromatic band. In order to carry out these ob-
jectives, the classification accuracy results for some tree species obtained with HSI1 (GSD 30
m) and HSI2 (GSD 5 m) were compared. The results showed that pansharpening improves
classification quality in dense urban areas with complex topography. In fact, pansharpened
data led to significantly higher classification accuracy for all the examined species.

Through its investigation, this study made contributions by:

• introducing a novel application using pansharpening techniques to improve classi-
fication performance in urban environments by enhancing the spatial resolution of
PRISMA hyperspectral imaging data;

• demonstrating its efficiency by applying the method to a practical real-world use of
pansharpened image classification for urban tree monitoring.

Thus, dissemination of this method could improve HSI classification performance to
help public administrations that are currently struggling to meet international and national
policy demands to monitor biodiversity at various scales of governance.

In fact, the study’s results confirm one of the objectives of the PRISMA mission,
which is intended as a precursor to the applied mission: to evaluate the benefits of using
coregistered panchromatic data [30,42]. To the best of our knowledge, there are no specific
evaluations of pansharpening for PRISMA data based on the use of GTs for classification
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purposes in urban environments. Based on the results of this initial study, it could be said
that the PRISMA mission has confirmed the usefulness of a panchromatic band sensor on
hyperspectral satellite platforms.

Based on these findings, the following recommendations can be made. Firstly, it seems
that hyperspectral data have potential to be used to differentiate the spectral signatures
of trees in complex urban environments. Indeed, this technique addresses the needs of
public administrations seeking to follow international and national urban forestry policies,
recognizing the many contributions made by urban trees to health and wellbeing, ecosystem
functions, biodiversity conservation, and sustainable development. In Italy, national
legislation such as the Regulations for the Development of Urban Green Spaces (Italian Law
n. 10, 14 January 2013) [62] and the Minimum Environmental Criteria (CAM) for Public Green
Space Management Services and the Supply of Green Care Products (Ministerial decree n. 63 of
10 March 2020) [63] require municipal administrations to keep up-to-date georeferenced
tree inventories specifying the number, species, health, and location of specimens and a
plan for their management. This study was fortunate enough to be able to make use of an
extensive inventory provided by the Public Greenery Department of the municipality of
Naples. However, not all cities are able to keep up with policy demands. In fact, the same
CAM legislation mentioned above was conceived to nudge municipalities into compliance
by making up-to-date tree inventories and management plans a mandatory step in public
procurement processes. The problem regards the limited number of public employees with
the specialized skills necessary to create and update such an inventory and the huge amount
of time such a feat requires. The approach proposed by this study could clearly be of great
use to speed up this enterprise. By using hyperspectral data for initial classification, it is
possible to provide a preliminary classification and then have field personnel focus solely
on verifying changes over time, which can be identified using GIS techniques. Furthermore,
the collection of GTs presents an interesting opportunity for municipalities to involve other
stakeholders, such as educational institutions, associations, and citizens [64].

This study’s limitations are related to its focus on verifying the utility of pansharpening
on PRISMA data by classifying tree species in an urban environment. While it successfully
demonstrated that hyperspectral data with a 30 m resolution is useful not only in the field
of forestry but also in urban areas, it was constrained by the availability of spaceborne
hyperspectral data. Although easier to obtain than the other sources mentioned above,
it still remains challenging for interested parties to acquire usable images in their ROI,
under the conditions that they require (season, cloud cover, etc.). There is currently a very
high demand for image acquisitions from users and a concentration of requests limiting
the frequency of data availability [65]. The high demand for image acquisitions often
makes it difficult to request new data as many users must wait their turn according to their
priority status.

Future investigations could certainly start from the classification and spatial distribu-
tion of species carried out here and look more in depth at such phenomena as fragmentation
and ecological connectivity in urban environments [48]. Furthermore, the obtained results
suggest that future analyses could identify individual species to uncover specific vegetation
characteristics and detect potential diseases. Such an approach would likely yield statis-
tically significant results and could provide a valuable foundation for urban, peri-urban,
and rural forest inventories. Furthermore, hyperspectral data could be used to compare
specimens of the same species that are in different contexts in order to study phenological
differences, or health status in urban environments or as a response to climate change.

Today’s environmental, climate, and biodiversity challenges require innovative solu-
tions that can be implemented at various scales with limited resources. Technologies like
remote sensing and AI offer precise tools for monitoring and management. International
policies, such as Agenda 2030 and the Sustainable Development Goals, increasingly rely
on data-driven and adaptive management approaches. PRISMA and other hyperspectral
satellite missions can significantly contribute to these global efforts by providing data that,
when enhanced through techniques such as pansharpening, become more applicable in
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urban environments. For effective urban tree management and improved policy imple-
mentation, it is crucial to leverage such advancements to ensure accurate, efficient, and
actionable environmental monitoring.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs16193730/s1, File S1: Error matrices with accuracy metrics calculated for
trial 1 to 5 using HSI1 and HSI2.
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Abbreviations

ASI Agenzia Spaziale Italiana (Italian Space Agency)
CAM Criteri Ambientali Minimi (Minimum Environmental Criteria)
CNN Convolutional Neural Network
DSM Digital Surface Model
DTM Digital Terrain Model
EnMAP Environmental Mapping And Analysis Program
F1 F1 Score
GCPs Ground Control Points
GSD Ground Sampling Distance
GTs Ground Truths
HS_DS Hyperspectral Dataset with 205 bands
HSI Hyperspectral Imagery
HSI1 Hyperspectral Imagery with GSD = 30 m
HSI2 Hyperspectral Imagery with GSD = 5 m
HSI_mask Mask of Hyperspectral Dataset
K Cohen’s Kappa Coefficient
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MS Multispectral
MS_DS Multispectral Dataset—Pléiades
NBFC National Biodiversity Future Center
nDSM Normalized Digital Surface Model
NRRP National Recovery and Resilience Plan
OA Overall Accuracy
PA Producer’s Accuracy
PAN Panchromatic

PRISMA
PRecursore IperSpettrale della Missione Operativa (Hyperspectral Precursor of
the Application Mission)

ROI Region of Interest
RS Remote Sensing
SDG United Nations Sustainable Development Goal
SWIR Short-Wavelength Infrared
T Trial
UA User Accuracy
VHR Very High Resolution
VNIR Visible and Near-Infrared
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