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Abstract: Remote sensing and process-coupled ecological models are widely used for the simulation
of GPP, which plays a key role in estimating and monitoring terrestrial ecosystem productivity.
However, most such models do not differentiate the C3 and C4 photosynthetic pathways and neglect
the effect of nitrogen content on Vmax and Jmax, leading to considerable bias in the estimation of gross
primary productivity (GPP). Here, we developed a model driven by the leaf area index, climate, and
atmospheric CO2 concentration to estimate global GPP with a spatial resolution of 0.1° and a temporal
interval of 1 day from 2000 to 2022. We validated our model with ground-based GPP measurements
at 128 flux tower sites, which yielded an accuracy of 72.3%. We found that the global GPP ranged
from 116.4 PgC year−1 to 133.94 PgC year−1 from 2000 to 2022, with an average of 125.93 PgC year−1.
We also found that the global GPP showed an increasing trend of 0.548 PgC year−1 during the
study period. Further analyses using the structure equation model showed that atmospheric CO2

concentration and air temperature were the main drivers of the global GPP changes, total associations
of 0.853 and 0.75, respectively, while precipitation represented a minor but negative contribution to
global GPP.

Keywords: ecological process model; photosynthesis; remote sensing data; carbon sink; SEM model;
GPP; MODIS; LAI

1. Introduction

Gross primary productivity (GPP) refers to the cumulative organic carbon sequestered
by plants through photosynthesis within a specific region, corresponding to a combination
of the amount of photosynthetically produced products and the total amount of organic
carbon sequestered by green plants through photosynthesis per unit of area and time [1–4].
GPP is one of the most fundamental indicators of ecosystem productivity and plays a
central role in studying global carbon cycling and climate change [5]. It not only determines
the initial influx of matter and energy into terrestrial ecosystems but also serves as an
important metric for the characterization of plant activities and ecological functions.

The most widely used models for estimation of global GPP are divided into ecological
process models (the Biome-BGC model and BEPS model) [6–8] and light-use efficiency
(LUE) models (GLO-PEM, MODIS, CASA, C-FIX, VPM, and BEAMS) [2,9–13], each of
which has its advantages and disadvantages. The light-use efficiency model calculates GPP
mainly based on photosynthetically active radiation, temperature, and light-use efficiency
parameters related to vegetation type [14–16]. However, the light-use efficiency model
does not fully capture the physiological processes of plants and is only suitable for large-
scale GPP estimates. Ecological process-based models based on remote sensing data were
improved by the Farquhar model, which draws upon the principles of biochemistry and
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physics. These models have facilitated a deeper understanding and explanation of the
biological mechanisms underlying photosynthesis. GPP product information can be found
in Table 1.

The global distribution of C3 and C4 plants manifests distinct efficiencies in the assim-
ilation of CO2 during photosynthesis, altering the regional atmospheric CO2 concentration
and isotopic composition, thereby impacting the global carbon cycle [17]. Studies have
revealed that C3 plants predominantly govern carbon absorption and GPP in temperate and
high-latitude regions, whereas C4 plants assume significance in tropical and subtropical
regions [18,19]. The distribution and influence of these two plant species might change
considerably with climate change. C4 plants could expand their distribution and influence
to more areas (including some traditional C3 plant areas), which could alter the carbon
cycle and influence of these areas and, thus, affect the global carbon cycle and ecosystem
productivity [17,20–22]. The nitrogen content in leaves influences the active amount and
kinetic activity of RuBisCO, as well as the temperature-standardized rate of maximum Ru-
BisCO carboxylation (Vcmax25), thereby affecting the rate of plant photosynthesis [23].The
terrestrial carbon cycle model is highly sensitive to the maximum carboxylation rate (Vcmax)
and the maximum electron transport rate (Jmax) derived from Vcmax25 during photosynthe-
sis, which are influenced by leaf nitrogen content and plant nitrogen uptake [24]. However,
current ecological models only couple the C3/C4 plant processes in the Community Land
Model (CLM) and do not generate data products. Consequently, it is necessary to develop
a model that can quickly and stably estimate global GPP on a large scale while coupling the
C3/C4 processes and leaf nitrogen content with photosynthesis so as to reduce significant
errors in the estimation of global GPP caused by current models.

The model we developed is driven by the leaf area index (LAI), distinguishes between
C3 and C4 plants, optimizes the effects of nitrogen content on Vcmax and Jmax, and captures
the physical and chemical information of the surface, improving the accuracy of GPP
simulation. This study aims to (1) develop a moderate-resolution GPP dataset with a
spatial resolution of 0.1 degree and a temporal resolution of one day, (2) use the above
model to estimate the global GPP from 2000 to 2022, and (3) identify the key drivers of
global annual GPP.

Table 1. GPP product information. EPM: ecological process model; LUE: light-use efficiency; ML:
machine learning; VOD: vegetation optical depth; SIF: solar-induced fluorescence; Region: coun-
try/continent; Pathway: photosynthetic pathway.

Dataset Method Pathway Temporal
Resolution

Spatial
Resolution Unit Study

Period
Spatial

Coverage Reference

BEPS EPM C3 day 0.07° gC/m2 1981–2019 Global Jv et al. (2021) [25]
BESS EPM C3 day 0.05° gC/m2 1982–2019 Global Li et al. (2023) [26]

EC-LUE LUE C3/C4 8 days 0.05° kgC/m2 1982–2018 Global Zhang et al. (2020) [4]
MODIS LUE C3/C4 8 days 500 m kgC/m2 2003–2022 Global Running et al. (2021) [27]

VPM LUE C3/C4 8 days 0.05° kgC/m2 2000–2016 Global Zhang et al. (2017) [3]
Random

Forest ML C3 10 days 0.10° gC/m2 1999–2020 Global Zeng et al. (2020) [28]

VODCA2GPP VOD C3 8 days 0.25° gC/m2 1988–2020 Global Benjamin et al. (2022) [29]
GLO–PEM LUE C3/C4 8 days 10 m gC/m2 1981–2023 China Stephen et al. (1995) [10]

GLASS LUE C3 8 days 0.05° gC/m2 1981–2018 Global Liang et al. (2021) [30]
FluxSat v2.0 ML C3 day 0.05° gC/m2 2000–2020 Global Joiner et al. (2019) [31]

SMUrF SIF C3 4 days 0.05° gC/m2 2010–2019 Region Wu et al. (2021) [32]
SiB4 EPM C3/C4 Monthly 0.50° gC/m2 2000–2018 Global Haynes et al. (2021) [33]

SMAP L4 EPM C3 day 0.09° gC/m2 2015–2024 Global Kimball et al. (2021) [34]
CARDAMOM EPM C3 day 0.50° gC/m2 2001–2016 USA Yang et al. (2021) [35]
NIRv-Index SIF C3 day 0.05° gC/m2 1982–2018 Global Wang et al. (2020) [36]

PML-V2 LUE C3/C4 Monthly 0.05° gC/m2 1982–2014 Global Zhang et al. (2020) [37]
PML-V2 LUE C3/C4 8 days 0.05° gC/m2 2002–2019 Global Chen et al. (2019) [38]

BCC-ESM1 EPM C3/C4 Monthly 2.81° gC/m2 1850–2014 Global Wu et al. (2020) [39]
CNRM-
CM6-1 EPM C3/C4 Monthly 1.41° gC/m2 1850–2014 Global Program et al. (2019) [40]

Neural
Network ML C3 4 days 0.05° gC/m2 2000–2022 Global Zhang et al. (2018) [41]

MuSyQ LUE C3 8 days 0.05° gC/m2 1981–2018 Global Wang et al. (2021) [42]
Blue Carbon EPM C3 16 days 250 m gC/m2 2000–2019 USA Fergin et al. (2020) [43]
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2. Methods and Data
2.1. Model Description

The direct and diffuse components of the total incident radiation were partitioned,
with this partitioning process being determined by the proportion of cloud cover [44–46].
We applied two-stream radiative transfer approximation, which accounted for multiple
scatterings within a finite canopy [44,46]. We implemented different scattering coefficients
for direct and diffuse radiation, ensuring that the unique characteristics of the two radiation
types were accurately represented [46]. The methods mentioned above allowed us to quan-
tify the transmission and reflection factors for both direct and diffuse radiation, providing
a detailed understanding of the interactions between canopy and radiation [46,47]. We
integrated the two-leaf model with canopy radiation transfer to quantify the radiation ab-
sorption for both sunlit and shaded leaves [48,49]. The Ball–Berry–Leuning (BBL) stomatal
conductance model was integrated into the photosynthesis process, optimizing the balance
between CO2 uptake and water conservation [50]. Moreover, the calculation of the exact
duration of global photosynthesis through sunrise, sunset, and local time computations
facilitated a more accurate estimation of GPP. Finally, given the hourly time resolution of
the data, accurately calculating the specific times for photosynthesis during sunrise and
sunset in the respective time zone required precise determination of the daylight proportion
in that zone (Appendix A).

We improved the corresponding variables of the Farquhar model for C3 plants [51]
and the Collatz model for C4 [52] by integrating Vmax, Jmax, and Rd from the CLM model
in the photosynthesis module [24,53]. The parameters of Vcmax25, Jmax25, and Rd25 were
scaled over the canopy for sunlit and shaded leaves and were adjusted for leaf temperature.
The maximum rate of carboxylation at 25 °C (Vcmax25) varied with foliage nitrogen con-
centration, the fraction of leaf nitrogen in Rubisco, and the weight proportion of Rubisco
relative to its nitrogen content [23]. A flow chart of the implementation of the proposed
model by parallel computation with GPU is presented in Figure 1.

Partitioning total incoming radiation Input data

Canopy radiative transfer

Time model

Photosynthetic allocation Photosynthesis model

GPP

Two-leaf model

Stomatal conductance

Ac: the Rubisco carboxylase limit

Aj : the light limit

Ap: the PEP carboxylase limit

VPD

N limit

Figure 1. Flow chart of the proposed model.

The proposed model incorporates seven input variables, but the forcing variables had
to be resampled to align with the spatio-temporal resolution of the climate variables, as the
spatio-temporal resolution for their metadata did not match (Table 2).
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Table 2. The input datasets of the proposed model. GPP: gross primary productivity simulated by
the proposed model; C3/C4: the percentage of C4 plants in pixels; CI: clumping index; D2m: 2m
dewpoint temperature; T2m: 2 m air temperature; SSRD: surface solar radiation downwards; LAI:
leaf area index; Landcover: vegetation types.

Product Spatial Resolution Temporal Resolution Study Period Reference

GPP 0.1° × 0.1° 1-Day 2000–2022 (This study)
C3/C4 0.1° × 0.1° 1-Year Mean Still et al., 2003 [18]

CI 0.1° × 0.1° 1-Year 2001–2019 Fang & Wei, 2021 [54]
D2m 0.1° × 0.1° 1-Hour 2000–2022 Balsamo et al., 2015 [55]
T2m 0.1° × 0.1° 1-Hour 2000–2022 Balsamo et al., 2015 [55]
SSRD 0.1° × 0.1° 1-Hour 2000–2022 Muñoz Sabater, 2019 [56]
LAI 0.1° × 0.1° 1-Day 2000–2022 Barnes et al., 2003 [57]

Landcover 0.1° × 0.1° 1-Year 2000–2022 Barnes et al., 2003 [57]

2.2. Data Source
2.2.1. Data from Flux Tower

The FLUXNET2015 dataset is a comprehensive and valuable collection of eddy covari-
ance measurements obtained from various ecosystems around the world. FLUXNET2015
represents a collaborative effort involving multiple research institutions and networks. It
encompasses measurements from a wide range of ecosystems, including forests, grasslands,
croplands, wetlands, and more. The FLUXNET community comprises datasets on energy
fluxes, carbon fluxes, and meteorological variables collected and processed at various
sites—crucial for studying global ecosystem function and response [3]. More informa-
tion is available at the FLUXNET website (https://fluxnet.org/data/fluxnet2015-dataset/
(accessed on 28 September 2024)).

The GPP (GPP_NT_VUT_REF) of the FLUXNET2015 dataset’s eddy covariance flux
towers was used in comparison with our model’s GPP in this study. We estimated the
global GPP values using our model and extracted the model-estimated GPP value of each
corresponding point of the flux tower sites by latitude and longitude [4]. Then, we selected
128 flux tower sites around the world (Figure 2) to validate the results of our model by
removing outliers. Information about the flux tower sites used in this study is shown in
Appendix B.

Figure 2. Map of 128 tower sites included in this paper from the FLUXNET2015 dataset. The
size of the circle indicates the length of the data record. The inset shows the distribution of data
record lengths.

https://fluxnet.org/data/fluxnet2015-dataset/


Remote Sens. 2024, 16, 3731 5 of 28

2.2.2. Data Driving the Model

ERA-Interim is a widely used reanalysis dataset that provides comprehensive and
high-quality global atmospheric and surface parameters spanning several decades [55,58].
ERA-Interim, developed by the European Centre for Medium-Range Weather Forecasts
(ECMWF), offers a wealth of information on atmospheric variables such as wind, tem-
perature, humidity, and pressure, as well as surface parameters like sea ice, sea surface
temperature, and soil moisture. The dataset contains 69 global variables with a temporal
and spatial resolution of 1 h and 0.1 degree, respectively. We applied two variables from
the reanalysis dataset as driving variables for the model, including 2 m temperature (T2m;
K) and 2 m dewpoint temperature (D2m; K).

Google Earth Engine (GEE), developed by Google, is a cloud-based geospatial com-
puting platform designed to allow users to leverage Google’s powerful computing power
and computing resources to analyze and process large amounts of geospatial data [59,60].
It integrates satellite imagery, geospatial datasets, and other Earth observation data to sup-
port a wide range of applications in environmental monitoring, land use analysis, disaster
response, and more. The global surface solar radiation downwards (SSRD) at a 0.1-degree
spatial resolution and 1-h temporal resolution was extracted from the dataset [56].

MODIS, which stands for Moderate-Resolution Imaging Spectroradiometer, is a state-
of-the-art Earth observation instrument aboard the NASA Terra and Aqua satellites [57,61].
Its broad spectral coverage allows it to monitor a variety of Earth processes, including
cloud cover, sea surface temperature, vegetation status, land cover changes, and more.
We retrieved two variables from the dataset, namely leaf area index (LAI, m2m−2), with
a temporal and spatial resolution of 4 days and 500 m, respectively, and vegetation types
(Landcover), with a temporal and spatial resolution of one year and 500 m, respectively.
We obtained LAI data with a temporal resolution of 1 day by removing outliers [62] and
fitting the double logistic equation [63] and data with a spatial resolution of 0.1 degree
by resampling.

The accurate simulation of water, carbon, and energy exchanges between the atmo-
sphere and biosphere relies heavily on understanding the global distribution of C3 and C4
plants. The distinctive physiological and functional characteristics of these plant types play
a pivotal role. To achieve this understanding, we utilized the 1-degree spatial distribution
map of global C3 and C4 vegetation [17]. This incorporation of the distribution data enabled
us to account for the diverse physiological processes inherent to C3 and C4 vegetation,
thereby enhancing the precision of our simulations.

The vegetation clumping index (CI) quantifies the degree of deviation from the random
distribution of leaves and serves as an important structural parameter of the canopy that
controls photosynthesis and evapotranspiration processes in terrestrial ecosystems [64,65].
The global clumping index (CI), with a temporal and spatial resolution of 8 days and 500 m,
respectively, was download from National Ecological Science Data Center [54].

2.3. Computation Platform

The proposed model was run a desktop PC with an Ubuntu 22.04 system equipped
with 12 Intel i7-12700K cores running at 3.6 GHz with 128 GB of memory. The NAS delivers
network storage solutions that excel in performance, fault tolerance, and data security,
powered by an AMD Ryzen V1500B 2.2 GHz processor and 16 GB of memory. It offers a
storage capacity of 128 TB, utilizing eight 16 TB hard disks (WUH721816ALE6L4-16TB)
configured in a RAID10 array. Our model leverages OpenMP acceleration technology,
enabling high-precision, large-scale parallel computations of various driving factors for
GPP modeling.

2.4. Data Analysis

We analyzed the relevance of different models for the estimation of GPP and the
sensitivity of GPP to environmental variables. The analyses were performed using the R
version 4.3.3 programming language, along with the appropriate packages [66]. Pearson
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correlation analysis and the Shapiro–Wilk normality test were carried out using functions
from the stats package [66], specifically utilizing the “cor.test” and “shapiro.test” functions.
The structural equation model was built by employing the “psem” function, which is
available in the piecewiseSEM package [67].

Structural Equation Modeling (SEM) is a statistical method that is used to analyze the
relationships between several variables [67,68]. SEM combines elements of factor analysis
and path analysis and enables the simultaneous investigation of relationships between
observed variables and latent variables [67–69]. This approach allows for the modeling of
complex multivariable relationships [70].

3. Results
3.1. Model Validation

We compared the mean annual GPP estimated from flux towers with the mean annual
GPP simulated by the proposed model (Figure 3). We found that the proposed model
accounted for 72.3% of the spatial variability in GPP across all validation sites. The pro-
posed model performed very well at most sites, with a statistically significant p value <
0.01. The mean relative RMSE (RRMSE) and mean bias over all the sites were 36.3% and
9.23% gC m−2 year−1, respectively. The relative root mean square error (RMSE) values
comparing the observed data and the simulated data for each site are shown in Appendix B.

Figure 3. Comparison of annual GPP estimated from flux towers and annual GPP simulated by the
proposed model. The blue line is the regression line, and the red dashed line is the 1:1 line. The
regression equation, correlation coefficients, statistical significance, relative mean square error, and
bias are shown on the top.
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3.2. The Dynamic of Global GPP from 2000 to 2022

The long-term trend of annual global summed GPP simulated by the proposed model,
BEPS [71–73], MODIS [27], and VPM [3] shows an increase over the time series (Figure 4).
The proposed model quantified the annual global GPP between 116.4 PgC year−1 and
133.94 PgC year−1, averaging 125.93 PgC year−1 from 2000 to 2022. In contrast, the BEPS
model produced annual global summed GPP estimates ranging from 117.04 PgC year−1

to 129.92 PgC year−1, averaging 122.98 PgC year−1 from 2000 to 2019. Additionally, the
MODIS model simulated annual global summed GPP ranging from 95.28 PgC year−1

to 103.92 PgC year−1, averaging 99.1 PgC year−1 from 2003 to 2022. Lastly, another
VPM model simulation of annual global summed GPP spanned 116.67 PgC year−1 to
126.29 PgC year−1, averaging 121.09 PgC year−1 from 2000 to 2017. We found a significant
increasing trend for the proposed model, BEPS, MODIS, and VPM, with average increase
rates of 0.548 PgC year−1, 0.685 PgC year−1, 0.34 PgC year−1, and 0.53 PgC year−1 globally,
respectively. A significance test of the increasing trend showed that all p values were below
0.01. The GPP values estimated by the proposed model showed correlations of 0.767, 0.765,
and 0.657 with those of the BEPS, VPM, and MODIS models, respectively. All significance
test p values were below 0.01 (Table 3).

Figure 4. Comparisons of annual global summed GPP estimates from various models.

Table 3. Statistical analysis of GPP for the proposed model, BEPS, VPM, and MODIS.

Model R2 (Compared to
Our Study)

p Value (Compared
to Our Study) Linear Regressions R2 p Value

Our study 1 <0.001 y = 0.548x − 976.06 0.8633 <0.001
BEPS 0.767 <0.001 y = 0.685x − 1253.23 0.9758 <0.001

MODIS 0.657 <0.001 y = 0.34x − 585.61 0.8077 <0.001
VPM 0.765 <0.001 y = 0.536x − 935.68 0.9636 <0.001

3.3. The Spatial Pattern of Global GPP

The spatial patterns of the mean annual GPP simulated by the proposed model, BEPS,
MODIS, and VPM are generally consistent (Figure 5). The proposed model estimated the
mean annual GPP to range from 0 KgC m−2 year−1 to 4.0 KgC m−2 year−1, with an average
of 0.837 KgC m−2 year−1 during the study period of 2000 to 2022 (Figure 5A). In contrast,
the BEPS model produced an annual GPP of 0.002 KgC m−2 year−1 to 3.89 KgC m−2 year−1,
with an average of 1.02 KgC m−2 year−1 from 2000 to 2019 (Figure 5B). Additionally,
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the MODIS model simulated the mean annual GPP to span from 0 KgC m−2 year−1

to 3.5 KgC m−2 year−1, with an average of 0.711 KgC m−2 year−1 from 2003 to 2022
(Figure 5C). Lastly, the VPM model simulated the mean annual GPP to range from
0 KgC m−2 year−1 to 4.29 KgC m−2 year−1, with an average of 0.88 KgC m−2 year−1 from
2000 to 2017 (Figure 5D). We observed that the peak annual GPP values occurred pre-
dominantly in tropical regions, particularly within the evergreen broadleaf forests of the
Amazon and Southeast Asia, while the lowest GPP values were primarily situated in cold
and arid areas.

Figure 5. Comparisons of annual global summed GPP estimates from various models and the average
value of latitude variation. (A) Proposed model; (B) BEPS; (C) MODIS; (D) VPM.

The long-term trend of GPP was analyzed by the linear regression method (Figure 6).
The global GPP showed an increasing trend of 72.7%, 85.7%, 68.1%, and 78.3% for the
proposed model, BEPS, MODIS, and VPM, respectively (Figure 6). The statistically sig-
nificant trends at a 95% confidence level were 46.03%, 62.03%, 30%, and 56.7% for the
current model, BEPS, MODIS, and VPM, respectively. These significant increases were
predominantly found in regions across Europe, Southeast Asia, and Africa. The signifi-
cantly decreasing trends of global terrestrial production were 17.23%, 15.1%, 6.5%, and
21.7% for the proposed model, BEPS, MODIS, and VPM, respectively. These trends were
distributed across various locations and particularly notable in tropical rainforests such as
the Congo Basin and the Amazon. These spatial patterns in annual mean GPP trends, along
with the updated estimates extending to 2022, are consistent with findings from previous
studies [74].

The apparent discrepancy between the positive GPP trend from 2000 to 2022 (Figure 4)
and the negative values in the global spatial distribution of GPP (Figure 6) could be clarified
by distinguishing between temporal trends and spatial patterns. Figure 4 shows the overall
global GPP trend, indicating an increase in average GPP over time. In contrast, Figure
6 shows the spatial distribution of GPP at 0.1-degree resolution, with individual pixels
reflecting localized changes in structural, climatic, and physiological parameters of C3 and
C4 vegetation. While the global average GPP trend is positive, localized declines occurred
in certain regions due to factors such as climate change or land use change. Even though
the global GPP trend is upward, the higher-resolution spatial data showed more local
fluctuations, which do not contradict the overall positive trend.
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Figure 6. Spatial pattern of global GPP (KgC m−2 year−1) trend simulated by (A) the proposed
model, (B) BEPS, (C) MODIS, and (D) VPM.

4. Discussion
4.1. Environmental Characteristics of Flux Towers Suitable for Validating GPP

The flux sites we selected for comparison are characterized by relatively homogeneous
land surface types, with minimal heterogeneity or topographical differences in the sur-
rounding areas [75]. This uniformity helped to minimize potential errors caused by surface
complexity when comparing lower-resolution global data with higher-resolution flux tower
data [76]. In addition, the uniformity of terrain, vegetation types, and climatic conditions
around the flux sites improved the feasibility and reliability of the comparison [77]. This
analysis allowed us to more effectively assess the applicability and accuracy of global
datasets in specific regions, providing a solid foundation for data model refinement and
optimization [78].

In this study, we compared the environmental variables of the flux sites with those of
the surrounding areas within a radius of 5 km, focusing on the distribution of elevation, leaf
area index (LAI), and vegetation types. We compared the elevation of the flux sites with the
average elevation in the surrounding 5 km and found that a correlation coefficient of 98.5%
and statistical significance of p < 0.01 indicate a high degree of consistency (Figure 7A).
We also compared the average annual LAI of the site with the average annual LAI of
the area within 5 km, which resulted in a correlation coefficient of 98.5% and statistical
significance of p < 0.01, also indicating a strong similarity (Figure 7B). We calculated the
ratio of vegetation types at the site to vegetation types within a 5 km radius of the site
(Figure 7C). The results showed that the average proportions for CRO, DBF, DNF, EBF, ENF,
GRA, MF, OSH, SAV, WET, and WSA were 0.92, 0.81, 0.80, 0.90, 0.78, 0.92, 0.89, 0.90, 0.97,
0.90, and 0.86, respectively. This indicates that the flux site data adequately represent their
spatial environment [79,80]. These results confirm the reliability of the flux site data and
provide important evidence for its application in large-scale environmental studies [81].
These consistent environmental characteristics indicate that the climatic and ecological
conditions in the region are relatively stable, which helps to minimize the fluctuations in
meteorological data caused by terrain variations and ensure more reliable data collection at
the flux towers.
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Figure 7. (A) Comparison of site elevation and the average elevation within a 5 km radius area of
the site. (B) Comparison of annual average site LAI and annual average LAI within a 5 km radius of
the site. The blue line is the regression line, and the red dashed line is the 1:1 line. The regression
equation, correlation coefficients, statistical significance, mean square error, and bias are shown on the
bottom. (C) The proportion of vegetation types at the site relative to vegetation types within a 5 km
radius of the site. WSA: woody savannas; SAV: savannas; GRA: grasslands; EBF: evergreen broadleaf
forests; CRO: croplands; MF: mixed forests; ENF: evergreen needleleaf forests; OSH: open shrublands;
WET: permanent wetlands; DBF: deciduous broadleaf forests; DNF: deciduous needleleaf forests).

4.2. Drivers of Global GPP Changes from 2000 to 2022

GPP quantifies the carbon uptake of plants through photosynthesis, which is influ-
enced by factors such as temperature, available water, and CO2 concentration and is crucial
in determining the overall productivity of plant ecosystems (Figure 8). Globally, the sensitiv-
ity of environmental variables to GPP was assessed and compared with 10 remote sensing
models. It was found that the main cause of the increase in GPP was the positive response
of plants to increases in atmospheric CO2 concentration, air temperature, and precipitation,
with mean values of 23.9 ± 12.62 PgC year−1 100 ppm−1, 6.655.3 PgC year−1 ◦C−1, and
2.62.03 PgC year−1 100 mm−1, respectively [82]. The C-Fix model evaluated the impact
of climatic factors on GPP trends, spanning from 1982 to 2015, revealing that the global
average contributions of atmospheric CO2 concentration, air temperature, and water to
the GPP trend were 65.37%, 13.07%, and 11.74%, respectively [83]. Atmospheric CO2 con-
centration was a key environmental factor that affected global GPP and made the largest
positive contribution to its increase [84].

In this study, we investigated the correlation of global summed GPP with the climate
variables of air temperature, atmospheric CO2 concentration, and precipitation to quantify
the total effect of environmental variables on long-term changes in GPP. Over the last two
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decades, global trends have shown continuous increases in atmospheric CO2 concentra-
tion, air temperature, and precipitation [85], with increases of 2.19 ppm per year [86,87],
0.0405 °C per year [88], and 0.377 mm per year, respectively. The correlation between GPP
and air temperature, atmospheric CO2 concentration, and precipitation was 0.866, 0.927,
and 0.131, respectively (Figure 8). The emission of greenhouse gases such as CO2 con-
tributed to global warming through the greenhouse effect and led to a prolonged growing
season, especially at high and mid-latitudes, resulting in increased GPP [89]. The analysis of
global process model results suggested that part of the increase in terrestrial carbon uptake
could be attributed to increased vegetation productivity caused by the fertilization effect
of elevated atmospheric CO2 concentrations [90–92]. Adequate precipitation effectively
boosted GPP by enhancing soil moisture and plant growth, while excessive precipitation
posed the risk of causing flooding, damaging plants, and inhibiting GPP due to altered
soil properties.

Figure 8. Correlations between global GPP and (A) annual mean atmospheric CO2 concentration,
(B) global annual mean temperature, and (C) global annual precipitation.

Structural equation modeling (SEM) is a significant method for the analysis of ecologi-
cal data that is capable of quantifying both direct and indirect causal relationships among
multiple variables (Figure 9). SEM not only determines the individual path coefficient
for each relationship but also assesses the overall model fit to provide a comprehensive
understanding of natural systems [67–69]. A structural equation model was developed to
explore the impacts of storm frequency on both the structure of kelp forest communities
and the complexity of their food webs with a p value = 0.115 [67,68]. The SEM model was
used to construct the direct response of species richness to abiotic stress and disturbance
and the intervention effect on community biomass [70].

We were able to quantify both the direct and indirect paths of atmospheric CO2
concentration, air temperature, and precipitation for increasing GPP based on the SEM
model (Figure 9). The total effects on GPP change, including the effects of atmospheric
CO2 concentration, air temperature, and precipitation change, were 0.853, 0.75, and −0.144,
respectively, when the direct and indirect effects of the latent variables were aggregated
(Figure 9A). The increasing concentration of CO2 altered the surface energy balance and
led to climate change, which subsequently affected atmospheric circulation and the global
water cycle, changing the temporal and spatial distribution of precipitation [93,94]. The
change in CO2 had not only a positive and direct effect, with an influence coefficient of
0.261, but also a positive and indirect effect, with an influence coefficient of 0.62, on the
change in GPP through its positive effect on temperature, as well as a positive and indirect
effect, with an influence coefficient of -0.028, on the GPP change through its negative effect
on precipitation (Figure 9B).

The EC-LUE model assessed the impact of atmospheric CO2 concentration on GPP
trends, discovering that a 100 ppm−1 rise in atmospheric CO2 concentration significantly
boosted the global GPP by 12.31 ± 0.61 PgC [4]. While precipitation made a minor but
negative contribution to global GPP, the VPM, VI (Vegetation Indices), TG (Temperature–
Greenness), and GR (Greenness–Radiation) models had respective mean values of
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−1.4949 PgC year−1 100 mm−1, −0.85859 PgC year−1 100 mm−1, −0.85859 PgC year−1 100 mm−1,
and −0.36364 PgC year−1 100 mm−1 [82]. The VPM model focuses on radiation and tem-
perature in GPP estimation and neglects precipitation, while the VI and TG models focus
on vegetation indices and temperature and indirectly reflect the effects of precipitation. The
GR model, which relies heavily on radiation, associates increased precipitation with lower
radiation and GPP. The global GPP has a negative impact at the global level but not at the
regional level, where the increase in precipitation depends on the climatic characteristics of
the region, the water requirements of the ecosystems, and interaction with other relevant
environmental variables. At the global scale, an increase in precipitation could lead to
cloud thickening and reduced solar radiation, as well as waterlogged soils that limit the
oxygen supply to roots, thereby inhibiting plant photosynthesis. At a regional scale, the
effects of precipitation on GPP vary depending on the type of vegetation, topography, and
soil conditions. GPP changes are influenced primarily by an increase in radiation and tem-
perature at mid- and high latitudes, by changes in moisture conditions at low latitudes, and
by fluctuations in both temperature and moisture conditions at high altitudes [95]. Changes
in photosynthetically active radiation, relative humidity, and temperature were the primary
drivers of the interannual variability in GPP, accounting for 80% in deciduous broadleaf
forests and evergreen coniferous forests, 65% in crop plants, and 58% in shrubs [96]. Dif-
ferent plants have different light saturation points and radiation utilization rates, which
means that the radiation intensity required to achieve maximum photosynthetic efficiency
varies from plant to plant. Temperature affects the activity of key enzymes such as Rubisco,
influencing the rate of photosynthesis. Humidity affects the transpiration and stomatal
conductance of plants, which, in turn, affect CO2 uptake and water use efficiency.
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0.193 0.826***

0.261*

–0.144* 0.75***

(A)

CO2 Temperature Precipitation

−0.2

0

0.2

0.4

0.6

0.8

1

0.26

0.75

−0.14

0.59

0 0

0.85

0.75

−0.14

S
ta
n
d
a
rd
iz
ed

eff
ec
ts

of
G
P
P

Direct Effects
Indirect Effects
Total Effects

(B)

1
Figure 9. The basic usage of structural equation modeling (SEM) in path analysis with mediation. (A) The
causal relationships include total effects and their corresponding path coefficients. The acronyms in the
models are carbon dioxide (CO2), air temperature (Temperature), GPP, and Precipitation. * indicates
statistical significance (p < 0.05), and *** indicates extremely significant (p < 0.001). Model fit was assessed
using Shipley’s test of d separation (Fisher’s C = 0.104, df = 2, p = 0.95). (B) Standardized effects of driving
factors (CO2, Temperature, and Precipitation) on GPP.

5. Conclusions

We estimated global GPP from 2000 to 2022 based on GPU by integrating the Farquhar
model for C3 plants and the Collatz model for C4. The proposed model showed strong
performance in simulating both spatial and interannual variations in GPP globally. It
explained 72.3% of the spatial variation at all validation sites and showed interannual
changes consistent with other models. We assessed the contributions of climate factors to
GPP trends and found that these environmental variables exhibit substantial long-term
changes and contribute significantly to vegetation production on an interannual scale.
Atmospheric CO2 concentration is an important environmental factor that increases global
annual GPP according to the SEM model. The model we developed was able to effectively
capture temporal and spatial changes in GPP and provides a reliable alternative for long-
term estimates of global GPP.
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While the Light-Use Efficiency (LUE) model has been widely used to estimate vegeta-
tion productivity, it has encountered several limitations, including the failure to account for
environmental stressors, inconsistencies in spatial and temporal scales, region-specific pa-
rameterization, and the inability to fully capture the dynamic interactions within complex
ecosystems [97–100]. Although vegetation index models have been widely used to monitor
vegetation condition and productivity, they are limited by their sensitivity to atmospheric
conditions, soil background effects, and saturation in densely vegetated areas, which re-
duces their accuracy in estimating biophysical parameters [2,101]. AI models for estimating
gross primary production (GPP) often encounter limitations due to their dependence on the
quality and quantity of input data, the complexity of ecosystem processes, and difficulties in
generalizing across different biomes, leading to uncertainties in model predictions [102,103].
Ecosystem process-based models for estimating GPP have the advantage of integrating
detailed physiological and ecological mechanisms, which enable more accurate predictions
of carbon fluxes at different temporal and spatial scales [81,104,105]. Our dataset provides
a higher temporal resolution than the Blue Carbon, SiB4, BCC-ESM1, and CNRM-CM6-1
datasets; higher spatial accuracy than CARDAMOM, BCC-ESM1, and CNRM-CM6-1; and
a longer temporal span than BEPS, BESS, Blue Carbon, SiB4, SMAP L4, and CARDAMOM.

The proposed model generated a global GPP dataset with a resolution of 10 km, but
this moderate spatial resolution led to the loss of important fine-scale details, resulting in an
oversimplified representation of heterogeneous landscapes and lower accuracy in detecting
small-scale ecological processes and land use changes. We developed the model using
parallel computing techniques, including GPUs and multithreading, which significantly
enhanced the simulation speed. Users applying this model to simulate global GPP are
required to set up the development environment and possess proficiency in computer
skills, such as C++ programming standards. These technical demands pose considerable
challenges for beginners. Furthermore, since the model was designed for a global scale,
recalibration of parameters is necessary to improve simulation accuracy when applying it
to smaller-scale GPP simulations.

For future studies, we plan to improve the spatial accuracy of GPP simulation and
more accurately reflect the characteristics of surface changes. We plan to further develop
the net primary production (NPP) and net ecosystem production (NEP) modules to enable
a more comprehensive simulation of the carbon cycle. These improvements are crucial
for understanding the dynamics of the carbon cycle in ecosystems and the impact of
climate change on vegetation productivity. We also plan to integrate additional variables,
optimize computational algorithms, and improve spatial resolution to increase accuracy
and efficiency. In addition, developing modular features, creating a user-friendly interface,
increasing calibration efforts, and open-sourcing the model would expand its applicability
and ensure reliability in different ecosystems and under different climate conditions. We
anticipate that these improvements will enable the model to play an important role in
broader ecological research and climate policy development.
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Appendix A. The Structure of the Model

Total radiation at the top of the atmosphere (AT) is the ratio of total downward
shortwave radiation (St) to extraterrestrial radiation (S0).

AT = St/S0 (A1)

S0 = Sc × cos(θ) (A2)

where θ is the solar zenith angle and Sc is a solar constant (1367 W/m2).
We estimated the cloudiness fraction (C f ) based on the total incoming shortwave

radiation using the following empirical relationship [45]:

C f =


0 , clearsky
1 − AT−as

bs
, cloudiess f raction

1 , f ullcloudysky
(A3)

where as is the fraction of extraterrestrial radiation on overcast days and as + bs is the
fraction of extraterrestrial radiation on clear days (in this paper, as = 0.25 and bs = 0.5).

Bristow and Campbell estimated the proportion of total radiant energy from the top of
the atmosphere reaching the canopy using the diurnal temperature difference method [106].
Through this proportion, the direct radiation (ATb) and scattered radiation (ATd) reaching
the canopy can be calculated as follows:

ATb = λATc(1 − C f ) (A4)

ATd = AT − ATb (A5)

ATc = max(AT, as + bs) (A6)

where λ is the ratio of direct to total radiation for a clear sky (in this paper, λ = 6/7) and
ATc is the clear-sky transmission factor.

The total downward shortwave radiation (St) that reaches the top of the atmosphere
is partitioned into incoming direct radiation (Sb) and diffuse radiation (Sd) [44] as follows:

Sb =
ATb
AT

St (A7)

Sd =
ATd
AT

St (A8)

Appendix A.1. Canopy Radiative Transfer

We applied the two-stream approach to develop a transmission model that accounts
for multiple scatterings and reflection in the finite and infinite canopy to better estimate
radiant energy inside and outside the canopy [44]. It is assumed that radiation is scattered
equally in an upward and downward direction and that the scattering direction is along
the same path as the incoming radiation. This model considers incoming radiation to be
either transmitted through the canopy, reflected by the canopy, or absorbed by the canopy.

https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
https://fluxnet.org/data/fluxnet2015-dataset/
https://doi.org/10.5067/MODIS/MOD17A2H.006
https://doi.org/10.12199/nesdc.ecodb.2016YFA0600200.02.001
https://doi.org/10.1594/PANGAEA.879558
https://doi.org/10.24381/cds.68d2bb30
https://doi.org/10.12199/nesdc.ecodb.2016YFA0600200.01.003
https://doi.org/10.1029/2001GB001807
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τ =
τ′(1 − (β′)2)

1 − (β′)2(τ′)2 (A9)

β =
β′(1 − (τ′)2)

1 − ((β′)2)(τ′)2 (A10)

where τ and β are the corresponding transmission and reflection factors for a finite canopy,
respectively, and τ′ and β′ are the corresponding transmission and reflection factors for an
infinitely deep canopy, respectively.

τ′
d = (1 −

√
1 − α × G × LAI)e−

√
1−α×G×LAI

+ (
√

1 − α × G × LAI)
2

× Ei(1,
√

1 − α × G × LAI) (A11)

τ′
b = e−

√
1−αKb LAI (A12)

β′ =
1 −

√
1 − α

1 +
√

1 − α
(A13)

where α is the leaf-scattering coefficient (αb = 0.1, αd = 0.65). Since the approach for diffuse
radiation is just an integral of single-beam components over the hemisphere, the reflection
factors for an infinitely deep canopy (β′

b and β′
d) are estimated using the same equation.

G = ϕ1 + ϕ2cosθ (A14)

ϕ1 = 0.5 − 0.633χ − 0.33χ2 (A15)

ϕ2 = 0.877(1 − 2ϕ1) (A16)

where G is the leaf orientation factor depending on the solar zenith angle [107] and is an
empirical leaf angle distribution parameter ranging from −1 to 1 (−1 for vertical distributed
leaves, 0 for a spherical leaf angle distribution with randomly distributed leaves, and 1 for
horizontally distributed leaves).

Kb = G/cosθ (A17)

where Kb is the extinction coefficient of black leaves.

Ei(n, x) =
∫ ∞

1

e−xt

tn dt (A18)

where Ei(n, x) is an exponential integral with n a non-negative integer [47].
Since the exponential integral cannot be computed directly within the GPU, the

exponential integral is solved by approximation [108–110] as follows:

part1 =
e−x

2
ln(1 +

2
x
) (A19)

part2 = e−xln(1 +
1
x
) (A20)

Ei(n, x) =
part1 + part2

2
(A21)

Appendix A.2. Two-Leaf Model

We adopted the two-leaf model to estimate the radiation absorbed by the canopy,
which divides the canopy into shaded and sunlit leaves that receive different components
and portions of incoming shortwave radiation [49]. It is assumed that the sunlit leaves
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receive both direct and diffuse solar radiation, while shaded leaves absorb diffuse radiation
only [48]. We obtained the LAI of shaded and sunlit leaves of the canopy by using the
LAI [107].

LAIsun =
1

Kb
(1 − e−Kb×LAI×CI) (A22)

LAIshade = LAI − LAIsun (A23)

where CI is clumping index.
The total solar radiation flux density absorbed by the sunlit leaves in the canopy

(ASsun) is the sum of the direct component of direct radiation (ASb,b), the scattered compo-
nent of direct radiation (ASb,s), and diffuse radiation (ASd).

ASsun = ASb,b + ASb,s + ASd (A24)

The total solar radiation flux density absorbed by shaded leaves in the canopy (ASshade)
is the sum of the scattered component of direct radiation (ASb,s) and diffuse radiation (ASd):

ASshade = ASb,s + ASd (A25)

We coupled the canopy radiative transfer model with the two-leaf model to calculate
the absorption of different radiation components for sunlit and shaded leaves. The absorbed
diffuse radiation (ASd) is expressed as follows:

ASd = Sd(1 − τd − βd) (A26)

The absorbed direct component of direct radiation (ASb,b) is expressed as follows:

ASb,b = SbKb (A27)

The absorbed scattered component of direct radiation (ASb,s) is expressed as follows:

ASb,s = Sb(1 − τb − βb)− ASb,b (A28)

Appendix A.3. Stomatal Conductance

In our study, the Ball–Berry–Leuning (BBL) stomatal conductance model was coupled
with the photosynthesis process [50]. The stomatal conductance is expressed as follows:

gs = g0 + g1 ×
An

(1 + VPD
D0

)× (Ca − Γ∗)
(A29)

where An is the net leaf CO2 assimilation rate; VPD is the vapor pressure deficit; Ca is the
CO2 concentration at the leaf surface; Γ∗ is the CO2 compensation point; and g0, g1, and D0
are empirical coefficients, the values of which [111] are presented in Table A1.

Table A1. Parameters for stomatal conductance.

Parameter Value Unit Reference

g0 7.5 Panek et al., 2001 [111]
g1 0.01 mol × m−2 × s−1 Panek et al., 2001 [111]
D0 2 Kpa Panek et al., 2001 [111]

Appendix A.4. Sunrise and Sunset

The times of sunrise and sunset are affected by several factors, including season,
geographical location, and the Earth’s rotation. Since the Earth’s orbit is elliptical, the
distance between the Earth and the Sun varies depending on the season. In winter, when
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the Earth is farther from the Sun, the Sun rises later and sets earlier, while in summer, the
opposite is true. The longitudes of the different regions are different because the globe
is a sphere. In the same season, the Sun usually rise earlier and sets later in regions with
eastern longitude than in regions with western longitude. As the Earth rotates, the sunrise
and sunset times differ between locations on Earth.

delta = 23.45 × sin(
doy − 80

365
× 360 × π

180
)× π

180
(A30)

where delta is the solar declination and doy is the day of the year.

cos(ω) = −tan(Lat × π

180
)× tan(delta) (A31)

where ω is the hour angle and Lat is the latitude.
Polar day and night occur at high latitudes, which affects the calculation results of

radiation flux.

beta =


1 , cos(ω) ≥ 1
cos(ω) ,−1 < cos(ω) < 1
−1 , cos(ω) ≤ −1

(A32)

We can obtain the sunrise and sunset as follows:

SunRise = 12 −
arccos(beta)× 180

π

15
(A33)

SunSet = 12 +
arccos(beta)× 180

π

15
(A34)

Appendix A.5. Local Time

Local time is the time observed in a specific locality. All 15 longitudes of the earth are
divided into corresponding time zones. Due to the Earth’s rotation and the differences in
longitude between regions, the local time varies depending on the geographical location.

TimeZone = (
Lon + 7.5

15
)− 1 (A35)

LocalTime = (timeSers + TimeZone)%24 (A36)

LocalTime =
{

LocalTime + 24 , LocalTime < 0
LocalTime , LocalTime ≥ 0

(A37)

where Lon is the longitude and timeSers is the Greenwich Meridian local time.

Appendix A.6. The Ratios of Photosynthesis in Sunrise and Sunset Time Zones

Sunrise and sunset occur within a time zone, and the proportion of time with sunshine
must be calculated so that the radiant flux can be estimated more accurately.

TR1 = TR/2 (A38)

UpperSunRise = SunRise − TR1 (A39)

LowerSunRise = SunRise + TR1 (A40)

UpperSunSet = SunSet − TR1 (A41)

LowerSunSet = SunSet + TR1 (A42)

where UpperSunRise and LowerSunRise are the upper and lower boundaries of the sunrise
time zone, respectively. UpperSunSet and LowerSunSet are the upper and lower bound-
aries of the sunset time zone, respectively. TR is the temporal resolution.
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f actor =


0 , LT < UpperSunRise||LowerSunSet < LT
|LT − SunRise| , UpperSunRise < LT < LowerSunRise
|LT − SunSet| , UpperSunSet < LT < LowerSunSet
1 , LowerSunRise < LT < UpperSunSet

(A43)

where LT = LocalTime.

Appendix A.7. Photosynthesis

We divided the vegetation into C3 and C4 plants and calculated the photosynthesis
of each pixel based on the ratio of C3 to C4 of each pixel. We used the biochemical
photosynthesis model for C3 plants based on Farquhar’s model [51] and for C4 plants
based on the Collatz’s model [52].

The net leaf photosynthesis (An) could be modeled as the minimum of three limiting
rates after accounting for dark respiration (Rd).

An = min(Ac, Aj, Ap)− Rd (A44)

where Ac is the rate of leaf photosynthesis when the Rubisco carboxylase is limited, which
is expressed as follows:

Ac =

{
Vcmax × Ci−Γ∗

Ci+Kc(1+Oi/Ko)
, for C3

Vcmax , for C4
(A45)

where Vcmax is the maximum rate of leaf carboxylation; Ci and Oi are the intercellular and
atmospheric CO2 concentrations, respectively; Γ∗ is the CO2 compensation point in the
absence of dark respiration; and Kc and Ko are the Michaelis–Menten constants for Rubisco
carboxylation and oxygenation, respectively.

Aj is the rate of leaf photosynthesis when light is limited [112], which is expressed
as follows:

Aj =

{
J × Ci−Γ∗

4Ci+8Γ∗ , for C3
0.067 × Q , for C4

(A46)

where J is the rate of electron transport and Q is the photosynthetically active photon
flux density.

Ap is the rate of photosynthesis when the product is limited for C3 plants and when
the PEP carboxylase is limited for C4 plants, which is expressed as follows:

Ap =

{
0.5 × Vcmax , for C3
kp × Ci

Patm , for C4
(A47)

where kp is the initial slope of the C4 CO2 response curve and Patm is the atmospheric
pressure.

Ac and Aj are also affected by the diffusion constraints, which is expressed as follows:

Ac or j = (Ca − Ci)× GCO2 (A48)

where GCO2 is the velocity of CO2 diffusion from the atmosphere into leaves.
J depends on the photosynthetically active radiation absorbed by the leaf and ex-

pressed as follows [112]:

θ J2 − (αQ + Jmax)× J + αQJmax = 0 (A49)

where Jmax is the maximum potential rate of electron transport, θ is the curvature parameter
of the light response curve, and α is the quantum yield of electron transport.
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The calculation of Kc and Ko varies depending on the temperature threshold of 15 °C,
which is expressed as follows:

Ko = Ko25 × Q
T−25

10
10,Ko

(A50)

Kc =


Ko25 × Q

T−25
10

10,Ko
, for T > 15°C

Kc25×(Q10,Kc×1.8)
T−15

10

Q10,Kc
, for T ≤ 15°C

(A51)

where T is the air temperature.
We further calculated the vapor pressure deficit (VPD) as one of our input variables

for the model by using dewpoint temperature and air temperature. The VPD, which is the
difference between the saturated vapor pressure and the actual vapor pressure [113], is
commonly used to predict leaf stomatal conductance and photosynthesis [50].

es = 0.61078 × e
17.27×T
T+237.3 (A52)

ea = 0.61078 × e
17.27×Td
Td+237.3 (A53)

VPD = es − ea (A54)

where Td is the dewpoint temperature.
We used a temperature function and a high-temperature stress function to scale and

describe the temperature dependences of Vcmax, Jmax, Γ∗, and Rd [112,114–116].

Appendix A.8. Photosynthesis of C3 Plants

For C3 plants, the equations are expressed as follows:

Vcmax = Vcmax25 × f (T)× fH(T) (A55)

Jmax = Jmax25 × f (T)× fH(T) (A56)

Rd = Rd25 × f (T)× fH(T) (A57)

The corresponding temperature function is expressed as follows:

f (T) = e
∆×(T−298.15)

298.15×Rgas×T (A58)

fH(T) =
1 + e

298.15×∆S−∆Hd
298.15×Rgas

1 + e
∆×T−∆Hd

Rgas×T

(A59)

where Rgas is the universal gas constant. The values of temperature dependence parameters
∆Ha, ∆Hd, and ∆S are listed in Table A2.

Table A2. Temperature dependence parameters.

Parameter ∆Ha (J/mol) ∆Hd (J/mol) ∆S (J/mol/K)

Vcmax 65,330 149,250 485
Jmax 43,540 152,040 495
Rd 46,390 150,650 490
ω∗ 37,830

Jmax25 = 1.97 × Vcmax25 (A60)

Rd25 = 0.015 × Vcmax25 (A61)

Γ25
∗ = 42.75 (A62)

where Jmax25, Rd25, and Γ25
∗ are the corresponding parameters at 25 °C.
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Appendix A.9. Photosynthesis of C4 Plants

For C4 plants, the equations are expressed as follows:

Vcmax = Vcmax25 ×
Q10

Tk−298.15
10

fH(T)× fL(T)
(A63)

Jmax = Jmax25 × f (T)× fH(T) (A64)

Rd = Rd25 ×
Q10

Tk−298.15
10

fH(T)
(A65)

Γ∗ = Γ25
∗ × f (T) (A66)

The corresponding temperature function is expressed as follows:

fH(T) = 1 + eS1×(T−S2) (A67)

fL(T) = 1 + eS3×(S4−T) (A68)

The values of S1, S2, S3, and S4 are listed in Table A3.

Jmax25 = 1.97 × Vcmax25 (A69)

Rd25 = 0.025 × Vcmax25 (A70)

Γ25
∗ = 42.75 (A71)

Table A3. Photosynthesis parameters.

Parameter Value Unit Reference

θ 7.5 Medlyn et al., 2002 [112]
α 0.01 mol × mol−1 Medlyn et al., 2002 [112]
kp 2 Oleson et al., 2010 [116]
Oi 210 mmol × mol−1

Rgas 8.314 JK−1 × mol−1

Ko25 248 mmol × mol−1 Raj et al., 2014 [117]
Kc25 404 µmol × mol−1 Raj et al., 2014 [117]

Q10,Ko 1.2 Raj et al., 2014 [117]
Q10,Kc 2.1 Raj et al., 2014 [117]
Q10,Rd 2.0 Raj et al., 2014 [117]

Q10 2.0 Oleson et al., 2010 [116]
S1 f or Ccmax 0.3 K−1 Oleson et al., 2010 [116]
S2 f or Ccmax 313.15 K Oleson et al., 2010 [116]

S3 0.2 K−1 Oleson et al., 2010 [116]
S4 288.15 K Oleson et al., 2010 [116]

S1 f or Rd 1.3 K−1 Oleson et al., 2010 [116]
S1 f or Rd 328.15 K Oleson et al., 2010 [116]

Appendix A.10. Photosynthesis of Nitrogen Content

The maximum rate of carboxylation at 25 °C (Vcmax25) depends on the leaf nitrogen
concentration and specific leaf area, which is expressed as follows:

Vcmax25 = Na × FLNR × FNR × aR25 (A72)

where Na is the leaf nitrogen concentration, FLNR is the fraction of leaf nitrogen in Rubisco,
FNR is the weight proportion of Rubisco relative to its nitrogen content (in this paper,
FNR = 7.16), and aR25 is the specific activity in Rubisco (in this paper, aR25 = 60).

The leaf nitrogen concentration (Na) is a function of the C/N ratio and specific leaf
area, which is expressed as follows:

Na =
1

CNl × SLA
(A73)
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where CNl is the ratio of carbon to nitrogen in the leaf and SLA is the specific leaf area.
CNl , SLA, and FLNR vary depending on the vegetation type, with values listed in Table A4.

Table A4. Photosynthetic parameters for Vcmax25.

Type CNl SLA FLNR

ENF 42 0.012 0.04
EBF 40 0.012 0.035
DNF 25 0.024 0.055
DBF 24 0.03 0.08
MF 32 0.02 0.06

CSH 42 0.012 0.04
OSH 42 0.012 0.04
WSA 25 0.03 0.09
SAV 25 0.03 0.09
GRA 25 0.045 0.12
WET 42 0.012 0.04
CRO 25 0.07 0.41

Appendix B. Information on the Eddy Covariance (EC) Sites

Table A5. Information on flux tower sites used in this study.

Type Site ID Latitude Longitude Period RRMSE

CRO US-Ne2 41.1649 −96.4701 2001–2012 0.3401
CRO FI-Jok 60.8986 23.5134 2000–2003 0.6459
CRO US-Twt 38.1087 −121.6531 2009–2014 0.1806

CRO BE-Lon 50.5516 4.7462 2004–2010
2012–2014

0.0836
0.3704

CRO DE-RuS 50.8659 6.4471 2011–2014 0.5154
CRO DE-Kli 50.8931 13.5224 2005–2011 0.4842
CRO US-Ne1 41.1651 −96.4766 2001–2012 0.2616
CRO US-CRT 41.6285 −83.3471 2011–2013 0.3251
CRO US-Ne3 41.1797 −96.4397 2001–2012 0.2955
CRO CH-Oe2 47.2864 7.7337 2004–2014 0.5637
CRO DE-Geb 51.0997 10.9146 2001–2014 0.6072
CRO DE-Seh 50.8706 6.4497 2008–2009 0.4000
DBF DE-Hai 51.0792 10.4522 2000–2012 0.3928

DBF DE-Lnf 51.3282 10.3678 2003–2006
2011–2013

0.4970
0.4344

DBF DK-Sor 55.4859 11.6446 2000–2013 0.3840
DBF US-Oho 41.5545 −83.8438 2004–2013 0.2627
DBF FR-Fon 48.4764 2.7801 2005–2014 0.2886
DBF IT-CA1 42.3804 12.0266 2014–2014 0.4927
DBF IT-CA3 42.38 12.0222 2014–2014 0.6707
DBF IT-Col 41.8494 13.5881 2005–2014 0.6592
DBF IT-PT1 45.2009 9.061 2002–2004 0.9705
DBF IT-Ro1 42.4081 11.93 2001–2006 0.5207

DBF IT-Ro2 42.3903 11.9209 2002–2008
2010–2011

0.5568
0.3531

DBF JP-MBF 44.3869 142.3186 2004–2005 0.4067
DBF PA-SPn 9.3181 −79.6346 2008–2008 0.3329
DBF US-Ha1 42.5378 −72.1715 2000–2012 0.1150
DBF US-MMS 39.3232 −86.4131 2000–2014 0.3791
DBF CA-Oas 53.6289 −106.1978 2000–2010 0.6749
DBF US-Wi3 46.6347 −91.0987 2004–2004 0.1962
DBF US-UMB 45.5598 −84.7138 2000–2014 0.2032
DBF US-UMd 45.5625 −84.6975 2008–2014 0.2799

DBF US-WCr 45.8059 −90.0799 2000–2006
2012–2014

0.2877
0.5901
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Table A5. Cont.

Type Site ID Latitude Longitude Period RRMSE

DNF RU-SkP 62.255 129.168 2012–2014 1.1955
EBF AU-Whr −36.6732 145.0294 2012–2014 0.4912

EBF CN-Din 23.1733 112.5361 2003–2003
2005–2005

0.5219
0.4910

EBF GH-Ank 5.2685 −2.6942 2011–2012 0.4864
EBF AU-Wac −37.4259 145.1878 2005–2008 0.1021
EBF AU-Tum −35.6566 148.1517 2001–2014 0.9606
EBF AU-Wom −37.4222 144.0944 2010–2014 0.4957
EBF AU-Cum −33.6152 150.7236 2012–2014 0.9677
EBF FR-Pue 43.7413 3.5957 2001–2014 0.4651
ENF US-Me5 44.4372 −121.5668 2000–2002 0.4521
ENF FI-Sod 67.3624 26.6386 2001–2014 0.4508
ENF FI-Let 60.6418 23.9595 2010–2012 0.5982
ENF FI-Hyy 61.8474 24.2948 2000–2014 0.6253
ENF FR-LBr 44.7171 −0.7693 2000–2008 0.6623
ENF US-Me6 44.3233 −121.6078 2011–2014 0.2973
ENF US-Prr 65.1237 −147.4876 2010–2014 0.3164
ENF US-Me3 44.3154 −121.6078 2004–2008 0.1513
ENF NL-Loo 52.1666 5.7436 2000–2014 0.1057

ENF IT-Ren 46.5869 11.4337 2002–2003
2005–2013

0.2438
0.9499

ENF RU-Fyo 56.4615 32.9221 2000–2014 0.0590
ENF US-Blo 38.8953 −120.6328 2000–2007 1.5783
ENF IT-La2 45.9542 11.2853 2001–2001 0.6657
ENF US-Wi4 46.7393 −91.1663 2002–2005 0.0204
ENF US-Me2 44.4523 −121.5574 2002–2014 0.0919
ENF IT-Lav 45.9562 11.2813 2003–2014 0.6185
ENF US-GLE 41.3665 −106.2399 2005–2014 0.2307
ENF CN-Qia 26.7414 115.0581 2003–2005 0.2926
ENF DE-Tha 50.9626 13.5651 2000–2014 0.5088
ENF CA-NS3 55.9117 −98.3822 2001–2005 0.4440
ENF US-NR1 40.0329 −105.5464 2000–2014 0.3379
ENF CA-SF2 54.2539 −105.8775 2003–2004 0.7883
ENF CA-SF1 54.485 −105.8176 2004–2005 0.7912
ENF CA-NS2 55.9058 −98.5247 2001–2004 0.5028
ENF CA-NS4 55.9144 −98.3806 2002–2005 0.7572
ENF CZ-BK1 49.5021 18.5369 2004–2014 0.2705
ENF CA-Man 55.8796 −98.4808 2000–2004 0.5992
ENF CA-Qfo 49.6925 −74.3421 2004–2010 0.7685
ENF DE-Lkb 49.0996 13.3047 2009–2013 0.5555
ENF CA-NS5 55.8631 −98.485 2002–2005 0.7947
ENF CA-NS1 55.8792 −98.4839 2002–2005 0.7684
GRA AT-Neu 47.1167 11.3175 2002–2012 0.9405
GRA US-AR1 36.4267 −99.42 2009–2012 1.4371
GRA US-Wkg 31.7365 −109.9419 2006–2014 0.1482
GRA RU-Tks 71.5943 128.8878 2012–2014 0.1329
GRA US-AR2 36.6358 −99.5975 2010–2011 0.1587
GRA RU-Ha1 54.7252 90.0022 2003–2004 0.1047
GRA PA-SPs 9.3138 −79.6314 2007–2009 0.0382
GRA US-Goo 34.2547 −89.8735 2003–2006 0.2912
GRA CH-Cha 47.2102 8.4104 2005–2014 0.8429
GRA DE-RuR 50.6219 6.3041 2012–2014 0.3521
GRA CH-Oe1 47.2858 7.7319 2002–2008 0.5104
GRA AU-Ync −34.9893 146.2907 2013–2013 0.1063
GRA US-SRG 31.7894 −110.8277 2008–2014 0.2094
GRA DE-Gri 50.95 13.5126 2004–2011 0.4390
GRA CZ-BK2 49.4944 18.5429 2006–2012 0.3105

GRA CH-Fru 47.1158 8.5378 2006–2008
2010–2014

0.7539
1.9716

GRA CN-Du2 42.0467 116.2836 2007–2008 0.1365
GRA IT-MBo 46.0147 11.0458 2003–2013 0.6747
GRA CN-Cng 44.5934 123.5092 2007–2010 0.5325
GRA AU-DaP −14.0633 131.3181 2007–2013 0.9532
GRA CN-HaM 37.37 101.18 2002–2004 0.2041
GRA AU-Stp −17.1507 133.3502 2009–2014 0.9670
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Table A5. Cont.

Type Site ID Latitude Longitude Period RRMSE

MF CA-Gro 48.2167 −82.1556 2003–2013 0.6731
MF BE-Bra 51.3076 4.5198 2004–2014 0.0282
MF JP-SMF 35.2617 137.0788 2003–2006 0.2723
MF BE-Vie 50.3049 5.9981 2000–2014 0.7275
MF CN-Cha 42.4025 128.0958 2003–2005 0.7002
MF CH-Lae 47.4783 8.3644 2004–2014 2.0494
MF US-PFa 45.9459 −90 2000–2014 0.1197

MF US-Syv 46.2420 −89.3477 2001–2006
2012–2014

0.3828
0.3959

OSH CA-NS6 55.9167 −98.9644 2001–2005 0.7761
OSH US-SRC 31.9083 −110.8395 2008–2012 0.0910
OSH RU-Cok 70.8291 147.4943 2008–2009 0.0062
OSH CA-NS7 56.6358 −99.9483 2002–2005 0.7375
OSH ES-LgS 37.0979 −2.9658 2007–2008 0.4493
OSH CA-SF3 54.0916 −106.0053 2002–2006 0.8128
OSH US-Whs 31.7438 −110.0522 2008–2014 0.0364
OSH US-Sta 41.3966 −106.8024 2007–2009 0.0634
SAV SN-Dhr 15.4028 −15.4322 2012–2013 0.2812
SAV SD-Dem 13.2829 30.4783 2007–2009 0.2843
SAV ZA-Kru −25.0197 31.4969 2010–2011 0.2859
SAV AU-DaS −14.1593 131.3881 2011–2014 0.9589
SAV AU-Dry −15.2588 132.3706 2008–2014 0.9672
WET AU-Fog −12.5452 131.3072 2006–2007 0.9744
WET US-Tw1 38.1074 −121.6469 2013–2014 0.3446
WET FI-Lom 67.9972 24.2092 2007–2009 0.5926
WET US-Atq 70.4696 −157.4089 2004–2008 0.2103
WET CN-Ha2 37.6086 101.3269 2003–2005 0.2454
WET CZ-wet 49.0247 14.7704 2006–2014 0.0591
WET DE-Akm 53.8662 13.6834 2010–2013 0.5076
WET DE-Spw 51.8922 14.0337 2011–2014 0.4785
WET US-Los 46.0827 −89.9792 2001–2006 0.3117
WET US-Ivo 68.4865 −155.7503 2004–2007 0.2463

WSA AU-How −12.4943 131.1523 2002–2005
2007–2014

0.9185
0.9785

WSA AU-Ade −13.0769 131.1178 2007–2009 0.9185
WSA US-Ton 38.4309 −120.966 2001–2014 0.5003
WSA US-SRM 31.8214 −110.8661 2004–2014 0.0726
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