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Abstract: Existing studies on the vulnerability assessment of ecological drought often focus on
analyzing vegetation phenotypic characteristics, overlooking the impact of drought on ecosystem
services. This study proposes an ecosystem vulnerability assessment method under ecological
drought stress from the perspective of ecosystem service value (ESV), considering the characteristics
and interactions of hazard-causing factors and hazard-bearing bodies. The spatiotemporal evolution
of ecological drought, the spatial characteristics of ecosystem vulnerability, and the vulnerability
characteristics of different ecosystem types in the North China region from 1991 to 2021 were
evaluated. The results showed that: (1) ecological drought exhibited a trend of intensification
followed by alleviation, with the most severe droughts occurring between 2002 and 2011, affecting up
to 64.3% of the region; (2) ESV was mainly influenced by vegetation cover and precipitation gradients,
displaying a spatial pattern of high values in the southeast and low values in the northwest, with total
ESV averaging CNY 18.23 trillion; (3) grasslands exhibited higher sensitivity to drought compared
to forests, and the sensitivity was higher in summer and autumn than in winter and spring. This
method assessed the vulnerability of ecological drought from the perspective of ecosystem services,
providing a new approach for a more comprehensive understanding of the impact of drought on
ecosystem service functions.
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1. Introduction

Ecosystems provide many valuable services, such as provisioning services like food
and water, regulating services like climate and flood regulation, cultural services like
recreation, and supporting services like nutrient cycling [1]. However, China’s rapid
economic growth in recent decades has led to considerable ecosystem degradation through
processes like urbanization, agricultural intensification, and pollution [2]. Quantifying
ecosystem service values (ESV) is crucial for understanding the true economic costs of
ecosystem changes, guiding sustainable development policies, and demonstrating the
value of natural capital in economic terms [3]. Studying ESV enables policymakers to
make more informed decisions regarding tradeoffs between economic development and
environmental protection. For example, one study found that from 2000 to 2010, China’s
ESV decreased by USD 0.9-1.3 trillion annually due to land use changes associated with
urbanization and agricultural expansion [4]. This massive loss of ESV underscores the
need for China to account for natural capital in policy-making. Thus, ecosystem services
research is growing rapidly in China to quantify ESV, inform environmental policy, and
promote sustainable development.
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Previous ESV assessments in China have mostly focused on national and provincial
aggregate scales using data like land use/land cover maps [5-7]. However, high-resolution
land use type data for evaluating ecosystem service values are still lacking for many
specific regions. One area requiring further study is the North China region, spanning
Beijing, Tianjin, Shanxi, Shandong, Hebei, and Inner Mongolia. As a highly populated and
agriculturally important zone in northern China, the North China region boasts rich natural
resources but has faced severe environmental problems like water scarcity, soil erosion, and
sandstorms amid rapid industrialization and urbanization in past decades [8]. In response,
China has implemented ecological restoration programs like the Grain for Green Program
in the North China Plain to convert steep croplands to forests and grasslands [9]. Following
the implementation of these ecological projects, it is crucial to investigate the changes in
ecosystem service values to assess the effectiveness of these initiatives. Quantifying the
dynamics of ecosystem service values in the North China Plain after restoration efforts is of
great practical significance for addressing ecological issues and guiding future ecological
management in the region [10].

Google Earth Engine (GEE) provides a powerful platform for efficiently mapping land
cover over large areas, an essential initial step for estimating ESV [1,4,11]. While GEE has
been utilized in some recent ESV assessments for China, these studies have been limited
in their temporal resolution [5,6,9,10,12,13]. For instance, previous GEE-based research
calculated ESV at annual intervals. GEE enables the efficient processing of vast amounts
of satellite imagery, allowing for land cover mapping at higher temporal resolutions than
previously feasible [14,15]. This frequent land cover mapping can then be utilized to
estimate changes in ESV at these finer time steps, revealing new insights into how ESV
responds to seasonal factors and random shocks. Additionally, machine learning methods
could be implemented on GEE to automate land cover classification and ESV modeling,
enabling near real-time monitoring [14]. Therefore, harnessing GEE’s spatiotemporal
power can significantly advance ESV assessments in the North China region by providing
finer-grained analysis over broader extents and longer time periods.

In most existing studies, ecosystem vulnerability to drought has been evaluated
primarily from the perspective of the ecosystem itself, which fails to reflect the impact
of drought on ecosystem services. Most existing ecological drought studies focus on
analyzing meteorological factors like precipitation deficits to characterize drought intensity,
while lacking quantitative assessment of consequent ecosystem service losses [16-22].
However, quantifying the relationship between changes in ecosystem service values and
drought dynamics can better reflect the impacts of drought on ecosystem service functions.
Therefore, an integrated approach coupling ecosystem service evaluation with ecological
drought monitoring is needed to evaluate how drought events affect the supply and value
of services from ecosystems. Furthermore, evaluating the vulnerability of ecosystem service
provision to drought can support cost-benefit analysis of drought adaptation strategies
and inform decision-making for ecological management. Addressing this research gap by
linking ecological drought with ecosystem service consequences is crucial for developing
effective drought resilience measures and mitigating the adverse impacts of droughts on
ecosystems and their services.

To address these issues, this study leverages GEE to assess the monthly dynamics of
ecosystem service values (ESV) and ecological drought vulnerability across the North China
Plain from 1991 to 2021. ESV changes were quantified at a monthly scale and with fine spa-
tial resolution, revealing localized ESV patterns related to terrain, ecosystems, and human
activities. Ecological drought in NC was analyzed using the standardized water deficit
index, linking spatiotemporal drought patterns with ESV fluctuations to quantitatively
assess ecosystem vulnerability. Overall, this integrated approach offers new perspectives on
the ecological and economic impacts of environmental changes in North China, supporting
ecosystem management and ecological restoration program evaluation.
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2. Materials
2.1. Study Region

The study region encompasses North China (Figure 1). Specifically, this study focuses
on the six provincial-level administrative units that make up North China: Beijing, Tianjin,
Shanxi, Shandong, Hebei, and Inner Mongolia. This region covers an area of approximately
1.3 million km? and had a population of 359 million in 2010 [22]. The North China Plain
features a warm temperate monsoon climate, with hot rainy summers and cold dry winters.
Mean annual precipitation ranges from 400 to 800 mm, decreasing from southeast to north-
west across the region. Major ecosystem types include cultivated land, forests, grasslands,
and inland water bodies. Forests are concentrated in mountainous areas while agriculture
dominates the fertile plains. The main land cover changes in recent decades have been
agricultural expansion, reforestation, and urban growth [23].
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Figure 1. Location and elevation of study region.

2.2. Dataset

This study utilized three main types of datasets—geospatial data, topographic data,
and vegetation data. The geospatial data were obtained from Google Earth Engine
(GEE), including Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI imagery. Specifi-
cally, the Landsat 5 TM images spanned from 1984 to 2011 with a spatial resolution of
30 m. Landsat 7 ETM+ images were from 1999 to the present with a spatial resolution of
30 m. And Landsat 8 OLI images covered 2013 to the present with a spatial resolution of
30 m. The topographic data were the SRTM digital elevation model (DEM) provided by
NASA /USGS/]JPL Caltech [24], which had a spatial resolution of 90 m. Vegetation data
consisted of the Normalized Difference Vegetation Index (NDVI), which was obtained from
composite Landsat NDVI datasets downloaded from http:/ /www.gis5g.com/data/zbsj/NDVI
(accessed on 14 June 2024), with a spatial resolution of 30 m, ensuring consistency across
the study period. Meteorological datasets, including monthly precipitation and monthly
temperatures spanning from 1979 to present with a spatial resolution of 0.25° x 0.25°,
were derived from the ERA-Interim reanalysis dataset produced by the European Center
for Medium-Range Weather Forecasts (ECMWEF) [25]. Agricultural data, including food
production and yield prices, were sourced from the National Bureau of Statistics of China,
available through their publicly accessible database: https://data.stats.gov.cn/ (accessed
on 3 June 2024).


http://www.gis5g.com/data/zbsj/NDVI
https://data.stats.gov.cn/
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3. Method

This study employs a three-step methodology: data processing, land use type reclassi-
fication, ecosystem service value (ESV) calculation, and the construction of an ecosystem
vulnerability assessment model (Figure 2). The data processing step involves the integra-
tion of meteorology, land use, vegetation, and ecosystem service value equivalent data,
providing the necessary foundation for land use type reclassification, ESV calculation, and
drought characteristics identification. The assessment of ESV is a crucial component of the
research, serving as input for the vulnerability assessment model. By establishing an evalu-
ation model, the spatial distribution of vulnerability under drought stress is determined for
the study area.

Ecological
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)

Land Use Type Reclassification and Ecosystem Service
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Figure 2. Technical process of the study.

3.1. Optimizing Land Use Classification Based on Google Earth Engine

In this study, land use classification was conducted in three steps:

(1) Preprocessing of the original remote sensing images to obtain high-quality images
that meet the training requirements.

The Google Earth Engine “Reducer” function was used to perform atmospheric cor-
rection on the original integrated geospatial dataset using the LaSRC algorithm, and the
CFMask algorithm was used to mask clouds, shadows, water, and snow in the images
to obtain high-quality annual image sequences. Normalized Difference Vegetation Index
(NDVI) was overlaid on the data images for each year to increase model complexity, and a
DEM was added to distinguish plains and mountains. Finally, the data were standardized
to reduce noise and classification errors in the remote sensing images.

(2) Preliminary classification of the original datasets (including selection of an appro-
priate classification system, classifiers, training samples, and test samples).

In this study, a first-level land use classification system was used, including cropland,
forest, grassland, water bodies, buildings, and bare land. The Cart, Random Forest, Gra-
dient Boosting Regression, and Support Vector models in GEE were used as classifiers to
perform supervised classification learning on the images for each year. The training sam-
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ples for the models were extracted and classified for each year based on the high-resolution
images, generating a total of 2000 x 31 labeled points. Datasets for the input contained
seven spectral bands (Band 1-Band 7) from Landsat 5, Landsat 7, and Landsat 8, as well as
slope information derived from the processed DEM. A total of 70% of the data were used
as training samples and 30% as test samples. The Kappa metrics were used to evaluate
the classification results for each year and select the best-performing classifier. Ultimately,
the optimal classifier was applied to conduct the preliminary classification of the original
dataset, ensuring the highest accuracy and minimizing classification errors in the land use
mapping process.

(3) Post-processing of the preliminary classification results to reduce errors in spatial-
temporal consistency.

The preliminary land type classification based on machine learning often leads to incon-
sistencies in the evaluation results over space and time. To address this issue, Python APIs
based on the GEE platform were developed in this study, constructing “Spatial_Analysis”
functions to resolve spatial inconsistency and “Temporal_Analysis” functions to resolve
temporal inconsistency.

I “Spatial_Analysis” function

For spatial inconsistencies, a nine-pixel pooling grid was used to traverse the prelim-
inary classification results. When the center value of a grid was inconsistent in space, it
was corrected using the land type with the highest proportion among the surrounding
eight pixels.

II “Temporal_Analysis” function

For temporal inconsistencies, this study mainly resolved instability in built-up land
over time, such as cases where a pixel was classified as built-up land in 2000 and 2002
but forest land in 2001. Therefore, sliding windows of a certain step size were used to
calculate the temporal consistency probability of each pixel, thereby enabling correction of
deviations in the classification results [14] (Figure 3).

j=i+Tw
Y con(L; = L;)

)

where Tw is the predefined time window, set to 3 in this study; L; is the land use type label
for the target year; L; is the land use type label for the adjacent year; con is a logic judgment
function, returning 1if L; = L;, otherwise returning 0; a larger Prob value indicates a higher
probability that L; is true. In this study, 0.5 was taken as the critical threshold, that is, L; is
changed to L; when Prob; > 0.5.

Land Sequence
0 [ ° s "1"_Building; "0"-Other types
A A
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Figure 3. Schematic representation of time consistency evaluation.
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3.2. Constructing Ecosystem Service Value Dynamic Assessment Methods Based on Google
Earth Engine

Different ecosystem types have different ecological processes, thereby providing
different levels of ecosystem services [26]. To further improve the objectivity and rationality
of ecosystem service value assessment results, Python APIs running on the GEE platform
were developed in this study to incorporate precipitation (P), NDVI (C), and coverage (S)
as modulation factors. This allows for the ecosystem service value results to reflect the
quantity and functional information of ecosystems.

m n o0
ESVin =YY, Z AxBijkCy )
i=1j=1k=1
NDV]
Cp = k (3)
NDVI
m n 0
ESVio =YY ) ABijP 4)
i=1j=1k=1
Wi
P E— 5
k=T ®)
m n [
ESVis =YY Y AiBiiS (6)
i=1j=1k=1
Ex
S, = =k 7
k=3 7)
ESV = ESV,; + ESViy + ESV,3 )

where i, j, and k represent land use type (including cropland, forest, grassland, water
body, buildings, and bare land), ecosystem service type (including three provisioning
services, three regulating services, two supporting services, and one cultural service), and
the number of each pixel, respectively. ESV,,1 represents the ecosystem services of food
production, raw material production, gas regulation, climate regulation, biodiversity, and
aesthetic landscape. ESV represents water supply and water flow regulation services.
ESV,3 represents soil and water conservation. NDVI, W, and F are the mean NDVI,
precipitation, and vegetation coverage of the study area, respectively. NDVI;, Wy, and F
are the NDVI, precipitation, and vegetation coverage of the k-th study unit. Ay is the area
of the k-th grid cell, and B;j is the ecosystem service value equivalent coefficient of the j-th
service of the i-th land use type in the k-th grid cell. o is the number of pixels.

Accurately assessing B;j is key and a prerequisite for calculating ESV. To eliminate
the impact of price inflation on B;j, the consumer price index (CPI) was introduced for
calibration, and the “Equivalent Value Per Unit Area of Chinese Terrestrial Ecosystem
Services” revised twice by [27] (Table 1) was referenced to calculate Bjj:

Bijk :eijkBé,k:L...,O (9)
B) = By x " (10)
ag
B—lexliQ- t=1,2,3 (11)
O_ 7 nt:l 1% - 7 <=7
al:ﬂx@xajx...x n (12)
ap ap aq ap Ap—1

where P is the average food price, Q is the average food yield in the study area, 7 is the
number of years, and ¢ represents crop types including wheat, corn, and rice. a,/ag is
the current period year-on-year CPI, 41 /a0 is last period month-on-month CPI. ¢y is the
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ecosystem service value equivalent coefficient of the j-th service of the i-th ecosystem in the
k-th unit, obtained from Table 1, which was determined based on the studies by [28-30].

Table 1. Unit area ecosystem service value equivalent coefficients.

Service Function Cropland Forest Land Grassland Water Body Building Bare Land
Air purification 0.5 3.5 0.8 0 0 0
Regulating Services Climate regulation 0.89 2.7 0.9 0.46 0 0
Water regulation 1.64 1.31 1.31 18.2 0 0.01
Food production 1 0.1 0.3 0.1 0 0.01
Provisioning Services Water supply 0.6 3.2 0.8 20.4 0 0.03
Raw materials 0.1 2.6 0.05 0.01 0 0
Supporting Services Soil conservation 1.46 3.9 1.95 0.01 0 0.03
pporting Biodiversity 0.71 326 1.09 249 0 0.34
Cultural Services Aesthetic landscape 0.01 1.28 0.04 4.34 1.12 0.01

3.3. Constructing Ecological Drought Index
3.3.1. Ecological Water Deficit

Based on the concept and formation mechanism of ecological drought, the ecological
drought index should have the ability to identify the degree of water deficit from an eco-
logical perspective. Most existing studies use the difference between effective precipitation
and ecological water requirement to calculate ecological water deficit [31]. However, this
method treats precipitation as a water supply, ignoring other water resources for vegetation
growth such as groundwater [32]. Therefore, Vicente-Serrano et al. suggested that actual
evapotranspiration of vegetation instead of effective precipitation should represent ecosys-
tem water supply, and the evapotranspiration deficit obtained by subtracting ecological
water requirement can better characterize ecological water deficit (EWD) [33].

EWD = EWC — EWR (13)

where EWC represents ecological water consumption; EWR represents ecological water
requirement.

EWR reflects the maximum water requirement at ideal conditions to maintain ecosys-
tem health and function [34]. This study adopted the single crop coefficient method
recommended by the Federal Agricultural Organization (FAO) to calculate it, which has
been widely used to estimate forest and grassland water requirements [31].

EWR = k. x ET, (14)

where k. is the vegetation coefficient for different periods, including the initial stage, devel-

opment stage, mid-season stage, and late season stage [35]; when the underlying surface

consists of water or bare land, the k. equals 1 and 0.3, respectively. ETy is the reference

evapotranspiration of crops, calculated by the Penman-Monteith formula recommended

by FAO-56.

T, — 0.408A(R, — G) + ’y%uz(es —eg)
A+ (1 +0.34u)

where A is the slope of the saturation vapor pressure—temperature curve; R, is the net radi-
ation flux density at the crop surface; G is the soil heat flux density; -y is the psychrometric
constant; T is the mean air temperature; u; is the average wind speed at 2 m height; ¢; is
the saturation vapor pressure; ¢, is the actual vapor pressure.

EWC refers to the amount of water resources that must be consumed to maintain
normal ecological system functions. It was calculated using the surface energy balance
(SEBS) model. The SEBS model evaluates EWC mainly by estimating evapotranspiration

(15)
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through latent heat flux under different environments, showing stronger robustness and

higher accuracy [36].
Ry = (1 - “)std + eRyyg — SUT(L)I (16)
Go = Ry[Te + (1 — f)(Ts —T.)] 17)
_~ (60—6a)
H = pC, " (18)
rac = {In[(z — do) / z0] }2/ (kzy) (19)
Uy z—dg z —dy Z0m
o= (5 - (P () 20
_H z —dy B z—dy Zon
90_9"‘_ku*pcp {ln< - > ‘I’h< - )+‘I’h( i )] 1)
AE =R, —Gy—H (22)

where R, is net radiation of the land surface; « is surface albedo; Rg,,; and Ry,,; are down-
ward solar radiation and downward longwave radiation; ¢ is surface emissivity; Ty is
radiative land surface temperature measured by the sensor; ¢ is the Stefan-Boltzmann
constant; I'; is the parameter for fully vegetated areas in the region, usually taken as 0.05; I's
is the parameter for non-vegetated areas in the region, usually taken as 0.315; p represents
air density; Cp represents air heat capacity; 6y represents land surface potential temperature;
6, represents air potential temperature at the reference height; r,. is aerodynamic resistance;
z is the reference height (usually 2 m); dj is the height of the horizontal plane; k is the
Karman constant, taken as 0.4; zj is the surface roughness length, m, usually affected by
vegetation height and closure; y is wind speed at the reference height; u is average wind
speed; u* is friction velocity; dy is the height of the horizontal plane; z is the reference height
for obtaining meteorological data, generally 2~10 m; z,, is the dynamic roughness length,
Zoy, is the thermal conductivity relative roughness; ¥, and ¥, are the MOS stability correc-
tion functions for momentum and heat transfer on the surface; 6 represents land surface
potential temperature; 0, represents air potential temperature at the reference height z; C,
is air heat capacity; H is sensible heat flux; g is gravitational acceleration; L is Obukhov
length; 0, is near-surface virtual potential temperature. By iteratively substituting the
above formulas into the computer, u*, H, and L can be obtained, and then the latent heat

flux AE and ET,:
H; =R, — Gy (23)
)\Ew = Rn - GO - Hw (24)
AE AEy — AE H— Hy
ANy=—=1-—=1—-——+— 2
" AEw AEg, H,; — Hy (25)
AE ANAE
A = = 26
Rn - GO Rn - G0 ( )
Rn - G0
ET,=A——— 27
AT (27)

where Hy, and H; represent sensible heat flux under extremely dry and wet conditions;
A, is the relative evaporation ratio; A is the evaporation ratio; A is the latent heat of
vaporization; p,, is water density.

3.3.2. Standardized Ecological Water Deficit Index

Drought indices constructed based on standardization methods have advantages such
as spatial comparability, containing probability information, and ease of calculation and
interpretation [37]. Therefore, this study standardized the ecological water deficit to obtain
the standardized ecological water deficit index to characterize ecological drought. The
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specific steps are as follows: (1) Normalize the ecological water deficit sequence x1i to
obtain the new sequence x2i, with the maximum and minimum values calculated based
on the entire time series for each pixel from January to December over the period from
1991 to 2021. To fit the distribution and avoid extreme values, 0.999 and 0.001 were used
instead of 1 and 0. (2) Fit three commonly used distributions, including Gamma distribution,
log-logistic distribution, and P-III distribution to x2i to obtain distribution parameters,
and select the optimal fitting distribution using the Akaike Information Criterion (AIC).
(3) Integrate the probability density function fx2i(t) of the optimal distribution to obtain the
corresponding cumulative distribution function Fx2i(t). (4) Inversely transform Fx2i(t) to
obtain the standardized ecological water deficit index (SEWDI).

x1; — min(xy;)

%2 = ) —min() < (0.999 — 0.001) + 0.001 (28)
Fri(x) = / frai(t)dt (29)
SEWDI = & (Fy;) (30)

3.4. Vulnerability Assessment of Ecosystems

Based on the ecological drought index at the three-month scale, drought events and
their characteristics (duration, severity, and affected area) in the study area were extracted
using run theory [38]. The relationship model between duration, severity, and ecosystem
service value (ESV) was constructed using C-vine copula to calculate the probability of
ESV loss under different drought scenarios. Finally, the spatial distribution of ecosystem
vulnerability in the study area was obtained through spatial autocorrelation analysis and
Mann-Kendall trend analysis. The specific model-building process is as follows:

Firstly, build a 3D C-vine copula with the ecosystem service value as the central node,
drought duration, and severity. Use bivariate copula functions to jointly model each uni-
variate marginal distribution in pairs to obtain the joint distribution of the three variables.

F(D,S,E) = C(Fp(d), Fs(s), Fe(e)) (31)

fd,s,e) = fafs-ferCae e Cas)e (32)

where Fp(d), Fs(s), and Fg (e) are the marginal cumulative distribution functions of drought
duration, severity, and ecosystem service value; c;, and ¢y | are abbreviations for ¢(Fp(d),
Fe(e)) and c(F(D,E), F(S,E)); and other abbreviations are similar.

Secondly, the Bayesian network conditional probability model is used to solve the
problem of ESV response probability under different drought scenarios.

F(E<e|D>d,S>s)= %

_ Fg(e)—C(Fg(e),Fp(d)) (33)
1—Fp(d)—Fs(s)+C(Fs(s),Fp(d))
C(Fe(e),Fs(s))—C(Fp(d),Fe(e),
1—Fp(d)—Fs(s)+C(Fs(s),Fp

Fs(s))
(d))

Based on Equation (33), the probability that the quantile of ESV less than 20% under
different durations and severity of drought was calculated to generate the vulnerability
map of different ecosystem types and their spatiotemporal distribution.

4. Results
4.1. Land Use Change in North China
We have generated 1 km resolution land use datasets across North China spanning

the period from 1991 to 2021. Figure 4 shows the spatial distribution of land use types in
North China for typical years 1991, 2000, 2010, and 2020. It can be seen from the figure
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that grassland is mainly concentrated in central Inner Mongolia, and forest is mainly in
northeast Inner Mongolia and central Shanxi. Cropland mainly concentrates in southern
Hebei and Shandong.
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48°N T Legend 48°NF
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Figure 4. Spatial distribution of land use types in North China for typical years 1991, 2000, 2010, and 2020.
The Kappa index was computed for three different modes. As shown in Figure 5,
the accuracy of the land use classification without post-processing is relatively low. The
classification that considers only spatial consistency shows moderate improvement, while
the classification that takes both spatial and temporal consistency into account achieves the
highest accuracy. The improvement in accuracy ranges from 0.12 to 0.26.
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y n sp space and fime
0.8
=
5 0.6
2
=
w
k=]
o]
204
g
¥

0.2

0.0

1991

1993

1995 1997 1999 2001

2003 2005 2007 2009 2011

2013 2015 2017 2019 2021

Figure 5. Classification accuracy of land use types under three processing modes.
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The areas of different land use types in 1991, 1995, 2000, 2005, 2010, 2015, and 2021 were
extracted and analyzed. Land use transition information was visualized using Sankey
diagrams (Figure 6). It shows that forest area increased from 366,800 km? in 1991 to
415,600 km? in 2021, mainly converted from grassland. The area of grassland increased
from 652,000 km? in 1991 to 672,700 km? in 2021, primarily converted from cropland.
Since the implementation of China’s Grain for Green policy in 1999, the area of cropland
decreased from 370,790 km? in 1999 to 329,500 km? in 2021, mainly transferred to grassland,
with the largest transfer of 64,560 km? occurring from 2010 to 2015. The area of water body
increased from 2053 km? in 1991 to 8217 km? in 2020. Overall, the ecological conditions in
North China have continuously improved.
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Figure 6. Sankey diagram of land use changes in North China from 1991 to 2021.

4.2. Spatiotemporal Dynamics of Ecosystem Service Values in North China

(1) Overall assessment

The total values of different types of ecosystem service values (ESV) in North China
averaged CNY 18.23 trillion from 1991 to 2021 (Figure 7). Among ecosystem types, forests
had the highest ESV at CNY 8.61 trillion, accounting for 45.84% of the total. Grasslands and
croplands followed with 23.50% and 20.64% of the total value. Water bodies, buildings, and
bare land had relatively small proportions of 6.73%, 2.93%, and 0.36% due to their limited
area, with ESV of water at CNY 1.26 trillion. For ecosystem service functions, regulating
services were most valuable, including water flow regulation (CNY 2.37 trillion, 35.19% of
the total), climate regulation (CNY 0.52 trillion, 7.75% of the total), and air purification (CNY
0.51 trillion, 7.52% of the total). Soil conservation, biodiversity maintenance, and aesthetic
landscape followed at around 29.84% of the total value. Other services had relatively low
values at 5.20% of the total.

(2) Spatial variations

The spatial distribution of mean ecosystem service values in North China generally
decreased from southeast to northwest, consistent with NDVI and precipitation patterns
(Figure 8). Among the six provinces, Inner Mongolia had the highest ESV (54.24%), fol-
lowed by Hebei (16.18%), Shanxi (14.69%), Shandong (11.98%), Beijing (1.98%), and Tianjin
(0.93%). This pattern was influenced by the total ecosystem area and ESV per unit area in
each province.
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Figure 7. Ecosystem service values by (a) ecosystem type and (b) service function.
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Figure 8. Spatial distribution of mean ecosystem service values in North China, 1991-2021.

The interannual trends in ecosystem service value were heavily influenced by cli-
mate change and ecological engineering implementation. China has undertaken major
programs like Grain for Green since 1999, effectively increasing vegetation coverage and
regional ecosystem service values [2]. The spatial dynamics and significance test for total
ESV in North China from 1991 to 2021 are shown in Figure 9. Figure 9 illustrates that
areas with higher increases were concentrated in central Beijing and Hebei, while larger
decreases occurred in eastern Shandong and central-west Inner Mongolia. Significance
testing (Figure 10) revealed increasing ESV trends for most regions from 1991 to 2021, with
significant and extremely significant increases accounting for 50.28% and 16.26% of the
total area. ESV declines covered 30.57% of North China, with 30.34% and 0.24% showing
significant and extremely significant decreases.

(3) Seasonal variations

ESVs were highest in August and decreased towards winter, except for building and
bare land, which were temporally stable. The peak in summer coincides with the rainy
season and peak plant growth (Figure 11). Water bodies reached maximum values of
CNY 0.14, 0.18, and 0.11 trillion in July, August, and September, reflecting the influence of
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precipitation on its ESV. The seasonal distribution of ESV peaked in August and decreased
towards winter, reflecting the influence of monsoonal climate and ecosystem growth cycles
in the study area. In winter, low temperatures, scarce rainfall, and vegetation dormancy or
mortality result in minimum NDVI and ESV. From winter to summer, rising temperatures
and precipitation increase NDVI accumulation rates, enhancing ecological functions and
ESV. From summer to winter, declining temperatures slow or halt biological growth,
reducing ESV. These seasonal impacts are most pronounced for forests and grasslands,
followed by croplands. The ESV of water bodies mainly depends on intra-annual rainfall
distribution, peaking in July-August with high precipitation, indicating a higher per-unit-
area ESV under favorable water and temperature conditions for vegetation growth, and

vice versa.
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Figure 9. Trends of total ecosystem service value changes in North China, 1991-2021.
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Figure 10. Significance test for total ecosystem service value changes in North China, 1991-2021.
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Figure 11. Seasonal variation of ecosystem service values in North China.

4.3. Spatiotemporal Variation of Ecological Drought

(1) Spatial distribution

By calculating the ecological drought index, this study analyzed the spatiotempo-
ral variation of ecological drought in spring, summer, autumn, and winter in North
China during three periods from 1991 to 2021 (1991-2001, 2002-2011, and 2012-2021)
(Figures 12-14). The results show that 1991-2001 was a relatively wet period for the whole
region; 2002-2011 was the most severe ecological drought phase in the past 30 years, es-
pecially in central and eastern Inner Mongolia; and there was some relief in 2012-2021.
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Figure 12. Spatial distribution of mean SEWDI in North China in 1991-2001.
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Figure 13. Spatial distribution of mean SEWDI in North China in 2002-2011.

Spring

Summer

Autumn

o
(=]
SEWDI

°E 100°E

105°E  110°E  115°E  120°E 125°E  100°E  105°E  110°E  115°E  120°E  125°E
Figure 14. Spatial distribution of mean SEWDI in North China in 2012-2021.

(2) Temporal evolution of ecological drought

Figure 15 shows the temporal variation of SEWDI in North China from January 1991 to
December 2021, presenting certain periodic characteristics. During 1991-2000, the SEWDI
generally rose, and the proportion of drought impact area decreased; during 2000-2010,
SEWDI fluctuated downward, and the proportion of drought impact area increased. It is
important to note that, based on the classification standards of the Standardized Drought
Index, a SEWDI value of less than -1.5 indicates a condition of serious drought. Several
serious drought events with the largest intensity and duration since 1991 were identified in
this period. It has been reported that North China suffered from a sustained drought event
in 2002, water resources were tense in the Yellow River Basin, some areas were cut off, and
agricultural, urban, and ecological water use was threatened [39]. In 2009, the most severe
winter—spring consecutive drought occurred in North China since 1951, with the largest
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severity and impact area since 1982 [40]. Afterwards, ecological drought was relieved again
during 2014-2021.
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Figure 15. Time series of monthly SEWDI and proportion of drought area in North China from
Janurary 1991 to Decmember 2021.

Figure 16 shows the spatial distribution of the total duration of all ecological drought
events in North China during different stages. It can be seen that there was an increasing
then decreasing trend during 1982-2021. The proportion of the area with a total duration
greater than 25 months exceeded 50% after the 21st century, while it was only 4.9% before
the 21st century. The total duration reached the maximum during 2002-2011, with the
proportional area greater than 25 months up to 64.3%. Combined with Figures 11-13, it
can be seen that the long-duration and high-intensity ecological drought in North China
during 2002-2011 was mainly distributed in most parts of Inner Mongolia, northern Hebei,
Beijing, and Tianjin. During 2012-2021, ecological drought in Inner Mongolia, Hebei, and
Shanxi alleviated, while Shandong still showed an intensifying trend.
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Figure 16. Spatial distribution of total duration of ecological drought in North China.

4.4. Ecosystem Vulnerability Assessment

(1) Spatial distribution of ecosystem vulnerability

Figure 17 shows the vulnerability of ecosystems to drought in North China in spring,
summer, autumn, and winter. Overall, the central region has a higher vulnerability, mainly
distributed in central Inner Mongolia, northern Hebei, northern Shanxi, Beijing, and Tianjin.
Seasonally, ecosystem vulnerability in North China is highest in autumn and lowest in
winter, with mean vulnerability indices of 0.34, 0.37, 0.32, and 0.30 in spring, summer,
autumn, and winter, respectively.
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Figure 17. Spatial distribution of ecosystem vulnerability in North China.

(2) Vulnerability maps of forest, grassland, and water ecosystems

Figure 18 shows that vulnerability is higher in spring, summer, and autumn and
lower in winter for both terrestrial and aquatic systems in North China. The phenomenon
that forest vulnerability is lower than grassland is more pronounced. For example, for
forests, when autumn drought intensity is —0.75 and drought area proportion is 45%, the
vulnerability index is 0.79, while for grasslands under the same conditions, the vulnerability
index is 0.91.
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Figure 18. Seasonal vulnerability heatmaps for different systems in North China.

5. Discussion
5.1. Ecological Drought and Its Impact on ESV in North China

Over the past three decades, the climatic conditions in North China have demonstrated
significant fluctuations, with alternating wet and dry periods. From 1991 to 2001, the region
experienced relatively high precipitation, largely influenced by the Asian monsoon system,
which played a critical role in regulating summer rainfall [41]. Moreover, the Pacific
Interdecadal Oscillation (PDO) likely enhanced moisture availability during this period,
contributing to wetter conditions [42]. In contrast, the period from 2002 to 2011 was marked
by a severe ecological drought, particularly in central and eastern Inner Mongolia, driven by
rising temperatures and decreasing precipitation [43]. The weakening of the Asian monsoon
circulation further exacerbated these drought conditions [41], leading to significant water
stress that negatively impacted vegetation cover [44]. Following this drought phase, the
period from 2012 to 2021 saw a partial recovery, as increased precipitation and reduced
temperature extremes contributed to the gradual restoration of vegetation and ecosystem
health [45].

It is important to distinguish between ecological drought and ecosystem service
value (ESV). Ecological drought is primarily driven by climatic factors such as changes in
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precipitation and temperature [46], whereas ESV encompasses a broader range of ecosystem
services, including food production, water regulation, climate regulation, and more. While
the Grain for Green program, initiated in 1999, aimed to enhance ESV by promoting
reforestation and ecological restoration, the observed reduction in ESV during the period
after 1999, particularly in 2002 to 2011, can be explained by the severe ecological drought
experienced in North China during this time [47]. Inner Mongolia and other parts of North
China faced significant declines in precipitation and rising temperatures, which led to
reduced vegetation cover and, consequently, lower ESV [43]. This highlights how climatic
factors can have a more immediate and pronounced impact on ecological conditions, even
when long-term restoration programs like Grain for Green are underway.

5.2. Drought Vulnerability across Vegetation Types and Seasonal Variations

The differences in drought vulnerability between forests and grasslands are mainly
influenced by their own drought-resistance characteristics [16,18,20,48]. The forest system
has deep and robust root systems that can better absorb and utilize soil moisture. In
contrast, grasslands have shallow root systems that can only absorb surface soil moisture,
thus being more sensitive to droughts [49,50]. In addition, the canopy and leaves in the
forest system can effectively block sunlight and reduce evaporation to better conserve soil
moisture. In contrast, low-profile grasslands fail to provide adequate shade, leading to
heightened soil moisture evaporation and increased drought susceptibility during summer
and autumn [51]. Moreover, the diversity of vegetation types and species within forest
ecosystems contributes to their resilience and adaptability, whereas the homogeneity of
vegetation and lower species diversity in grasslands amplify their vulnerability [52]. In
summary, the breadth of services provided by forests acts as a buffer, whereas grasslands
are more susceptible due to narrower service capacities.

The seasonal differences in aquatic ecosystem vulnerability are mainly influenced by
intra-annual climate variations [53]. Summer and autumn are more sensitive to droughts,
with vulnerability varying greatly with changes in drought intensity and duration, while
droughts have less impact on aquatic ecosystems in winter and spring. There are two
main reasons: First, precipitation is lower in winter and spring, water storage in reservoirs
and lakes is lower, and water content is lower, so the response is insignificant when
droughts occur [54]. Second, the dormancy of most plant species during winter and
spring entails slowed growth and reduced water demand, thus weakening the response to
droughts. In contrast, plant growth is robust and water demand is high during summer
and autumn, causing plants in aquatic ecosystems to be easily impacted by droughts and
resulting in heightened vulnerability [55]. Moreover, heightened provisioning and cultural
service demands, cascading effects on regulating services, and greater stresses to aquatic
habitats and biodiversity result in summer/autumn droughts disproportionately impacting
ecosystem service values, compared to spring/winter [56].

6. Conclusions

This study introduced a novel approach to assess the spatiotemporal dynamics of
ecosystem service values (ESV) and ecological drought vulnerability in North China from
1991 to 2021. Significant land use changes were observed, with increases in forest and
grassland and decreases in cropland, aligning with China’s ecological restoration programs
and contributing to rising ESV, particularly in Beijing and Hebei. ESV showed clear
seasonal patterns, peaking in summer, and spatial patterns decreasing from southeast
to northwest, driven by climate and vegetation. Ecological drought, particularly severe
between 2002 and 2011 in Inner Mongolia, Beijing, and Tianjin, led to increased drought
duration and frequency, resulting in declining ESV. Grasslands were found to be more
sensitive to drought than forests, and vulnerability was higher in summer and autumn.
However, this study has limitations, including the potential for missed localized impacts
due to dataset resolution and the focus on vegetation-related services. Future research
should incorporate higher-resolution data, a broader range of ecosystem services, and socio—
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economic factors such as water management policies. Overall, this integrated approach
offers valuable insights for drought resilience planning and sustainable development in
North China.
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