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Abstract: Lake Sevan in Armenia is a unique, large, alpine lake given its surface, volume, and
geographic location. The lake suffered from progressing eutrophication and, since 2018, massive
cyanobacterial blooms repeatedly occurred. Although the lake is comparatively intensely monitored,
the feasibility to reliably detect the algal bloom events appeared to be limited by the established in situ
monitoring, mostly because algal bloom dynamics are far more dynamic than the realized monitoring
frequency of monthly samplings. This mismatch of monitoring frequency and ecosystem dynamics is
a notorious problem in lakes, where plankton dynamics often work at relatively short time scales.
Satellite-based monitoring with higher overpass frequency, e.g., by Sentinel-3 OLCI with its daily
overcasts, are expected to fill this gap. The goal of our study was therefore the establishment of a
fast detection of algal blooms in Lake Sevan that operates at the time scale of days instead of months.
We found that algal bloom detection in Lake Sevan failed, however, when it was only based on
chlorophyll due to complications with optical water properties and atmospheric corrections. Instead,
we obtained good results when true-color RGB images were analyzed or a specifically designed
satellite-based HAB indicator was applied. These methods provide reliable and very fast bloom
detection at a scale of days. At the same time, our results indicated that there are still considerable
limitations for the use of remote sensing when it comes to a fully quantitative assessment of algal
dynamics in Lake Sevan. The observations made so far indicate that algal blooms are a regular
feature in Lake Sevan and occur almost always when water temperatures surpass approximately
20 ◦C. Our satellite-based method effectively allowed for bloom detection at short time scales and
identified blooms over several years where classical sampling failed to do so, simply because of
the unfortunate timing of sampling dates and blooming phases. The extension of classical in situ
sampling by satellite-based methods is therefore a step towards a more reliable, faster, and more
cost-effective detection of algal blooms in this valuable lake.

Keywords: remote sensing; inland water quality; large alpine lakes; Lake Sevan; Sentinel-3 OLCI;
Chl-a; harmful algal bloom (HAB); cyanobacteria
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1. Introduction

Lake water quality is a key factor for human well-being and environmental health but is
at risk due to anthropogenic activities leading to nutrient pollution and eutrophication [1,2].
Major drivers are urban and domestic wastewater inputs, agricultural land use and run-off
as well as climate change. For protecting lake ecosystems and fulfilling human needs at the
same time, proper management is needed, and adequate monitoring and understanding of
the lake ecosystem are key prerequisites for successful management. Generally, field mea-
surements (further on called in situ monitoring) are widely accepted as proper instruments
for water quality monitoring. However, in many regions, classical monitoring capacities are
limited, and in the case of large water bodies, they lack monitoring at the required spatial
and temporal scales [3–6]. In this context, remote sensing is a good complement because of
the main advantage to cover vast geographical areas, which shows the great potential to be
used for assessing spatiotemporal dynamics of water quality in a cost-effective and informa-
tive manner. However, remote sensing data are not a one-size-fits-all solution and require
in situ data-based validation to ensure the reliability of the provided information [3,4,6–9].

When using remote sensing methods and data for inland/lake water quality assess-
ment, it is important to define the requirements/characteristics for the remote sensing
sensor (spatial, temporal, radiometric resolution, etc.) based on the research objectives [10].
The size of the investigated lake defines the required spatial resolution of the sensors.
However, due to the short generation time and life cycle of phytoplankton, in addition to
other sensor characteristics, high temporal resolution is similarly important when studying
lakes [11].

The Copernicus Sentinel-3 OLCI instrument, launched in February 2016, captures
light across 21 spectral bands (390–1040 nm). It has been providing accessible prod-
ucts since 2016, which enables the monitoring of water bodies at 300 m resolution and
daily scales (https://sentiwiki.copernicus.eu/web/s3-olci-instrument (accessed on 21 July
2024)). Sentinel-3 OLCI has great potential for studying spatial–temporal patterns of water
optical characteristics [3,9,12,13]. Although Sentinel-3 OLCI’s main mission is defined as
“to measure sea surface topography, sea and land surface temperature, and ocean and
land surface color with high accuracy and reliability to support ocean forecasting systems,
environmental monitoring and climate monitoring” (https://sentinels.copernicus.eu/web/
sentinel/missions/sentinel-3 (accessed on 20 July 2024)), its characteristics make it similarly
attractive for inland waters, especially for water bodies with large surface area so that the
300 m resolution delivers multiple grid cells and the required spatial representation. Also,
the temporal resolution of Sentinel-3 OLCI as the main advantage over data from other
sensors (e.g., Sentinel-2) should be highlighted, which enables us to ensure reliable time
series of input data [9,12,13].

Lake Sevan is the largest freshwater lake in the Caucasus region (ca. 1278 km2,
38.1 km3) and is an ecological treasure hosting endemic species [14,15]. In the last century,
Lake Sevan suffered from ecologically inadequate management, resulting in a reduction
in the water level (maximum 19.24 m, currently ca. 15 m), eutrophication, cyanobacterial
blooms, introduction of new fish species and almost complete extinction of two endemic
fish subspecies [14–17]. Additionally, field monitoring was limited due to limited economic
and infrastructural capacities in the past but has improved considerably in recent years.
Current monitoring, however, of this large lake focusses on sampling at the deepest sites
of the two lake basins and hence cannot cover the spatial complexity of the water body,
particularly with respect to phytoplankton dynamics. Furthermore, the sampling frequency
of monthly field samplings does not cover the phytoplankton dynamics and runs at risk
to overlook blooming events and chlorophyll (CHL) peaks. Remote sensing is an option
to overcome these limitations given the abilities of Sentinel-3 OLCI. However, previous
and some current studies of Lake Sevan using remote sensing were not able to unlock
this potential in eutrophication and algal dynamics monitoring [18–25]. Furthermore,
Lake Sevan has some features that interfere with standard procedures in satellite-based
algal monitoring: first, Lake Sevan is a high-altitude lake located about 1900 m a.s.l., and

https://sentiwiki.copernicus.eu/web/s3-olci-instrument
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3
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second, the lake often shows large-scale calcite precipitation (lake whitening) that heavily
changes the optical water properties. Therefore, this study aimed to develop an approach
of satellite-based detection of algal blooms in the reality of methodological challenges and
data-scarce environments with the example of Lake Sevan. For this purpose, the following
research objectives were defined:

1. Collect available monitoring information about algal blooms from in situ monitoring
and expert-based assessment of algal blooms based on the visual inspection of true-
color RGB satellite imagery.

2. Identify a robust remote sensing-based indicator to detect algal blooms and to enable
operational monitoring.

3. Characterize the water temperature conditions during blooming phases in the lake.
4. Identify the added value of using remote sensing for monitoring algal blooms in Lake

Sevan and its information value for decision makers.

2. Materials and Methods
2.1. Study Area

Lake Sevan (40◦23′N, 45◦21′E) is a large, high mountain lake located in Gegharkunik
province in Armenia (Table 1, Figure 1). It is Armenia’s largest water body and the largest
freshwater resource for the Caucasian region [15]. Lake Sevan is divided into two parts
by an underwater sill—Big Sevan and Small Sevan. Lake Sevan is fed by 28 rivers and
streams, the Arpa–Sevan tunnel (which transfers water from neighboring catchments of the
Arpa River and Vorotan River), precipitation and also, to a small extent, by groundwater.
Hrazdan Rriver is the only outflow and about 84% of all inflowing water into Lake Sevan
is lost by evaporation [26]. The ratio of the surfaces of Lake Sevan and its catchment basin
is small and about 1:3 (1278 km2 and 3649 km2, respectively) [15]. Most inflows enter the
Big Sevan basin while the outflow is from Small Sevan.

Beginning in the 1930s, the water level of Lake Sevan was lowered in order to reduce
the surface area and, thus, the evaporative water losses and to exploit the withdrawn water
for hydropower and irrigation [27].

In addition to the artificial lowering of the water level, increasing population and
increasing agriculture caused eutrophication [28–30]. In the 1970s, 1980s and in recent years,
cyanobacterial blooms occurred in Lake Sevan [16,31–33], indicating ongoing deterioration
of the water quality. For more details on Lake Sevan, see [14,15,17].

Table 1. Morphometric characteristics of Lake Sevan (state of 1 January 2020; data provided by the
Hydrometeorology and Monitoring Center SNCO of the Ministry of Environment RA).

Small Sevan Big Sevan Entire Lake Sevan

Water level [m.a.s.l.] 1900.43 1900.43 1900.43
Surface area [km2] 338.314 939.53 1277.844
Volume [km3] 14.0647 24.0228 38.0875
Maximum depth [m] 80.5 30.5 80.5

Inflows 4 rivers 24 rivers + Arpa −
Sevan tunnel

28 rivers + Arpa −
Sevan tunnel

Outflows 1 (Hrazdan River) - 1 (Hrazdan River)
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at 70 °C for 2 h and analyzed by a spectrophotometer (DV-8200; Drawell Scientific, Chong-
qing, China) measuring absorbance at 665 nm according to ISO10260:1992. 

The in situ measurements of surface water temperature were carried out from 2018 
to 2021 at a monthly scale in both sub-basins (Table 2), Big Sevan (BS) and Small Sevan 
(SS), at a depth of 0.5 m with digital thermometers (ST-9265; ATM Limited, Chashan, 
China and HI98501; Hanna Instruments, Nusfalau, Romania) immediately after water re-
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Figure 1. Geographical location of Lake Sevan and locations of in situ measurements.

2.2. In Situ Measurements for Chlorophyll and Water Temperature

Field campaigns of in situ measurements have been conducted since 2018 on a monthly
basis. In situ measurements at two locations are available for the years 2018–2020 and
at three locations for 2021 (Table 2). The water samples for chlorophyll-a (CHL) analysis
were collected using a Molchanov bathometer (GR-18, Gidrometpribor, Moscow, Russian
Federation) at the following depths: 0, 0.5, 5, 10, and 20 m. Water was filtered through fiber
filters (Whatman GF/F, Whatman, Maidstone, United Kingdom) and stored in a freezer at
−20 ◦C until lab analysis. CHL was extracted from filters using 90% ethanol at 70 ◦C for
2 h and analyzed by a spectrophotometer (DV-8200; Drawell Scientific, Chongqing, China)
measuring absorbance at 665 nm according to ISO10260:1992.

Table 2. Geographical locations of the in situ measurements in Lake Sevan.

N Sampling Period Sampling Site Latitude Longitude

1 April–November
2018–2021 Big Sevan (BS) 40◦22′21′′N 45◦22′42.30′′E

2 April–November
2018–2021

Small Sevan
(SS_1) 40◦36′8.16′′N 45◦3′32.64′′E

45.059067E

3 April–November
2021 Fish Farm (SS_2) 40◦28′0.40′′N 45◦6′23.10′′E

The in situ measurements of surface water temperature were carried out from 2018 to
2021 at a monthly scale in both sub-basins (Table 2), Big Sevan (BS) and Small Sevan (SS),
at a depth of 0.5 m with digital thermometers (ST-9265; ATM Limited, Chashan, China and
HI98501; Hanna Instruments, Nusfalau, Romania) immediately after water retrieval.



Remote Sens. 2024, 16, 3734 5 of 18

2.3. Remote Sensing
2.3.1. Chlorophyll Concentration, Secchi Disc Depth and Harmful Algal Bloom
(HAB) Indicator

We used Sentinel-3 OLCI observations within the time period from April to November
for the years 2017 to 2022 (i.e., one year more than in the in situ sampling mentioned above).
Overall, in these 6 years, 1226 scenes were available but we excluded scenes with low
quality due to fog or sun glint and with cloud cover of more than 20% over the area of
interest (AOI). In consequence, 750 scenes with 300 m spatial resolution were considered,
representing 61% of the satellite overcasts. Note, however, that during summer, i.e., when
the blooms occurred, the percentage of unusable satellite scenes was far below 30% simply
because of low cloud abundance.

These scenes were processed for the target parameters CHL, Secchi Disk Depth (SDD)
and a qualitative harmful algal bloom (HAB) indicator using EOMAP’s Modular Inversion
and Processing System (MIP) [34,35]. The MIP’s physics-based architecture includes all
relevant processing steps to guarantee a robust, standardized and operational retrieval of
water properties from satellite data sources. The workflow, as pictured in Figure 2, contains
all the necessary steps towards a reliable retrieval of in-water constituents, such as a land–
water–cloud differentiation, adjacency correction and a coupled retrieval of atmospheric
and in-water properties [36]. The MIP modules were not accessed directly, but through the
browser-based interface of EOMAP’s eoApp® Aqua.
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CHL within the MIP environment is derived from its pigment-specific absorption
spectrum, with 1 µgL−1 CHL being equal to 0.035 m−1 of pigment absorption at 440 nm.
Remotely sensed CHL, as used within this context, is interpreted as total chlorophyll a. SDD,
on the other hand, is calculated from the attenuation coefficient Kd, using total in-water
absorption and scattering, both of which are physically derived within the MIP [37,38].

Lastly, the HAB indicator is retrieved from the residuals of the modeling procedure
carried out within the MIP as outlined in [34]. Although the fingerprints of typical cyanobac-
terial pigments such as phycocyanin and phycoerythrin are not explicit outputs of the
physics-based radiative transfer model, their absorption and scattering are visible in the
different optical satellite bands. As a matter of fact, these features create notable spectral
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mismatches between the modeled and measured radiances, which are then translated into
occurrence probability classes, ranging from 1 (no HAB) and 2 (low probability of HAB) to
3 (medium probability) and 4 (high probability). For details of the underlying algorithm,
refer to [34].

MIP-processed data come with a pixel-wise quality indicator that ranges from 0 (worst)
to 100 (best). It takes the most relevant influence factors into account, such as atmospheric
properties, illumination intensity or sensor view angles. Pixels with a quality lower than 50
are automatically flagged and therefore not contained in the resulting raster files. Further
filtering was later carried out during the statistical analysis (see Section 2.5).

2.3.2. Water Temperature

The Copernicus Global Land Operations (C-GLOPS) Lake Water provides thermal
lake water products of lake surface water temperature (LSWT). LSWT is the temperature of
the water at the surface skin of the water body. The products are based on observations in
infrared light and visible light using The Sea and Land Surface Temperature Radiometer
(SLSTR) instruments on Sentinel-3A and Sentinel-3B and they are freely available on the
Copernicus Global Land Portal (https://land.copernicus.eu/en (accessed on 21 July 2024)).
The parameters are provided as 10-day averages on a set grid that starts on the 1st, 11th and
21st day of each month and mapped at a resolution of 1000 m for LSWT [39]. For C-GLOPS
LSWT products, the data are taken as the 10-day average to maximize spatial coverage and
avoid gaps of the monitored parameter. Therefore, to obtain a time series of the same day
in accordance with the in-situ measurements, we used linear interpolation to obtain the
respective daily values.

2.4. Expert-Based Bloom Detection by Inspecting RGB Orthophotos

Gevorgyan et al. (2020) had already documented that algal blooms of very high
intensity are well visible on the RGB images from satellites for Lake Sevan [16]. In addition
to the physics-based processing of remote sensing data, we therefore defined a simple and
pragmatic approach in order to identify blooming events based on the RGB orthophotos.
All RGB scenes from 2017 to 2022 were inspected by two water quality experts (M. Schultze
and K. Rinke) via the website https://dataspace.copernicus.eu/ (accessed on 21 July
2024); they assigned YES or NO as simple binary variables to each scene with respect to
algal blooms. Scenes which appeared to have been too influenced by clouds, sun glint
or whitening because of calcite precipitation were excluded by the experts, resulting in
700 scenes evaluated by YES or NO. The experts were unaware of the remote sensing-based
results prior to their judgment. All scenes with a visible scum formation and a greenish
color were marked as “blooming”.

We are fully aware that this judgment is subjective and other experts may decide
slightly differently, so the reproducibility of the results was restricted compared to that of a
completely mathematical procedure. However, all authors agreed that the massive bloom
events are well recognizable on the RGB scenes and perceptions were congruent between
all authors. Nevertheless, in order to make this expert knowledge more transparent to the
readers, we included exemplary RGB images of Lake Sevan, showing either an algal bloom
or no bloom (Figure 3). Note that expert judgment is a binary variable, i.e., if a bloom
event was noticed only in some larger parts of the lake, say in most of the surface area of
Big Sevan, it counted as a bloom event. In Lake Sevan, algal blooms are often spatially
heterogeneous and do not necessarily affect the whole lake at the same level due to wind
induced transport and the differential growth of algae. In conclusion, an expert judgment
of bloom = YES may involve a bloom event that is restricted to some parts of the lake (see
Figure 3) and is not detectable all over the entire lake.

https://land.copernicus.eu/en
https://dataspace.copernicus.eu/
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2.5. Statistical Analysis

In order to understand the relationship of the data received from the different sources,
we made a comparison of in situ measured and remotely retrieved CHL data. For this
purpose, time series were extracted around the three stations (Small Sevan, Big Sevan and
Fish Farm) using a 5 × 5 pixel box around the coordinates. Compared to smaller and
larger spatial aggregations, this pixel box was found to give robust estimates, and also, a
methodological study on spatial aggregations supported a 5 × 5 pixel aggregation [40].
Within these boxes, statistics and percentages of valid pixels from all pixels within the box
were calculated. Then, time series were filtered for “valid pixel count” (at least 5 pixels)
and for the median of total quality (QUT_med) for each box of each scene in time series
(threshold: 75).

For a better comparison of in situ-measured multi-depth and remotely sensed CHL,
the in situ data were weighted based on the z90 depth coming from the satellite products.
z90 is the depth to which 90% of the water-leaving signal can be attributed. This weighting
was conducted using all measurements between the surface and z90, and then interpolating
them in steps of 0.1 m until the z90 depth was reached. The weights for each of these “layers”
were then calculated based on the Lambert–Beer law, assuming exponential attenuation of
light with depth [40,41] (Equation (1)):

NW = exp(−1·Depth·Kd) (1)

where NW is a normed weight, and Kd (m−1) is the spectral attenuation coefficient and is
calculated as follows (Equation (2)):

Kd = −ln(0.1)/z90 (2)
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Afterwards, a weighted average (CHL) of all these values were calculated according
to the following formula (Equation (3)):

CHL − a = ∑z90
i=0.1 NW(i)·interpolated CHL − a (i)/∑z90

i=0.1 NW(i), (3)

We compared in situ-measured and remotely derived CHL values by calculating
Pearson correlation coefficients. From bloom detection, we assumed the expert-based
RGB inspections as true observations of blooms and applied decision tree (DT) models
in order to identify robust thresholds in remotely sensed water quality variables that can
be used for a satellite-based bloom detection [42,43]. Decision trees (DTs) are effective
and widely-used statistical methods in classification problems. Decision trees identify
binary data-splitting criteria that maximize the explained variability. They enable to
identify valuable patterns [44,45]. DT classifiers are effectively applied in a variety of
fields, including radar signal classification, character recognition, remote sensing, medical
diagnosis, expert systems, speech recognition, etc. [46].

In our study, in order to determine the best splitting points and to pinpoint the
most significant features among the water quality parameters, we extracted decision
thresholds using DT models. These thresholds represent critical points at which the DT
model “decides” to split the data.

The determination of these thresholds helped us to, for example, identify a critical
value of the HAB indicator that gives the best overlap with the RGB-based classification and,
by which, offers a data-driven basis for identifying the conditions that might characterize
blooms. Afterwards, a contingency table was applied for the validation of the classification
results. All these analyses were performed on Jupiter Notebook web application using
Python programing language.

Linear models and generalized models (GLM) were used for analyzing CHL, SDD,
and LWST conditions in relation to blooming and non-blooming conditions. Whenever the
blooming state was the response variable, i.e., a binary response variable, we applied a
logistic regression using a GLM with a binomial error structure. In this case, a pseudo-R2

was computed according to McFadden (1972) based on the explained deviance compared
to the null model deviance [47]. All linear models were computed in R under Version
R4.4.0 [48].

3. Results

In situ data reflected the seasonal development of temperature and plankton and
characterized Lake Sevan as a clear water lake as the Secchi depth ranged between 3
and 7 m and chlorophyll mostly remained below 10 µgL−1 (at 0.5 m depth). Although
during the summer chlorophyll concentrations are sometimes slightly higher than in
the cold season, this is not always the case. Similarly, conditions in early spring can
present near zero chlorophyll or can show values up to 10 µgL−1. Water temperature
is therefore a weak predictor of chlorophyll and Secchi depth and correlations among
these two variables with temperature remain insignificant. As expected, Secchi depth and
chlorophyll were negatively correlated, indicating that algal biomass significantly affects
transparency (p < 0.001). All these conditions switch to a totally different state when a
bloom is occurring, chlorophyll content exceeds far above 10 µgL−1 and Secchi depth falls
below 2 m. In this blooming state, the formation of surface sums is also observed, leading
to about 10 times higher chlorophyll concentrations in the topmost surface layer compared
to conditions at a 0.5 m depth. However, since our in situ monitoring caught only two
blooming conditions (out of 121 samplings), a statistical assessment of the blooming state
was impossible based on the monitoring data.
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3.1. Comparison of In Situ-Measured and Remotely Retrieved Data
3.1.1. Chlorophyll

In situ CHL data in Lake Sevan mostly remained low and below 10 µgL−1. Only two
observations were larger than 10 µgL−1 and only one sampling was really reported as a
cyanobacterial bloom by the sampling team (in situ CHL at 41 µgL−1) measured on 25 July
2018 in Small Sevan (SS1). Another larger value at 17 µgL−1 measured on 15 July 2020 in
Big Sevan (BS) was not an algal bloom as reported by the sampling team. A Grubbs outlier
test indicated both values as outliers (p < 0.001), documenting that these values deviate
strongly from the others. In situ and remotely sensed CHL were significantly correlated
with Pearson’s r at 0.56 (Figure 4). This value, however, was largely influenced by the
outliers and leaving them out improved the correlation (r = 0.63). This was particularly
true for a regression forced to have the intercept at zero, which was close to the 1:1 line (Fit
line) and obtained a coefficient of determination of R2 = 0.85 (Figure 4 and Figure S1).
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Although the exclusion of outliers improved the statistical properties of the regression,
it also points to a problem as satellite measurements were found to have not captured higher
CHL values precisely enough (see the Section 4). The high CHL values may be defined
as the outlier from a statistical point of view and indeed represent a different state of the
lake (blooming state), but they are nevertheless true values. The visual impression to the
sampling team and the RGB images clearly approved the blooming state and corresponding
high in situ chlorophyll content. We therefore conclude that the satellite-based CHL value
is not a powerful indicator of blooms.

3.1.2. Water Temperature

The results of satellite-derived LSWT agreed well with in situ point measurements
and reproduced the seasonal cycle of surface temperature. Linear regressions showed high
coefficients of determination for satellite vs. in situ-based LSWT for Big Sevan (R2 = 0.96,
p < 0.001) as well as for Small Sevan (R2 = 0.96, p < 0.001) (see Figure 5). This agreement
signifies the alignment of values between in situ and satellite-derived data.
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Figure 5. Comparison of in situ and satellite-based lake surface water temperature (LSWT) for Big
Sevan (left) and Small Sevan (right).

3.2. Bloom Detection by RGB Orthophoto Evaluation and Satellite-Based HAB Indicator

The expert-based evaluation of RGB scenes identified bloom events in five out of six
observation years (Figure 6, no bloom in 2017). All bloom events took place in high summer.
Bloom intensity was not quantified in RGB image evaluation, but the bloom in 2021 only
shortly persisted and was observed only during one satellite overcast.
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Since the satellite-based HAB indicator is a semi-quantitative variable (values from 1
to 4; see Methods), we used a decision tree (DT) model in order to identify a threshold HAB
indicator that is best suited for reproducing bloom observations from RGB inspection. The
DT provides a data-based estimate and connects the remotely sensed HAB values with the
expert-based RGB inspections separating them into bloom and non-bloom conditions. In
line with our expectations, values of HAB > 2 were identified as the most reliable threshold,
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and the fraction of pixels with HAB > 2 in each scene showed patterns that highly complied
with bloom events from RGB inspections (Figure 6). Given the size of Lake Sevan, every
scene has a high number of pixels (>14,000 pixels in cloud-free conditions). We defined
a lake-wide bloom whenever the median HAB value, taken over all valid water pixels
from a given scene, was higher than 2. This satellite-based bloom definition showed good
agreement with the RGB-based indication as, from the analyzed 700 scenes, 671 were
correctly classified (Table 3). No false positives were noticed, and in 29 scenes, a bloom was
identified in the RGB inspection but was not detected by the HAB (i.e., false negatives).
These false negatives, however, were associated with early or later phases of the blooms
and none of them led to missing a full blooming phase. In other words, every year and
season, a blooming phase was indicated in the RGB inspection, and at least some HAB
results also indicated a bloom.

Table 3. Contingency table comparing bloom detection based on RGB inspections and HAB indicators;
the overall accuracy of the HAB classification (assuming the RGB-based classification as the best true
indicator) was 95.8%.

RGB_Binary

NO YES

HAB
NO (HAB ≤ 2) 643 29 672
YES (HAB > 2) 0 28 28

643 57 700

Notably, the in situ sampling, which took place at a monthly scale, overlooked algal
blooms in four out of five blooming years. Only the algal bloom in 2018 was registered
in the in situ monitoring (CHL at 41 µgL−1). This fact clearly points to the added value
of algal bloom detection by satellite-based bloom detection, as both RGB inspections and
HAB indicators also found algal blooms in 2019, 2020, 2021 and 2022. (Figure 6). This
implies that the detection of blooming events per satellite imagery is more reliable than by
classical in situ sampling. The processing via a visual expert inspection of RGB orthophotos
has some subjective components, but the delineation of the HAB indicator enables a fully
deterministic, mathematically based algorithm that can also be applied in operational mode.

Neither CHL nor SDD alone were good indicators of a bloom as both variables showed
considerable overlapping value ranges between bloom and non-bloom conditions, although
blooming times were characterized by often higher CHL values, reduced SDD and increased
LWST (Figure 7). These patterns are clearly reflected by the statistically significant effect of
CHL, SDD and LWST on the blooming state in a logistic regression (Table 4). These results
clearly show that a blooming state becomes more likely at high CHL, low SDD and high
LWST, irrespective of whether or not the bloom identification was realized by RGB or HAB.
In case of RGB-based bloom detection, even an additive effect from warmer LWST and
high CHL became significant (Table 4).

We also analyzed multiple linear models of CHL, SDD and LWST as response variables
and the blooming state and detection method as explanatory variables, i.e., the comple-
mentary definition of dependent and independent variables. They also clearly showed
significantly higher CHL values during the blooming state (Table 5). Similarly, SDD was
significantly lower and LWST was significantly higher during blooms (Table 5). The method
of bloom detection, however, was never significant, i.e., bloom detection by either RGB
orthophoto evaluation or by HAB indicator delivered comparable results (Table 5). This is
an important added value documenting that the bloom detections by RGB and HAB are
very similar to each other.
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Figure 7. Violin plots of CHL (upper), SDD (middle) and LWST (lower) values contrasting between
blooming and non-blooming states. Differentiation of blooming state was either realized by RGB
imagery evaluation (left) or by HAB indicator (right).

Table 4. Results of a logistic regression of the effect CHL, SDD and LSWT (explanatory variable) on
the blooming state (as binary response variable). Statistics were calculated for single models (upper
part) and for the best multiple model. Bloom detection was either conducted by HAB or RGB. The
term “Chlorophyll/LSWT” denotes the interaction between both variables.

Single-Factor Models’

Response Variable Explanatory Variable p Pseudo-R2

HAB-based bloom Chlorophyll <0.001 0.36
detection Secchi Depth <0.001 0.23

LSWT <0.001 0.26
RGB-based bloom Chlorophyll <0.001 0.33
detection Secchi Depth <0.001 0.22

LSWT <0.001 0.24

Best Multiple Models

HAB-based bloom Chlorophyll <0.001 0.59
detection LSWT <0.001
RGB-based bloom Chlorophyll 0.005 0.58
detection LSWT <0.001

Chlorophyll/LSWT 0.048
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Table 5. Results of the statistical analyses of CHL, SDD and LSWT for different detection methods
and blooming states by a multiple linear model.

(A) Chlorophyll(CHL)Concentrations

Variable Estimate Std. Error t value p
Intercept 4.767 0.082 57.9 <0.001

Bloom = TRUE 4.061 0.236 17.2 <0.001
Method = RGB −0.19 0.116 −1.63 0.103

(B) Secchi Disc Depth (SDD)

Variable Estimate Std. Error t value p
Intercept 2.05 0.035 58.21 <0.001

Bloom = TRUE −0.98 0.101 −9.77 <0.001
Method = RGB 0.05 0.046 0.93 0.354

(C) LakeWater Surface Temperature (LWST)

Variable Estimate Std. Error t value p
Intercept 15.4314 0.1837 83.99 <0.001

Bloom = TRUE 4.5354 0.5261 8.621 <0.001
Method = RGB −0.2119 0.2592 −0.817 0.414

Our analysis also pointed to the importance of temperature as a key environmental
driver as blooms only occurred when surface temperatures were high (at least above
approximately 20 ◦C). Whenever surface temperatures rose very high, e.g., higher than
20 ◦C, the lake almost always ended up in a blooming state, i.e., exceptionally high water
temperatures were a major promoter of algal blooms.

4. Discussion

Our study targeted fast algal bloom detection by satellite-based observations. This
calls for high observation frequency and made the daily overcasts of Sentinel-3 OLCI very
promising. Besides daily overpass rate, the high number of spectral bands allows us to
expect a good detection of bloom conditions, because a high number of spectral bands
allowed for a better and more robust modeling of the water-leaving radiances and, hence,
the respective contributions of in-water ingredients. This expectation was not fulfilled,
however, because the detection of CHL, a key variable for algal blooms, showed only a good
correlation between in situ and remote sensing-based values as long as CHL concentrations
remained low (i.e., under non-bloom conditions). It is already documented in the literature
that certain dissolved or suspended water constituents can hinder CHL detection by remote
sensing [49]. We nevertheless identified a reliable procedure for bloom detection based on
a specifically designed, semi-quantitative harmful algal bloom (HAB) index that reliably
detected blooms. This HAB explicitly makes use of spectral deviations from the expected
chlorophyll signal and translates it into a categorial bloom indicator that is particularly
sensitive for cyanobacteria [34].

A crucial component and unconventional procedure that enabled us to validate the
HAB indicator was an expert-based visual inspection of RGB images from all 700 satellite
scenes selected by the experts as undisturbed by clouds, sun glint, etc., in this study. This
expert inspection resulted in the detection of 57 blooming scenes. Each bloom event in
Lake Sevan identified by this expert inspection was also identified by the satellite-based
HAB indicator, although sometimes, experts detected more scenes (i.e., a longer persistence
of the bloom) than the HAB indicator. In that sense, the expert-based assessment is more
sensitive than the HAB indicator. We nevertheless believe that the RGB-based classification
conducted by experts was an important and creative methodological approach for fast
bloom detections given the fact that algal blooms are well recognizable by human eyes
(see Figure 3). This also points to the fact that a visual inspection of RGB photos can reveal
information that may become lost in automatized workflows.
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4.1. Limitations of Our Approaches and Results

The lack of short-wave infrared (SWIR) bands beyond ~1000 nm in Sentinel-3 OLCI
is problematic under certain circumstances in differentiating between contributions from
CHL and atmospheric effects [50]. This may lead to biased estimates under conditions of
haze, sun glint or blooming events. This is indeed reflected in our remote sensing-derived
CHL values, which are missing high CHL values, probably due to an overestimation of
atmospheric effects and therefore an underestimation of CHL under blooming conditions.
Besides the technical limitations of Sentinel-3 OLCI in terms of SWIR coverage, its daily
overpass rate is an invaluable advantage over other sensors for the monitoring of dynamic
aquatic systems, particularly for bloom detection. For this reason, the alternative product
from Sentinel-2-MSI is unsuited given its long return period of five days. Yet, Sentinel-2
can be a good compromise whenever a simple assessment of CHL concentrations in a given
lake over coarse time steps is sufficient (e.g., assessment of average trophic state).

We used RGB images to separate blooming from non-blooming scenes. This was time-
consuming, requires specialists, and, most importantly, is subjective. The latter is a weak
point in terms of reproducibility as different experts may have ended up with different
bloom recognitions. But at the same time, they provided simple and clear information.
We also noted that the expert inspection of RGB images allowed for identification of more
bloom satellite scenes than on the basis of the HAB (Table 2) although all RGB-based bloom
events had at least one positive HAB-based detection. In other words, we never missed
a bloom event when an HAB indicator was used. However, the subjective component
in our expert evaluation has consequences for the sensitivity of bloom detection. While
strong and widespread blooms will be evaluated uniformly by everyone, starting blooms
with extensions that are still limited will probably sometimes be evaluated differently
by different persons. However, high concentrations of phytoplankton biomass are easily
visible, particularly when accumulating at or close to the water surface, as is often the
case for cyanobacteria and even when limited to parts of a lake or when forming stripes
or other patterns, as visible in Figure 3. Such conditions are often not identified when
calculating the median of satellite-measured HAB or chlorophyll since the median remains
below the thresholds for bloom indication. RGB images have also been used elsewhere to
support results from in situ data [16,51–53]; their information is then also often evaluated
in a qualitative setting. This is also true in our case where the RGB inspection ended up
in a simple binary variable (blooming YES or NO). Our results demonstrate that the use
of RGB images has the potential to identify bloom conditions and, thus, can be used to
evaluate the sensitivity of the HAB indicator for bloom detection. To our best knowledge,
this unconventional approach has not been used before but allows for the application
of remote sensing for lakes with limited in situ data for chlorophyll or unusual water
properties. Although the HAB indicator is a truly reproducible and objective indicator for
algal blooms (in contrast to the RGB-based expert assessment), it remains to not be a fully
quantitative measure.

4.2. Implications from This Study for Lake Management

A very important aspect of our analysis of satellite-based bloom observations was the
fact that we detected blooms in almost every year except 2017 (note that 2021 had only
a weak bloom). In situ sampling, however, detected only the bloom in 2018. This weak
capacity of bloom detection in in situ sampling is simply the consequence of the fact that a
bloom is often shorter than the in situ sampling interval (one month). In many years, blooms
were taking place between samplings and had durations of roughly 2–3 weeks, i.e., in the
previous sampling, they were not yet emerging, and in the following sampling, the majority
of algal biomass had already disappeared from the water column; the heterogeneity of the
spatial distribution of the phytoplankton in a large lake like Lake Sevan and the limited
spatial coverage by three sampling sites add to this. Notably, some of these blooms that
were not detected by in situ sampling but detected by satellite were also proven by citizens
living on the shore of the lake.
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In general, ecosystems with high dynamics also require appropriate sampling in-
tervals [54] and a classical field sampling on a monthly basis is unable to capture these
dynamics. The inclusion of remote sensing in classical monitoring programs is therefore
valuable because it also allows us to track the dynamics on shorter time scales—at least
as long as the size of the lake allows for the application of Sentinel-3 OLCI data. In such
a combined monitoring strategy, the in situ-sampling assures the assessment by fully
quantitative and real observations while the satellite data provide better spatial and tem-
poral resolutions at a lower absolute accuracy. We see great potential in such a combined
monitoring technique when it comes to early-warning systems for algal blooms where it
will be essential to detect the bloom at a very early stage and where sampling intervals
of several weeks are unable to realize this. In this respect, it makes sense to organize the
lake monitoring in a triggering mode so that bloom detection via satellite (irrespective of
whether or not it is RGB-based or HAB-based) triggers a field sampling in order to ground
truth the remotely sensed information and to improve our system’s understanding.

We also see a large application area for remote sensing in water quality monitoring in
the context of climate impact studies focusing on extreme events. Cyanobacterial blooms
predominantly occur when it becomes very hot [55] and recently emerging heat waves
support the occurrence of algal blooms [56,57]. Hence, satellite-based monitoring is an
essential tool in lake management in order to assess the climate sensitivity of a given lake
or to guide the design of corresponding climate-adaptive management strategies. Another
advantage of remote sensing-based observation is that it can be applied to water bodies
where in situ data are missing. In case of Sentinel-3 OLCI, the observational information
from the satellite dates back to 2016 and hence already covers almost a decade.

4.3. Future Needs and Next Steps

The use of remote sensing for the quantification of chlorophyll failed mainly for high
concentrations of chlorophyll in Lake Sevan, i.e., particularly during bloom conditions.
However, the same essentially applied for the in situ monitoring. We were not able to
catch the blooming phase each time and particularly at its peak. As already mentioned
above, the temporal (monthly sampling) and spatial resolutions (tree sampling sites only)
were not high enough. Therefore, a particularly targeted monitoring, triggered by the
identification of bloom conditions via remote sensing, should be operated. Once there is an
efficiently high number of in situ data available, a better understanding of the reasons for
the insufficient quantification of chlorophyll by remote sensing during bloom conditions
will also hopefully be possible. This will enable us to identify approaches for the improved
application of remote sensing for chlorophyll quantification in Lake Sevan and other
comparable lakes.

The above-mentioned triggered monitoring can even be based on HAB-based bloom
detection in smaller parts of Lake Sevan, i.e., when bloom starts to develop. For this, the
data evaluation needs to be performed not only by separating the data into Small and
Big Sevan datasets but also into a higher number of sections, each having a surface area
of, for instance, 50 to 100 km2. However, this also requires that the sampling is carried
out in more than two or three locations only, as each defined section of the lake needs its
representative sampling.

Finally, we asked ourselves whether the expert-based evaluation of RGB photos,
which turned out to be a crucial step in setting up and validating the satellite-based
bloom detection, could be converted into an automatized procedure. Machine learning
in the context of image recognition may be a promising tool. In general, we realized that
RGB photos can contain valuable information that add on the far more complex optical
information provided by spectrally resolving sensors like OLCI. This unused potential
should be exploited in the future.
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5. Conclusions

We showed that algal bloom detection in Lake Sevan failed when it was just based on
CHL, but we obtained good results when RGB photos were analyzed or the satellite-based
HAB indicator was applied. These methods provide reliable and very fast bloom detection at
the scale of days. The utilization of RGB photos as additional information turned out to be a
decisive step in bloom detection given the fact that the correct quantification of chlorophyll
under blooming conditions is currently not satisfactory. A weak point of the expert-based
evaluation of RGB photos is its subjectivity arising from the personal evaluation performed by
experts, which may reduce the reproducibility of identifications if other experts are asked to
evaluate. At the same time, our results indicated that there are still considerable limitations for
the use of remote sensing when it comes to a fully quantitative assessment of algal dynamics,
measured as CHL, in Lake Sevan. The collection of more in situ data will assist in a better
understanding of these limitations and is a prerequisite to overcoming these limitations. A
triggered higher-frequency monitoring may be implemented for two to three years in order
to collect targeted monitoring data during bloom conditions. This would generate a unique
dataset for improving bloom detection in such water bodies. The observations made so far
indicate that algal blooms are a regular feature in Lake Sevan and occur almost always when
water temperatures surpass approximately 20 ◦C.

Supplementary Materials: The following supporting information can be downloaded at: https:
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and remotely retrieved CHL (calculated with and without outliers).
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