Deep Tectonic Environment Analysis of the Lingshan Conjugate Earthquake within the Qinzhou Fold Belt, South China: Insights Derived from 3D Resistivity Structure Model
Abstract
:1. Introduction
2. Regional Geological Structure and MT Profile
3. Data Analysis
3.1. Data Collection and Processing
3.2. Analysis of Dimensionality and Electrical Differences
4. 3D Inversion
5. Results and Discussion
5.1. Lateral Distribution Characteristics of the Deep Electrical Structure in the Qinzhou Fold Belt and Adjacent Areas
5.2. Conjugate Seismic Structures and Medium Properties in the Lingshan Seismic Zone
5.3. Seismogenic Patterns of Conjugate Earthquakes in the Lingshan Zone
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parameswaran, R.M.; Thorbjarnardóttir, B.S.; Stefánsson, R.; Bjarnason, I.T. Seismicity on conjugate faults in Ölfus, South Iceland: Case study of the 1998 Hjalli-Ölfus earthquake. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019203. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.T.; Xu, L.S.; Wei, X.; Jin, P.M.; Zhang, C. The 2014 MW6.1 Ludian, Yunnan, earthquake: A complex conjugated ruptured earthquake. Chin. J. Geophys. 2015, 58, 153–162. [Google Scholar] [CrossRef]
- Porreca, M.; Minelli, G.; Ercoli, M.; Brobia, A.; Mancinelli, P.; Cruciani, F.; Giorgetti, C.; Carboni, F.; Mirabella, F.; Cavinato, G.; et al. Seismic reflection profiles and subsurface geology of the area interested by the 2016–2017 earthquake sequence (Central Italy). Tectonics 2018, 37, 1116–1137. [Google Scholar] [CrossRef]
- Kelly, P.G.; Sanderson, D.J.; Peacock, D.C.P. 1998. Linkage and evolution of conjugate strike-slip fault zones in limestones of Somerset and Northumbria. J. Struct. Geol. 2018, 20, 1477–1493. [Google Scholar] [CrossRef]
- Taylor, M.; Yin, A.; Ryerson, F.J.; Kapp, P.; Ding, L. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau. Tectonics 2003, 22, 1–21. [Google Scholar] [CrossRef]
- Ma, J.; Ma, S.L.; Liu, L.Q.; Liu, T.C.; Wu, X.Q. Experimental study on alternate slip of intersecting faults and block movement. Seismol. Geol. 2000, 22, 65–73. [Google Scholar] [CrossRef]
- Guo, T.T.; Xu, X.W.; Xing, H.L.; Yu, G.H. Nonlinear finite-element simulation of conjugate faults system and associated earthquake swarm. Seismol. Geol. 2015, 37, 598–612. [Google Scholar] [CrossRef]
- Lozos, J.C. Dynamic rupture modeling of coseismic interactions on orthogonal strike-slip faults. Geophy. Res. Lett. 2022, 49, e2021GL097585. [Google Scholar] [CrossRef]
- Lü, J.; Zheng, Y.; Ni, S.D.; Gao, J.H. Focal mechanisms and seismogenic structures of the Ms5.7 and Ms4.8 Jiujiang-Ruichang earthquakes of Nov.26, 2005. Chin. J. Geophys. 2008, 51, 158–164. [Google Scholar] [CrossRef]
- Li, Y.Q.; Wang, D.; Xu, S.H.; Fang, L.H.; Cheng, Y.F.; Luo, G.; Yan, B.; Bogdan, E.; Mori, J. Thrust and Conjugate Strike-Slip Faults in the 17 June 2018 MJMA6.1 (Mw5.5) Osaka, Japan, Earthquake Sequence. Seismol. Res. Lett. 2019, 90, 2132–2141. [Google Scholar] [CrossRef]
- Tadapansawut, T.; Yagi, Y.; Okuwaki, R.; Yamashita, S.; Shimizu, K. Complex rupture process on the conjugate fault system of the 2014 Mw6.2 Thailand earthquake. Prog. Earth Planet. Sci. 2022, 9, 26. [Google Scholar] [CrossRef]
- Shinji, Y.; Yuji, Y.; Ryo, O.; Kousuke, S.; Ryoichiro, A.; Yukitoshi, F. Consecutive ruptures on a complex conjugate fault system during the 2018 Gulf of Alaska earthquake. Sci. Rep. 2021, 11, 5979. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Hayes, G.P.; Gold, R.D. The July 2019 Ridgecrest, California, Earthquake Sequence: Kinematics of Slip and Stressing in Cross-Fault Ruptures. Geophys. Res. Lett. 2019, 46, e2019GL084741. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Melgar, D.; Sahakian, V.J.; Thomas, A.M.; Xu, X.; Crowell, B.W.; Geng, J. Complex rupture of an immature fault zone: A simultaneous kinematic model of the 2019 Ridgecrest, CA earthquakes. Geophys. Res. Lett. 2020, 47, e2019GL086382. [Google Scholar] [CrossRef]
- Wang, A.J.; Chen, Y.T. A method of determination of the internal friction characteristics within the Earth’s crust through conjugate earthquakes. Chin. J. Geophys. 2021, 64, 3442–3451. [Google Scholar] [CrossRef]
- Zhang, S.C. The great earthquake and the conjugate tectonic motion. Seismol. Geol. 1979, 1, 41–46. [Google Scholar]
- Shu, L.S. An analysis of principal features of tectonic evolution in South China Block. Geol. Bull. China 2012, 31, 1035–1053. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of Continental China derived from GPS and its tectonic implications. J. Geophys. Res. 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Deng, Q.D.; Zhang, Z.Q.; Li, H.B. Earthquake hazards and associated geodynamic processes in continental China. Sci. China Earth Sci. 2013, 43, 1607–1620. [Google Scholar]
- Chen, G.D. The Lingshan Earthquake on April 1, 1936; The Geological Survey of Guangdong and Guangxi: Chengjiang, China, 1939; pp. 26–27. (In Chinese) [Google Scholar]
- Mo, J.Y. Earthquakes History of Guangxi; Guangxi People’s Publishing House: Nanning, China, 1990; pp. 60–62. (In Chinese) [Google Scholar]
- Zhou, B.G.; Yang, X.P.; Du, L. Discussion on the Segmentation of Fangcheng-Lingshan Fault, Guangxi Province and Determination of Related Potential Seismic Sources. Technol. Earthq. Disaster Prev. 2008, 3, 8–19. [Google Scholar] [CrossRef]
- Li, X.G.; Pan, L.L.; Li, B.S.; Nie, G.J.; Wu, J.B.; Lu, J.H.; Yan, X.M. Type and displacement characteristics of Lingshan M6¾ earthquake surface rupture zone in 1936, Guangxi. Seismol. Geol. 2017, 39, 904–916. [Google Scholar] [CrossRef]
- Li, X.G.; Li, B.S.; Pan, L.L.; Nie, G.J.; Wu, J.B.; Lu, J.H.; Yan, X.M.; Li, Z.Y. A new finding of surface rupture zones associated with 1936 Lingshan M6¾ earthquake, Guangxi, China. Seismol. Geol. 2017, 39, 689–698. [Google Scholar] [CrossRef]
- Zhou, B.; Yan, C.H.; Zhan, Y.; Sun, X.Y.; Li, S.; Wen, X.; Mo, Y.; Yuan, Y.D.; Yuan, Y.; Huang, M.L. Deep electrical structures of Qinzhou-Fangcheng Junction Zone in Guangxi and seismogenic environment of the 1936 Lingshan M6¾ earthquake. Sci. Chin. Earth Sci. 2024, 67, 584–603. [Google Scholar] [CrossRef]
- Zhang, G.W.; Guo, A.L.; Wang, Y.J.; Li, S.Z.; Dong, Y.P.; Liu, S.F.; He, D.F.; Cheng, S.Y.; Lu, R.K.; Yao, A.P. Tectonics of South China continent and its implications. Sci. Chin. Earth Sci. 2013, 56, 1804–1828. [Google Scholar] [CrossRef]
- Yan, J.Y.; Lü, Q.T.; Luo, F.; Chen, A.G.; Ye, G.F.; Zhang, Y.Q.; Zhang, K.; Zhao, J.H.; Zhang, C.; Liu, Z.D.; et al. Where is Qinzhou-Hangzhou juncture belt? Evidence from integrated geophysical exploration. Chin. Geol. 2019, 46, 690–703. [Google Scholar] [CrossRef]
- Egbert, G.; Kelbert, A. Computational recipes for electromagnetic inverse problems. Geophys. J. Int. 2012, 189, 251–267. [Google Scholar] [CrossRef]
- Kelbert, A.; Meqbel, N.; Egbert, G.D.; Tandon, K. ModEM: A modular system for inversion of electromagnetic geophysical data. Comput. Geosci. 2014, 66, 40–53. [Google Scholar] [CrossRef]
- Yin, C.C.; Liu, Y.H.; Xiong, B. Status and prospect of 3D inversions in EM geophysics. Sci. China Earth Sci. 2020, 63, 452–455. [Google Scholar] [CrossRef]
- Zhao, G.Z.; Unsworth, M.J.; Zhan, Y.; Wang, L.F.; Chen, X.B.; Jones, A.G.; Tang, J.; Xiao, Q.B.; Wang, J.J.; Cai, J.T.; et al. Crustal structure and rheology of the Longmenshan and Wenchuan Mw7.9 earthquake epicentral area from magnetotelluric data. Geology 2012, 40, 1139–1142. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhao, G.Z.; Unsworth, M.; Wang, L.F.; Chen, X.B.; Li, T.; Xiao, Q.B.; Wang, J.J.; Tang, J.; Cai, J.T.; et al. Deep structure beneath the southwestern section of the Longmenshan fault zone and seimogenetic context of the 4.20 Lushan Ms7.0 earthquake. Chin. Sci. Bull. 2013, 58, 3467–3474. [Google Scholar] [CrossRef]
- Zhan, Y.; Liang, M.J.; Sun, X.Y.; Huang, F.P.; Zhao, L.Q.; Gong, Y.; Han, J.; Li, C.X.; Zhang, P.Z.; Zhang, H.P. Deep structure and seismogenic pattern of the 2021.5.22 Madoi (Qinghai) Ms7.4 earthquake. Chin. J. Geophys. 2021, 64, 2232–2252. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhan, Y.; Unsworth, M.; Egbert, G.; Zhang, H.P.; Chen, X.B.; Zhao, G.Z.; Sun, J.B.; Zhao, L.Q.; Cui, T.F.; et al. 3-D Magnetotelluric Imaging of the Easternmost Kunlun Fault: Insights Into Strain Partitioning and the Seismotectonics of the Jiuzhaigou Ms7.0 Earthquake. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019731. [Google Scholar] [CrossRef]
- Ye, T.; Chen, X.L.; Huang, Q.H.; Cui, T.F. Three-dimensional electrical resistivity structure in focal area of the 2021 Yangbi Ms6.4 Earthquake and its implication for the seismogenic mechanism. Chin. J. Geophys. 2021, 64, 2267–2277. [Google Scholar] [CrossRef]
- Unsworth, M.J.; Malin, P.E.; Egbert, G.D.; Booker, J.R. Internal structure of the San Andreas fault at Parkfield, California. Geology 1997, 25, 359–362. [Google Scholar] [CrossRef]
- Becken, M.; Ritter, O.; Bedrosian, P.A.; Weckmann, U. Correlation between deep fluids, tremor and creep along the central San Andreas fault. Nature 2011, 480, 87–90. [Google Scholar] [CrossRef]
- Xiao, Q.B.; Yu, G.; Zeng, J.L.; Oskin, M.E.; Shao, G.H. Structure and geometry of the Aksay restraining double bend along the Altyn Tagh Fault, northern Tibet, imaged using magnetotelluric method. Geophys. Res. Lett. 2017, 44, 4090–4097. [Google Scholar] [CrossRef]
- Yang, B.; Egbert, G.D.; Zhang, H.Q.; Meqbel, N.; Hu, X.Y. Electrical resistivity imaging of continental United States from three-dimensional inversion of EarthScope USArray magnetotelluric data. Earth Planet Sci. Lett. 2021, 576, 117244. [Google Scholar] [CrossRef]
- Corseri, R.; Planke, S.; Gelius, L.J.; Faleide, J.I.; Senger, K.; Abdelmalak, M.M. Magnetotelluric image of a hyper-extended and serpentinized rift system. Earth Planet Sci. Lett. 2023, 602, 11794. [Google Scholar] [CrossRef]
- Regional Geological Survey Institute of Guangxi Zhuang Autonomous Region. Guangxi Regional Geological Survey Area Summary and Service Product Development (China Regional Geology·Guangxi Chronicle) Project; Regional Geological Survey Institute of Guangxi Zhuang Autonomous Region: Guilin, China, 2016. (In Chinese) [Google Scholar]
- Qiu, L.; Yan, D.P.; Tang, S.L.; Wang, Q.; Yang, W.X.; Tang, X.; Wang, J. Mesozoic geology of southwestern China: Indosinian foreland overthrusting and subsequent deformation. J. Asian Earth Sci. 2016, 122, 91–105. [Google Scholar] [CrossRef]
- Wu, J.Y. On the geological structural characteristics of Lingshan folding block zone. Chin. J. Geol. 1980, 15, 125–133. [Google Scholar]
- Pan, G.T.; Xiao, Q.H.; Lu, S.N.; Den, J.F.; Feng, Y.M.; Zhang, Z.Y.; Wang, F.G.; Xing, G.F.; Hao, G.J.; Fang, Y.F. Subdivision of tectonic units in China. Geol. China 2009, 36, 1–28. [Google Scholar]
- Huang, Q.X. The characteristics of some important basic geology in Guangxi. Guangxi Geol. 2000, 13, 3–12. [Google Scholar] [CrossRef]
- Qin, X.F.; Li, J.; Li, R.S.; Zhou, F.S.; Hu, G.A.; Li, G.N.; Zhou, K.H.; Xie, L.F.; Pan, Y.W. Formation and Evolution of the Bobai-Cenxi Orogenic Belt in the Northern Margin of the Yunkai Block; China Land Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Zhang, Y.Q. Forel and thrust and nappe tectonics of shiwandashan. Guangxi Geosci. 1999, 13, 150–156. [Google Scholar]
- Xu, H.L.; Yang, Y.N.; Shen, Y.; Ding, X. New Knowledges on Structural Features of Shiwandashan Basin, Guangxi. Chin. J. Geol. 2001, 36, 359–363. [Google Scholar] [CrossRef]
- Liang, X.Q.; Li, X.H. Late Permian to Middle Triassic sedimentary records in Shiwandashan Basin: Implication for the Indosinian Yunkai Orogenic Belt, South China. Sediment Geol. 2005, 177, 297–320. [Google Scholar] [CrossRef]
- Zhao, X.M.; Zhang, K.M.; Mo, W.R.; Wu, N.W.; Mao, X.W.; Ma, T.Q.; Huang, Y.Y.; Wang, H.R. Description of Geotectonic Facies Map in Central and Southern China; China University of Geosciences Press: Wuhan, China, 2015; pp. 1–119. (In Chinese) [Google Scholar]
- Zhong, Z.Q.; You, Z.D.; Zhou, H.W.; Han, Y.Q. Composition, evolution and basic structural framework of basement of Yunkai uplift between Guangxi and Guangdong Provinces. Reg. Geol. China 1996, 1, 36–43. [Google Scholar]
- Wang, Z.W.; Zhou, Y.Z.; Zhang, H.H.; Zhou, H.W. The basement evolution and mineralization of Yunkai Massif, South China. Prog. Precam. Res. 1998, 21, 45–53. [Google Scholar] [CrossRef]
- Wang, X.D.; Xu, D.M.; Wang, L.; Zhou, D.; Hu, J.; Ke, X.Z. Reworking of Indosinian Tectono-Thermal Events in the Yunkai Massif: Gneissic Multi-Mineral U-Pb Geochronological Evidence. Earth Sci. 2020, 45, 1653–1675. [Google Scholar] [CrossRef]
- Gamble, T.; Goubau, W.; Clarke, J. Magnetotellurics with a remote magnetic reference. Geophysics 1979, 44, 959–968. [Google Scholar] [CrossRef]
- Egbert, G.; Booker, J. Robust estimation of geomagnetic transfer functions. Geophys. J. R. Ustr. Soc. 1986, 87, 173–194. [Google Scholar] [CrossRef]
- Caldwell, T.G.; Bibby, H.M.; Brown, C. The magnetotelluric phase tensor. Geophys. J. Int. 2004, 158, 457–469. [Google Scholar] [CrossRef]
- Bibby, H.M.; Caldwell, T.G.; Brown, C. Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys. J. Int. 2005, 163, 915–930. [Google Scholar] [CrossRef]
- Booker, J. The magnetotelluric phase tensor: A critical review. Surv. Geophys. 2014, 35, 7–40. [Google Scholar] [CrossRef]
- Cai, J.T.; Chen, X.B.; Xu, X.W.; Tang, J.; Wang, L.F.; Guo, C.L.; Han, B.; Dong, Z.Y. Rupture mechanism and seismotectonics of the Ms6.5 Ludian earthquake inferred from three-dimensional magnetotelluric imaging. Geophys. Res. Lett. 2017, 44, 1275–1285. [Google Scholar] [CrossRef]
- Heise, W.; Caldwell, T.; Bibby, H.; Bannister, S. Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. Geophys. J. Int. 2008, 173, 740–750. [Google Scholar] [CrossRef]
- Li, Y.H.; Gao, M.T.; Wu, Q.J. Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics 2014, 611, 51–60. [Google Scholar] [CrossRef]
- Ding, R.X.; Zou, H.P.; Lao, M.J.; Du, X.D.; Zhou, Y.Z.; Zeng, C.Y. Indosinian activity records of ductile shear zones in Southern segment of Qin-Hang combined belt: A case study of Fangcheng-Lingshan fault zone. Earth Sci. Front. 2015, 22, 79–85. [Google Scholar] [CrossRef]
- Yan, C.H.; Li, S.; Zhou, B.; Zhan, Y.; Sun, X.Y.; Liu, X.H.; Su, S.; Liang, F.; Zhao, L.Q. Deep electrical structure of the hinterland of Yunkai magmatic arc in South China and the seismogenic environment of the 2019 Beiliu earthquake. Front. Earth Sci. 2023, 11, 1078796. [Google Scholar] [CrossRef]
- He, G.Y.; Wu, C.L.; Pan, J.Y.; Yu, X.; Hu, A.P.; Jin, W.F.; Wu, L. New ideas on Western boundary fault of Qinzhou-Fangchenggang depression from hercynian to India-Chinese Epoch, Southeastern China. Acta Geol. Sin. 2007, 81, 1526–1530. [Google Scholar] [CrossRef]
- Hu, L.S.; Xu, Y.J.; Du, Y.S.; Huang, H.W.; Xu, W.C.; Kuang, G.D. Geochemical characteristics and its geological significance of the late Paleozoic siliceous rocks in Qinfang Trough, southeastern Guangxi. J. Palaeogeog. 2014, 16, 77–87. [Google Scholar]
- Cheng, Y.; Hu, X.; Han, B.; Li, Y.; Kong, Y.; Tang, J. Magnetotelluric evidence for lithospheric alteration beneath the Wuyi-Yunkai Orogen: Implications for thermal structure of South China. Geochem. Geophys. Geosyst. 2022, 23, e2022GC010456. [Google Scholar] [CrossRef]
- Zhou, X.H.; Armstrong, R. Cenozoic volcanic rocks of eastern China-secular and geographic trends in chemistry and strontium isotopic composition. Earth Planet Sci. Lett. 1982, 58, 301–329. [Google Scholar] [CrossRef]
- Flower, M.F.J.; Zhang, M.; Chen, C.Y.; Tu, K.; Xie, G.H. Magmatism in the South China Basin 2. Post-spreading Quaternary basalts from Hainan Island, south China. Chem. Geol. 1992, 97, 65–87. [Google Scholar] [CrossRef]
- Zou, H.; Fan, Q.C. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos 2010, 116, 145–152. [Google Scholar] [CrossRef]
- Huang, H.B.; Tosi, N.; Chang, S.J.; Xia, S.H.; Qiu, X.L. Receiver function imaging of the mantle transition zone beneath the South China Block. Geochem. Geophys. Geosyst. 2015, 16, 3666–3678. [Google Scholar] [CrossRef]
- Xia, S.H.; Zhao, D.P.; Sun, J.L.; Huang, H.B. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Res. 2016, 36, 46–56. [Google Scholar] [CrossRef]
- Wei, S.S.; Chen, Y.J. Seismic evidence of the Hainan mantle plume by receiver function analysis in southern China. Geophys. Res. Lett. 2016, 43, 8978–8985. [Google Scholar] [CrossRef]
- Yan, Q.S.; Shi, X.F.; Metcalfe, L.; Liu, S.F.; Xu, T.Y.; Kornkanitnan, N.; Sirichaiseth, T.; Yuan, L.; Zhang, Y.; Zhang, H. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Sci. Rep. 2018, 8, 2640. [Google Scholar] [CrossRef]
- Yuan, Y.S.; Ma, Y.S.; Hu, S.P.; Guo, D.L.; Fu, X.Y. Present-day geothermal characteristics in South China. Chin. J. Geophys. 2006, 49, 1118–1126. [Google Scholar] [CrossRef]
- Sun, M.X.; Zhang, Q.Z.; Liu, D.M.; Sun, X.T.; Lin, S.; Wu, X.K.; Liang, G.K.; Li, Y.K.; Guan, Y.W.; Li, Y.F. Genesis and occurrence models of hot-dry geothermal resources in Guangxi. Bull. Geol. Sci. Technol. 2022, 41, 330–340. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Zhang, P.Z.; Wang, C.; Michael, A.E. Interaction of active faults and its effect on earthquake triggering and delaying. Acta Geosci. Sin. 2004, 25, 483–488. [Google Scholar] [CrossRef]
- Zhou, S.Y. Seismicity Simulation in Western Sichuan of China based on the Fault Interactions and Its Implication on the Estimation of the Regional Earthquake Risk. Chin. J. Geophys. 2008, 51, 165–174. [Google Scholar] [CrossRef]
- Shao, Z.G.; Fu, R.S.; Xue, T.X.; Huang, J.H. Simulating postseismic viscoelastic deformation based on Burgers model. J. Geod. Geodyn. 2007, 27, 31–37. [Google Scholar] [CrossRef]
- Wang, R.; Lorenzo-Martin, F.; Roth, F. PSGRN/PSCMP—A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef]
- King, G.C.P.; Stein, R.S.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar] [CrossRef]
- Shi, F.Q.; Xiong, X.; Wang, P.T.; Su, L.N.; Shan, B.; Zhu, L.; Shao, Z.G. Stress interaction between the two M > 6 earthquake since 2016 and its implication on the seismic hazard along the Qilian-Haiyuan fault zone. Chin. J. Geophys. 2023, 66, 3230–3241. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, J.; Zhao, Y. Focal mechanism of small earthquakes and characteristics of the tectonic stress field in South China. Earth Res. China 1992, 8, 36–42. [Google Scholar]
- Wan, Y. Contemporary tectonic stress field in China. Earthq. Sci. 2010, 23, 377–386. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic mapping tools: Improved version released. Eos Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Zhou, B.; Zhan, Y.; Sun, X.; Li, S.; Li, L.; Guo, P. Deep Tectonic Environment Analysis of the Lingshan Conjugate Earthquake within the Qinzhou Fold Belt, South China: Insights Derived from 3D Resistivity Structure Model. Remote Sens. 2024, 16, 3740. https://doi.org/10.3390/rs16193740
Yan C, Zhou B, Zhan Y, Sun X, Li S, Li L, Guo P. Deep Tectonic Environment Analysis of the Lingshan Conjugate Earthquake within the Qinzhou Fold Belt, South China: Insights Derived from 3D Resistivity Structure Model. Remote Sensing. 2024; 16(19):3740. https://doi.org/10.3390/rs16193740
Chicago/Turabian StyleYan, Chunheng, Bin Zhou, Yan Zhan, Xiangyu Sun, Sha Li, Lei Li, and Peilan Guo. 2024. "Deep Tectonic Environment Analysis of the Lingshan Conjugate Earthquake within the Qinzhou Fold Belt, South China: Insights Derived from 3D Resistivity Structure Model" Remote Sensing 16, no. 19: 3740. https://doi.org/10.3390/rs16193740
APA StyleYan, C., Zhou, B., Zhan, Y., Sun, X., Li, S., Li, L., & Guo, P. (2024). Deep Tectonic Environment Analysis of the Lingshan Conjugate Earthquake within the Qinzhou Fold Belt, South China: Insights Derived from 3D Resistivity Structure Model. Remote Sensing, 16(19), 3740. https://doi.org/10.3390/rs16193740