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Abstract: Open-set recognition (OSR) from synthetic aperture radar (SAR) imageries plays a crucial
role in maritime and terrestrial monitoring. Nevertheless, numerous deep learning-based SAR
classifiers struggle with unknown targets outside of the training dataset, leading to a dilemma,
namely that a large model is difficult to deploy, while a smaller one sacrifices accuracy. To address
this challenge, the novel “LiOSR-SAR” lightweight recognizer is proposed for OSR in SAR imageries.
It incorporates the compact attribute focusing and open-prediction modules, which collectively
optimize its lightweight structure and high accuracy. To validate LiOSR-SAR, “fast image simulation
using bidirectional shooting and bouncing ray (FIS-BSBR)” is exploited to construct the corresponding
dataset. It enhances the details of targets for more accurate recognition significantly. Extensive
experiments show that LiOSR-SAR achieves remarkable recognition accuracies of 97.9% and 94.1%
while maintaining a compact model size of 7.5 MB, demonstrating its practicality and efficiency.

Keywords: open-set recognition; synthetic aperture radar; deep learning; lightweight network; fast
image simulation

1. Introduction

Synthetic aperture radar (SAR) operates independently from weather conditions and
times, offering distinct advantages in both maritime and terrestrial reconnaissance [1,2].
The capabilities of robust detection and classification are especially valuable in environ-
mental monitoring, where identifying uncharacterized targets such as ships and tanks is
critical [3,4]. Open-set recognition (OSR), which addresses the challenges of classifying
undefined target categories in SAR imageries, has recently gained significant attention [5–7].
Traditional SAR identification methods, such as the constant false-alarm rate (CFAR), often
rely on manual settings [8]. However, the introduction of deep learning (DL) has revolu-
tionized automatic target recognition (ATR), with DL-based target recognition methods
outperforming traditional techniques in both efficiency and accuracy [9–11]. As DL-based
methods gain prominence in ATR, new factors must be considered when optimizing
these models.

The first critical task is achieving a balance between model size and accuracy, which is
essential for developing efficient and effective models. Researchers are continually striving
to balance model size and accuracy in DL-based ATR systems. However, it is worth noting
that the utilization of large models often results in decreased recognition efficiency [12,13].
Consequently, scholars have been focusing on optimizing DL-based methods to address
these existing limitations [14–16]. Yu Pan proposes a lightweight classifier based on a
dense convolutional network (CNN), achieving improved recognition performance in
satellite-borne SAR images [17]. The convolutional block attention module (CBAM) was
integrated into a CNN to solve the SAR target recognition task, considering that it is a
lightweight attention module [18,19]. The multiple kernel sizes block, channel shuffle,
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and split modules were utilized in CNNs, defining a lightweight feature extraction block
(LSCB) to tackle challenges in SAR recognition [20]. A recent study introduced HDLM,
a lightweight method for improving SAR ATR with limited data [21]. A YOLOv5-based
lightweight method for SAR vehicle detection and recognition has been introduced, with a
focus on parameter reduction and efficiency enhancement [22]. Meanwhile, a lightweight
detector specifically for ship detection has been designed to address the problem of large
network sizes [23].

In the field of DL-based ATR, there is an ongoing issue that requires continuous atten-
tion, which is the adaptability to open datasets, particularly in intricate environments and
with unknown targets, which restricts their applicability in diverse scenarios. This problem
underscores the necessity for novel optimization strategies to improve the universality and
effectiveness of the model. Previous methods, assuming that known samples contain all
target categories, were referred to as closed-set recognition (CSR) problems, which fail to
address unknown targets, i.e., the OSR problem. The open-world recognition problem
was first formally defined, and solutions have since been proposed to address it [24,25].
Recent work has applied OSR algorithms, including the one-vs.-set machine, W-SVM, and
POS-SVM, to the MSTAR SAR dataset, demonstrating their effectiveness in classifying
known targets and rejecting unknown ones in cluttered environments [26]. A new module
was developed to handle unknown targets and was tested on optical images [27]. Matthew
Scherreik limited the risk of unknown targets being labeled as known at the output of the
support vector machine, employing threshold restrictions for reject-option recognition on
infrared images [28]. Intermediate features like activation functions were also considered
to be integrated into the recognition layer, enhancing computational efficiency [29]. The in-
cremental learning joint OpenMax module was also given to maintain a state of continuous
learning [30].

Additionally, the effectiveness of DL methods heavily relies on high-quality datasets,
essential for training models and exploring new techniques. Thus, efficient data collection
and the use of simulated data are becoming key research priorities. Addressing the scarcity
of real measurement data, scholars have made many efforts to obtain simulated SAR/ISAR
images using techniques like the range Doppler algorithm, chirp scaling algorithm, and
back projection algorithm [31–33]. However, these methods are time-consuming, which
slows down image generation and hampers efficient dataset production. An image-domain
ray tube integration formula based on the shooting and bouncing ray (SBR) technique
was derived by R. Bhalla et al. to address this issue [34]. This method, founded on the
concept of equivalence between monostatic and bistatic stations [35], links the contribution
of each ray tube to the overall ISAR image under small-angle approximations. Another
research study utilizes precomputed scattering center representations derived from ISAR to
simulate radar channels efficiently, enabling the visualization of vehicle scattering centers
while reducing computational costs [36]. An ISAR fast imaging method using the SBR
technique at arbitrary angles was employed to enhance imaging efficiency [37]. With these
advancements, Yun et al. have refined the convolution (conv) scheme of imaging, reducing
distortion caused by interpolation errors [38].

This paper addresses key challenges in SAR imageries, focusing on model efficiency,
the adaptability to open sets, and the need for high-quality datasets. To this end, we
propose a novel DL architecture, a lightweight recognizer for open sets in SAR imageries
(LiOSR-SAR). It benefits from two modules, the compact attribute focusing (CAF) and
open-prediction (OP) modules, which together improve accuracy and compactness for open
datasets. Additionally, we propose an efficient dataset construction method, the fast image
simulation using bidirectional shooting and bouncing rays (FIS-BSBRs), which includes a
dynamic learning strategy to optimize training efficiency. The main contributions of this
paper are as follows:
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(1) The LiOSR-SAR is introduced to enhance OSR, demonstrating substantial accuracy
improvements on both simulated and MSTAR datasets.

(2) By integrating the compact attribute focusing (CAF) module, the LiOSR-SAR achieves
a balance between the compactness and the performance of the model. It maintains a
size below 7.5 MB while achieving an accuracy of up to 97.9% on simulated datasets
and 94.1% on the MSTAR dataset, confirming its effectiveness in resource-limited
environments.

(3) An open-prediction (OP) module is featured within the LiOSR-SAR framework, en-
hancing the recognition of open-category targets. It has improved accuracies from
33.3% to 86.9% and 97.9% on simulated datasets, and from 55.7% to 94.1% on the
MSTAR dataset, demonstrating robust performance in complex recognition tasks.

(4) A novel bidirectional ray tube integration approach in the image domain, the FIS-BSBR
method, is employed to construct an effective dataset for validating the performance
of LiOSR-SAR.

2. LiOSR-SAR
2.1. Overview

The LiOSR-SAR framework, as depicted in Figure 1, is designed to address the chal-
lenges in target recognition within the open datasets. Inspired by ResNet-18 (shown in
Figure 1a) [35], the system features a core CAF module. Modified residual blocks (MRBs)
improve accuracy and reduce model size by effectively capturing scattering information
from SAR imageries. The architecture is further refined with the OP module, which is
crucial for producing decision outputs and improving the identification of targets from
unknown categories. Additionally, convergence performance is augmented by dynamically
adjusting the learning rate using a cosine annealing algorithm.
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Figure 1. (a) Existing approach using ResNet-18. (b) Proposed approach, illustrating the overall
network architecture of the LiOSR-SAR.

2.2. CAF Module

To effectively enhance multi-scale feature processing capabilities while simultaneously
reducing computational costs, the CAF module is introduced (marked as a yellow cube in
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Figure 1b). It begins with initial feature extraction via a 7 × 7 c-conv, and further explores
associations in scattering information within SAR images, significantly reducing the model
size. The structure of the CAF module, as depicted in Figure 2, includes three layers of
MRBs and one CBAM block.
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SAR imageries are characterized by complex scattering centers and prominent speckle
noise, which pose unique challenges for feature extraction and noise suppression. To effec-
tively address these issues, the model proposed in this paper is specifically optimized for
these characteristics of SAR imageries. First, depth-wise separable convolutions (DS-conv)
are introduced to reduce computational cost while enhancing the ability to capture spatial
and channel-specific features in SAR imageries [39]. By separating spatial information
from scattering features, DS-conv significantly enhances feature extraction efficiency while
maintaining low computational demands. To tackle the speckle noise commonly present in
SAR images, batch normalization is employed to stabilize feature distribution and ensure
robustness during the training process. Simultaneously, ReLU activation functions are
utilized to suppress irrelevant signals, thereby further enhancing the extraction of valid fea-
tures. To enhance the focus on key targets, the CBAM block applies both channel attention
and spatial attention mechanisms. This approach reduces the interference of background
noise during feature extraction, improving overall accuracy [19,40]. Through this series of
design optimizations, the model maintains computational efficiency while improving its
accuracy in extracting critical features from SAR images. The learned feature maps from
different scales are interconnected via residual links, which are structured as follows:

Θ =
{

θMRB1 , θMRB2 , θMRB3 , θMRB4

}
, (1)

output = MS[min, Θ] ◦ {MC[min, Θ] ◦ m4}. (2)

2.3. OP Module

In OSR tasks, a fundamental challenge is effectively recognizing unknown or novel
categories within the dataset. To address this, we introduce an advanced module, high-
lighted as a green cube in Figure 1b, designed to enhance the capability to manage such
special cases.

The core of the OP module is to construct a feature space that identifies unknown
categories by deeply learning the characteristics of known ones. The block first determines
if a test sample belongs to a known category, then estimates the likelihood of it belonging
to an unknown category. It reinterprets and expands the traditional classifier outputs,
enabling the architecture to make reliable predictions about targets outside the established
categories in the training dataset. Thus, the OP module enhances adaptability and accuracy
in complex environments, as detailed in Figure 3.
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Step 1: Establish the feature space.
In addressing the multi-category classification problem, a DL model labeled CLA is

employed to classify the input image xi, as shown in Figure 3a. It is trained to recognize
K distinct categories using a training set Ck, k = 1, 2, . . . , K. The original output of the
CLA, denoted as zk, represents the “score” reflecting its prediction that the input sample
xi belongs to the category k. Each score zk is converted into a probability fk(xi) using the
SoftMax function, described in (3), with each probability lying within [0, 1]. This probability
reflects the confidence of the model in associating the sample x with a specific category,
with the highest value indicating the most likely category [29].

fk(xi) =
ezk

K
∑

j=1
ez

j

, j = 1, 2, . . . , K. (3)

Step 2: Measure similarity scores in feature space.
The mean vector µk for each category Ck is computed from the average of the feature

vectors, improving the accuracy and robustness of the classifier CLA.

µk =
1

Nk
∑

x∈Ck

(
xi −

1
Nk

∑
x∈Ck

Z(xi)

)2

, k = 1, 2, . . . , K, (4)

where Z(xi) = [z1(xi), z2(xi), . . . , zK(xi)] is the original output of the classifier CLA and
Nk is the number of samples in the category k.

During testing, for a new sample xi, its similarity score d(xi, µk) to the mean
vector µk of each category is calculated, as described in (5). It integrates initial
probabilities with similarity to the center of the category, offering a more precise basis
for classification. As shown in Figure 3b, these similarity values are transformed into
normalized probability adjustment factors to produce the normalized similarity vector
D(xi) = [D1(xi), D2(xi), . . . , Dk(xi), . . . , DK(xi)]. Here Dk(x) corresponds to the category k.
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d(zk, µk) = ∥zk − µk∥2. (5)

Step 3: Make category determinations.
The transition from activation vector A(xi) = [A1(xi), A2(xi), . . . , Ak(xi), . . . , AK(xi)]

to the final open-set identification is illustrated in Figure 3c. Here, activation vector A(xi)
and the final classification scores Ω(x) are calculated using (6) and (7), respectively.
Equation (6) implies that if the sample x is far away from the center of category k, its
activation value Ak(xi) decreases accordingly. It combines the initial classification prob-
abilities and similarity data, providing a comprehensive solution to the multi-category
classification task. If all category scores fall below a predefined threshold or if the highest
score remains low, the model demonstrates low confidence in the classification. In such
instances, the sample is classified as “unknown”, an approach that is particularly useful in
open-set classification scenarios.

Ak(xi) = fk(xi)× (1 − Dk(xi)), (6)

Ω(xi) = SoftMax(ReLU(A(xi))). (7)

3. Datasets

Both simulated and measured datasets play crucial roles in engineering applications;
the former enhances the performance of models by improving feature recognition capabili-
ties, while the latter ensures its accuracy and reliability. This work primarily focuses on
facial targets of SAR imageries, specifically military vehicles and vessels measuring 7 to
10 m in length. Due to the relatively indistinct characteristics of small and linear targets,
they are not the focus of this study. In this section, three datasets are introduced, comprising
two simulated and one measured dataset. The first simulation dataset is constructed using
the fast image simulation based on shooting and bouncing rays (FIS-SBRs), which captures
basic scattering characteristics but is limited in detail. The second is derived from the fast
image simulation based on bidirectional shooting and bouncing rays (FIS-BSBRs), which
enhances accuracy by capturing both forward and backward scattering paths, allowing
for a more detailed feature extraction. These two methods are used to evaluate the adapt-
ability and accuracy of LiOSR-SAR under different scattering conditions. Additionally,
the characteristics and usage of the MSTAR dataset are discussed to provide a more com-
prehensive understanding of the application and performance of the proposed model. By
testing on both simulated and measured datasets, the robustness of LiOSR-SAR is ensured
across varying levels of complexity in scattering environments. The combination of diverse
datasets enables a thorough evaluation of its generalization and effectiveness.

3.1. Construction of Simulated Datasets

Traditional methods generate two-dimensional (2D) inverse synthetic aperture radar
(ISAR) images by performing inverse Fourier transforming on computed scattering fields
over the frequency–aspect domain. Scattering field calculations using the SBR technique
require ray tracing, making the generation of 2D ISAR images time-consuming.

3.1.1. Image Formation

A critical formula is derived, incorporating the ray tracing process into the ISAR
image formation formula [41]. This image-domain ray tube integration formula, developed
under small-angle imaging conditions, adheres to the equivalence principle of a radar
cross-section (RCS) in both monostatic and bistatic configurations. Given the small-angle
imaging condition, second-order terms concerning angle θ can be neglected, as expressed
in [18].
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O f (x, z) =
M1

∑
i=1

{
αie−jk0(2z−zi+di) sin c

[
∆k
(

z − zi − di
2

)]}
· {k0 sin c[k0θ0(x − xi)]}. (8)

From (8), the sum of the contributions from all rays to the 2D image is determined, a
process referred to as fast imaging based on forward ray tracing. In (8), the imaging plane
is considered as the xoz plane, with incident plane waves propagating in the −z direction,
and the observation point is in the φ = 0◦ plane, within a small angle range around θ = 0◦.
Here, xi and zi represent the respective components where the ray exits the target, di is
the total path traveled by the ray, and M1 is the number of ray tubes in the forward ray
tracing process. ∆k is the bandwidth, k0 is the central wave number, and [−θ0, θ0] is the
observation angle range under the bistatic configuration. The response amplitude of each
ray tube αi in the image domain is represented as follows:

αi = − 2
π2 ∆kθ0Bθ,φ(∆A)exit, (9)

where (∆A)exit represents the ray-integrating surface element on the target and Bθ,φ repre-
sents the geometrical optics (GO) field at the exit of each ray tube.

The computation time required by (8) primarily depends on the number of rays and
the discrete points in the imaging scene. Let M be the number of rays, X the number of
grids in the range direction, and Z the number in the azimuth direction, with the total
computational load for the entire imaging process given by M × X × Z. When calculating
electrically large targets in rough backgrounds, the increase in the number of ray tubes and
discrete points on the imaging window leads to a high time cost. To improve efficiency,
the decaying nature of function sin c can be exploited for truncation and acceleration of
the computation.

The accuracy of solving the scattering field directly impacts the quality of radar images.
As illustrated in Figure 4, B, C, and E represent three different facets on the target. SBR [42]
techniques follow the path A → B → C → D (forward ray tracing) from the transmitter
to the receiver. It may miss certain scattering contributions, especially in complex targets
where some regions might not be directly illuminated.
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In our proposed bidirectional shooting and bouncing rays (BSBRs) [43], the scattered
path C → E → F (backward ray tracing) is also considered in addition to the path from
the transmitter to the receiver (i.e., A → B → C → D ). Here, point C acts not only as a
reflecting point but also as a scattered source. The inductive electric current generated
at point C on the facet scatters electromagnetic waves along path C → E → F . Since
paths CD and EF are parallel, additional scattered contributions are captured at the same
receiver. Capturing scattered energy from complex surfaces more thoroughly provides
additional illumination in areas not directly illuminated, enhancing both the accuracy and
completeness of the solution.

The incident electric field in Figure 4 is denoted as EAB. During forward ray tracing,
the electric field leaving the target is obtained from the incident and reflected electric fields
as E f = EBC + ECD. The inductive current induced by the incident wave on the target,
represented by J f = n × H f , acts as a new source of scattered electric field ECE. The
interaction between facets, donated by C → E in Figure 4, involves the re-radiation of the
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inductive current. According to Huygens’ principle, ECE is expressed using the dyadic
Green function G(r, r′) in free space as follows:

ECE(r) =
∫

s
−jkηG

(
r, r′

)
· J f
(

r′
)
ds′. (10)

During the backward ray tracing C → E → F , the incident electric field is represented
as ECE. The ray intersects at point E with its plane and undergoes reflection. The reflected
field of the ray tube during backward ray tracing is given by

EEF = (DF)E(R)EECEe−jk·di , (11)

where (DF)E is the scattering factor on the reflecting facet and (R)E is the reflection
coefficient. The induced electric current during the backward tracing is

Jb = n × Hb = n × (HCE + HEF) = n ×
(

1
Z0

ki × ECE +
1

Z0
ki × EEF

)
. (12)

The backward scattering field formula is

Eb(r) = jkη
e−jkr

4πr

x

s
r × r × Jb

(
r′
)
ejkr· r′ ds′. (13)

Ray tracing is employed to establish M1 forward paths and M2 backward paths. The
total electric field resulting from this BSBR process is computed as

ES =
M1

∑
i=1

E f+
M2

∑
i=1

Eb. (14)

It is assumed that electromagnetic waves radiated by the scattered field behave as
plane waves. During the current iterations, facets that have already produced effects
are recorded. Marked facets are excluded from further interactions to avoid redundant
calculations.

The contribution of each ray to the 2D image in forward ray tracing is defined as
O f (x, z) and in backward ray tracing as Ob(x, z). The representation of the 2D image based
on BSBRs is given by

O(x, z) =
M1

∑
ray1=1

O f (x, z) +
M2

∑
ray2=1

Ob(x, z) =
M1+M2

∑
ray

{
αi e−jk0(2z+di−zi) sin c

[
∆k
(

z +
di − zi

2

)]}
· {k0 sin c[k0θ0(x − xi)]}. (15)

It should be noted that although (15) appears formally similar to (8), the total number
of ray tubes in (15) and (8) are M1 + M2 and M1, respectively. It implies that a more
comprehensive illumination of regions is achieved with BSBRs, enhancing the accuracy
and detail of the resulting 2D images.

3.1.2. Validation of Simulated Datasets

A fast image simulation is conducted, followed by a series of experiments on both
simulated datasets to validate the simulated images and demonstrate the superiority of
the proposed LiOSR-SAR. The experiments were performed on a personal computer (PC)
equipped with an Intel i5-10400 CPU, 32 GB of RAM, and a GTX 1660 SUPER graphics card.
The development of the architecture was carried out using Pytorch 1.7.0 [44], with GPU
acceleration applied exclusively for the training of LiOSR-SAR.

A simulated dataset was constructed using the FIS-SBR method. Another dataset
employed the proposed FIM-BSBR technique. For clarity, these two datasets are referred
to as the FIS-SBR and FIM-BSBR. Both datasets utilize consistent radar parameters, as
detailed in Table 1. The imaging scene size was set to 25.5 m by 25.5 m. This scene size is
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appropriate for the typical dimensions of the vessels used in the experiments, particularly
small boats under 10 m in length. It ensures the capture of detailed structural features
and the distribution of scattering centers, while also aligning with the required range and
azimuth resolution.

Table 1. Setting of simulation parameters.

Parameter Value

Center frequency 4.8 GHz
Bandwidth 0.75 GHz
Pitch angle 30◦

Azimuth angle [40.525◦, 49.475◦]/0.0705◦

Polarization mode VV, VH, HV, HH
Range resolution 0.2 m

Azimuth resolution 0.2 m
Imaging plane size 25.5 m × 25.5 m

The simulated dataset included three target categories, ship 1, ship 2, and ship 3. Each
category has distinct dimensions. Ship 1 measures 7.9 m in length, 1 m in width, and
2.2 m in height. Ship 2 has a length of 9.2 m, a width of 1.2 m, and a height of 2.16 m. Ship 3
measures 7.5 m in length, 0.9 m in width, and 2.2 m in height. The dataset contains targets
of varying sizes and complexities. These differences reflect the variety in structural features
and scattering characteristics [45]. The size and complexity of the targets directly influence
scattering center resolution and classification accuracy. To verify the correctness as well
as the efficiency of the dataset, a comparison is presented among three image simulation
methods, namely the range Doppler algorithm (RDA) [46], the FIS-SBR method, and the
FIS-BSBR technique.

The comparative imaging results for ship 1 using three different methods—the RDA,
FIS-SBR, and the proposed FIS-BSBR—are shown in Figure 5. To simulate SAR imageries
with different polarizations, separate simulations are performed for each polarization
mode (HH, HV, VH, and VV). In each mode, the scattering characteristics are calculated
based on the specific polarization of the transmitted and received signals. For example,
the HH mode uses horizontal polarization for both transmission and reception, while the
HV mode uses horizontal transmission and vertical reception. All methods accurately
pinpoint the positions of scattering centers, as demonstrated by the discernible basic outline
of the ship and the distribution of scattering centers in the ISAR images. It indicates
that our method aligns well with the comparative methods in terms of numerical results.
However, traditional imaging methods struggle with complex geometric shapes and diverse
materials, especially in analyzing coupling effects between scattering centers in intricate
structure of the ship. These methods are also hindered by high computational demands and
reduced efficiency.

While the FIS-SBR efficiently generates radar images for large targets, it overlooks
scattering contributions in complex targets, such as those with cavities, and fails to reveal
certain coupling effects. In contrast, as shown in Figure 5c, the FIS-BSBR significantly
enhances the detail representation and the description of coupling among scattering centers
compared to Figure 5a,b. This detailed visualization of interactions between scattering
centers is crucial for subsequent open-set target recognition and characteristic analysis.

Quantitative results in Table 2 confirm that the FIS-BSBR takes more time for image
formation compared to the FIS-SBR (64 s vs. 12 s). This is due to the incorporation of
both forward and backward ray tracing, which enhances image quality by capturing
more detailed scattering information. Unlike the RDA, the FIS-BSBR employs convolution
based on the sin c function, which significantly improves data processing efficiency. This
approach leverages the convolution theorem and fast Fourier transform (FFT) to simplify
the imaging process by conducting calculations in the frequency domain. As a result, the
time spent on multiple scans in the range and azimuth directions is greatly reduced. The
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data formation time for the FIS-BSBR is considerably shortened, and most of the processing
time is concentrated in the convolution step of the imaging process.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 23 
 

 

imaging process by conducting calculations in the frequency domain. As a result, the time 
spent on multiple scans in the range and azimuth directions is greatly reduced. The data 
formation time for the FIS-BSBR is considerably shortened, and most of the processing 
time is concentrated in the convolution step of the imaging process. 

Tables 3 and 4 detail the distribution of samples per category in the FIS-SBR and FIS-
BSBR datasets. Ship 1 and ship 2 are categorized for training as known categories, while 
ship 3 is designated as an unknown category for testing. 

    
(a-1) HH (a-2) HV (a-3) VH (a-4) VV 

(a) RDA 

    
(b-1) HH (b-2) HV (b-3) VH (b-4) VV 

(b) FIS-SBR 

(c-1) HH (c-2) HV (c-3) VH (c-4) VV 
(c) FIS-BSBR 

Figure 5. Comparison of 2D ISAR images of a ship model under four polarization modes. (a) RDA 
[46]. (b) FIS-SBR [47]. (c) FIS-BSBR. 

Table 2. Performance comparison. 

Methods * Data/s * Imaging/s * Total/s 
RDA [46] 240 0.1 240.1 

FIS-SBR [47] 0.1 12 12.1 
FIS-BSBR (proposed) 0.1 64 64.1 

* Denotes generation time. 

Table 3. The sample distribution in the FIS-SBR. 

Category @ Training @ Test @ All 
Ship 1 1788 196 1984 
Ship 2 1783 201 1984 
Ship 3 0 183 183 

@ Denotes the number. 

Table 4. The sample distribution in the FIS-BSBR. 

Category @ Training @ Test @ All 
Ship 1 1796 188 1984 
Ship 2 1774 209 1983 
Ship 3 0 183 183 

@ Denotes the number. 

Figure 5. Comparison of 2D ISAR images of a ship model under four polarization modes. (a) RDA [46].
(b) FIS-SBR [47]. (c) FIS-BSBR.

Table 2. Performance comparison.

Methods * Data/s * Imaging/s * Total/s

RDA [46] 240 0.1 240.1
FIS-SBR [47] 0.1 12 12.1

FIS-BSBR (proposed) 0.1 64 64.1
* Denotes generation time.

Tables 3 and 4 detail the distribution of samples per category in the FIS-SBR and
FIS-BSBR datasets. Ship 1 and ship 2 are categorized for training as known categories,
while ship 3 is designated as an unknown category for testing.

Table 3. The sample distribution in the FIS-SBR.

Category @ Training @ Test @ All

Ship 1 1788 196 1984
Ship 2 1783 201 1984
Ship 3 0 183 183

@ Denotes the number.

Table 4. The sample distribution in the FIS-BSBR.

Category @ Training @ Test @ All

Ship 1 1796 188 1984
Ship 2 1774 209 1983
Ship 3 0 183 183

@ Denotes the number.
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3.2. MSTAR Dataset

The moving and stationary target acquisition and recognition (MSTAR) dataset, de-
veloped by Sandia National Laboratories [13], is a cornerstone in the development and
evaluation of ATR based on SAR. MSTAR employs a high-resolution spotlight-mode SAR
sensor with a resolution of 0.3 m × 0.3 m. It includes a diverse array of vehicle targets
captured from multiple azimuth angles, making it a benchmark dataset in SAR-based
target recognition.

Specifically designed for terrestrial target classification, the MSTAR dataset [43,44]
supports our work across ten categories, namely BRDM-2, BTR-60, BTR-70, T-72, ZSU23-4,
ZIL-131, D7, T-62, BMP-2, T-62, and 2S1 categories are used only as unknown classes during
testing and are excluded from the training phase. It is divided based on pitch angles, with
the training set featuring seven targets at pitch angles ranging from 14◦ to 16◦, and the test
dataset comprising ten target types at a pitch angle of 17◦. The detailed composition of the
MSTAR dataset used in the following experiments is listed in Table 5, and a sample from
each category is shown in Figure 6.

Table 5. The sample distribution in the MSTAR dataset.

Category @ Training @ Test @ All

BRDM-2 298 274 572
BTR-60 256 195 451
BTR-70 233 196 429

T-72 232 196 428
ZSU23-4 299 274 573
ZIL-131 299 274 573

D7 299 274 573
BMP-2 0 195 195

T-62 0 273 273
2S1 0 274 274

@ Denotes the number.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 23 
 

 

3.2. MSTAR Dataset 
The moving and stationary target acquisition and recognition (MSTAR) dataset, de-

veloped by Sandia National Laboratories [13], is a cornerstone in the development and 
evaluation of ATR based on SAR. MSTAR employs a high-resolution spotlight-mode SAR 
sensor with a resolution of 0.3 m × 0.3 m. It includes a diverse array of vehicle targets 
captured from multiple azimuth angles, making it a benchmark dataset in SAR-based tar-
get recognition. 

Specifically designed for terrestrial target classification, the MSTAR dataset [43,44] 
supports our work across ten categories, namely BRDM-2, BTR-60, BTR-70, T-72, ZSU23-
4, ZIL-131, D7, T-62, BMP-2, T-62, and 2S1 categories are used only as unknown classes 
during testing and are excluded from the training phase. It is divided based on pitch an-
gles, with the training set featuring seven targets at pitch angles ranging from 14° to 16°, 
and the test dataset comprising ten target types at a pitch angle of 17°. The detailed com-
position of the MSTAR dataset used in the following experiments is listed in Table 5, and 
a sample from each category is shown in Figure 6. 

     
(a) BRDM-2 (b) BTR-60 (c) BTR-70 (d) T-72 (e) ZSU23-4 

(f) ZIL-131 (g) D7 (h) BMP-2 (i) T-62 (j) 2S1 

Figure 6. Sample presentation in the MSTAR dataset. (a) BRDM-2; (b) BTR-60; (c) BTR-70; (d) T-72; 
(e) ZSU23-4; (f) ZIL-131; (g) D7; (h) BMP-2; (i) T-62; (j) 2S1. 

Table 5. The sample distribution in the MSTAR dataset. 

Category @ Training @ Test @ All 
BRDM-2 298 274 572 
BTR-60 256 195 451 
BTR-70 233 196 429 

T-72 232 196 428 
ZSU23-4 299 274 573 
ZIL-131 299 274 573 

D7 299 274 573 
BMP-2 0 195 195 

T-62 0 273 273 
2S1 0 274 274 

@ Denotes the number. 

4. Experiment 
To optimize data loading time, the size of SAR images was reduced to 64 × 64 pixels 

for input processing. For the simulation dataset, the output layer of LiOSR-SAR was con-
figured with three neurons, which correspond to two known categories and one unknown 
category. For the MSTAR dataset (provided by Sandia National Laboratories, Albuquer-
que, NM, USA), it was set up with four neurons, covering three known categories and one 
unknown category. 

Figure 6. Sample presentation in the MSTAR dataset. (a) BRDM-2; (b) BTR-60; (c) BTR-70; (d) T-72;
(e) ZSU23-4; (f) ZIL-131; (g) D7; (h) BMP-2; (i) T-62; (j) 2S1.

4. Experiment

To optimize data loading time, the size of SAR images was reduced to 64 × 64 pixels
for input processing. For the simulation dataset, the output layer of LiOSR-SAR was con-
figured with three neurons, which correspond to two known categories and one unknown
category. For the MSTAR dataset (provided by Sandia National Laboratories, Albuquerque,
NM, USA), it was set up with four neurons, covering three known categories and one
unknown category.

The LiOSR-SAR was trained for 50 epochs, with a training batch size of 64. To mitigate
the risk of converging to local optima, a cosine annealing scheduler was utilized to adjust
the learning rate dynamically. The relationship between the adaptive learning rate and
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the training process is defined in (16), where ηt is the current learning rate, ηmax = 0.005
and ηmin = 0 are the maximum and minimum learning rates, respectively, Tcur represents
the current epoch, T = 50 denotes the number of epochs in a cycle, and Twarmup= 10 is the
number of epochs used for warm up [48]. The effects of these learning rate adjustments on
LiOSR-SAR are discussed in the following section. ηt = ηmin +

Tcur
Twarm up

· (ηmax − ηmin), Tcur ≤ Twarmup

ηt = ηmin +
1
2 (ηmax − ηmin) ·

[
1 + cos

(
Tcur−Twarmup

T π
)]

, Tcur > Twarmup
. (16)

The accuracy assessment for LiOSR-SAR utilizes a cross-entropy loss function [49],
defined as

loss = − 1
Nz

Nz

∑
i=1

z′i log(zi), (17)

where zi is the classification result of sample i, z′i is the ground truth label of sample i, and
Nz indexes the number of all training samples.

Accuracy is quantified by [49]

Accuracy =
@TP + @TN

@TP + @TN + @FP + @FN
, (18)

where @ denotes the number. True positive (TP), false positive (FP), false negative (FN),
and true negative (TN) represent true positives, false positives, false negatives, and true
negatives, respectively. The terms “positive” and “negative” indicate whether a sample
is classified as belonging to a specific category or not. In the absence of the OP module,
thresholds were adjusted based on the dataset to improve the recognition of unknown targets.

The efficiency of LiOSR-SAR was assessed by comparing the model size and the time
spent on training.

4.1. Classification Performance on Diverse Datasets
4.1.1. Accuracy Analysis

Table 6 shows the target recognition accuracy of LiOSR-SAR across the FIS-SBR, FIS-
BSBR, and MSTAR datasets. The simulated datasets (FIS-SBR, FIS-BSBR) contain ISAR
images in four polarizations, namely HH, HV, VH, and VV, whereas the measured dataset
(MSTAR) operates exclusively in the HH polarization. Recognition accuracy on the MSTAR
dataset reaches 94.1%, which is higher than the 86.9% achieved with the FIS-SBR, but
slightly lower than the 97.9% with the FIS-BSBR. The superior accuracy of the FIS-BSBR is
due to its ability to capture detailed scattering features in ISAR images, thereby improving
target recognition performance.

Table 6. Recognition accuracy of LiOSR-SAR.

Datasets Overall Accuracy

FIS-SBR 86.9%
FIS-BSBR 97.9%
MSTAR 94.1%

4.1.2. Confusion Matrix Analysis

In Tables 7–9, the “Unknown” category refers to targets not seen during training. In
the FIS-SBR and FIS-BSBR datasets, ship 3 is labeled as “Unknown” to assess the ability of
LiOSR-SAR to identify unseen targets. In the MSTAR dataset, “Unknown” refers to targets
different from the trained vehicle classes. This setup tests the capability of LiOSR-SAR to
handle unknown targets in real-world scenarios.
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Table 7. Confusion matrix of LiOSR-SAR on the unknown category recognition task for the FIS-SBR.

Dataset True
Predict Ship 1 Ship 2 Unknown

FIS-SBR
Ship 1 96.9% 0% 3.1%
Ship 2 0% 98.5% 1.5%

Unknown 65.7% 0% 34.3%
Overall Accuracy 86.9%

Blue color indicates the probability of correct classification.

Table 8. Confusion matrix of LiOSR-SAR on the unknown category recognition task for the FIS-BSBR.

Dataset True
Predict Ship 1 Ship 2 Unknown

FIS-BSBR
Ship 1 99.5% 0% 0.5%
Ship 2 0% 98.1% 1.9%

Unknown 3.6% 2.4% 94.0%
Overall Accuracy 97.9%

Blue color indicates the probability of correct classification.

Table 9. Confusion matrix of LiOSR-SAR on the unknown category recognition task for MSTAR.

Dataset True
Predict

BRDM-2 BTR-60 BTR-70 T-72 ZSU23-4 ZIL-131 D7 Unknowns

MSTAR

BRDM-2 97.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 1.8%
BTR-60 0.5% 91.3% 0.0% 0.0% 0.0% 0.0% 0.0% 8.2%
BTR-70 0.0% 0.0% 95.9% 0.0% 0.0% 0.0% 0.0% 4.1%

T-72 0.0% 0.0% 0.0% 79.9% 0.0% 0.0% 0.7% 19.3%
ZSU23-4 0.0% 0.0% 0.0% 0.0% 98.0% 0.0% 0.0% 2.0%
ZIL-131 0.0% 0.0% 0.0% 0.0% 0.0% 98.9% 0.0% 1.1%

D7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0%
Unknowns 0.4% 0.7% 0.5% 0.0% 2.8% 0.5% 1.6% 93.4%

Overall Accuracy 94.1%
Blue color indicates the probability of correct classification.

Tables 7–9 display the confusion matrices for the three datasets. In Table 7, the
performance on the FIS-SBR dataset for the unknown category is significantly lower than
for the known categories, with only a 34.3% accuracy for unknown targets. This indicates
limitations in the ability of the FIS-SBR to capture sufficient scattering detail for unknown
target recognition. However, in Table 8, the FIS-BSBR dataset shows a marked improvement,
with the accuracy for the unknown category increasing to 94.0%. This result highlights
the advantage of the FIS-BSBR method in capturing more detailed and comprehensive
scattering information, particularly in challenging unknown category recognition tasks.
The higher accuracy demonstrates the effectiveness of using bidirectional ray tracing in
improving feature extraction and classification performance.

Furthermore, Table 9 presents the confusion matrix for the real-world MSTAR dataset.
The classification accuracy on this dataset remains consistently high across various vehicle
types, with most diagonal elements close to or exceeding 90%, reflecting correct classi-
fications. For example, targets like BRDM-2 and D7 achieve recognition rates of 97.8%
and 100%, respectively, showcasing the robustness of the model in identifying known
targets. Even for the unknown category, the model maintains a solid performance, with a
classification accuracy of 93.4%.

These results confirm that LiOSR-SAR performs well not only on simulated datasets
but also on measured datasets, demonstrating a strong generalization ability and robustness
in real-world applications.

4.1.3. Model Size and Time

Table 10 presents the training duration, memory usage, and model size for the LiOSR-
SAR across the three datasets. The model size consistently remains at 7.5 MB, showcasing
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the lightweight nature of LiOSR-SAR. Additionally, its minimal memory and training time
requirements make it highly advantageous for engineering deployment. This compact
design not only allows the model to be efficiently deployed in environments with limited
computational resources but also ensures faster model updates and lower maintenance
costs. The ability of LiOSR-SAR to balance performance and resource efficiency underlines
its potential for real-time applications, where quick response times are critical.

Table 10. Performance of LiOSR-SAR on three datasets.

Dataset Size/MB Time/s

FIS-SBR 7.5 880.4
FIS-BSBR 7.5 869.0
MSTAR 7.5 703.0

4.2. Comparison with Other DL-Based Methods

In the experimental section, separate discussions of closed-set recognition (CSR) and
open-set recognition (OSR) are conducted to assess the adaptability and efficacy of LiOSR-
SAR under different conditions. Closed-set testing evaluates recognition performance on
known categories, while open-set testing measures accuracy in identifying new, unseen
categories, which is crucial for real-world applications.

4.2.1. Comparison with CSR Methods

Figure 7 depicts the performance of LiOSR-SAR against other DL methods such as
ResNet-50 [50], ResNet-101 [51], EfficientNet-B3 [52], DenseNet-121 [53], MobileNetV3 [54],
and RegNet-32 [55] across three datasets, the FIS-SBR, FIS-BSBR, and MSTAR. LiOSR-SAR
demonstrates superior accuracy and lower training loss, particularly excelling with the
FIS-BSBR dataset due to its rich detail. Despite the complexities of the MSTAR dataset,
LiOSR-SAR maintains robust performance, showcasing its potential for effective application
in radar image classification.

Tables 11 and 12 highlight the advantages of LiOSR-SAR in terms of training time
and model size, showing significant efficiency gains compared to other models. Specifi-
cally, it maintains high accuracy with substantially reduced model complexity and faster
processing times.

Table 11. Model size comparison with DL-based methods for CSR.

Methods ResNet-50
[50]

ResNet-101
[51]

EfficientNet-B3
[52]

DenseNet-121
[53]

MobileNetV3
[54]

RegNet-32
[55] Ours

FIS-SBR
Size/MB 90.0 162.7 41.3 27.1 16.2 9.0 7.5
Time/s 1347.5 1344.4 1341.1 1345.0 1344.1 1341.8 882.1

FIS-
BSBR

Size/MB 90.0 162.7 41.3 27.1 16.2 9.0 7.5
Time/s 1341.5 1347.3 1360.8 1367.3 1385.2 1374.7 869.6

MSTAR
Size/MB 90.0 162.8 41.4 27.1 16.3 9.0 7.5
Time/s 987.6 1264.4 1039.5 1041.3 873.9 849.8 851.0

Table 12. Accuracy comparison with DL-based methods for CSR.

Methods FIS-SBR FIS-BSBR MSTAR

ResNet-50 [50] 100% 100% 82.6%
ResNet-101 [51] 100% 100% 85.9%

EfficientNet-B3 [52] 100% 100% 73.7%
DenseNet-121 [53] 99.7% 100% 81.3%
MobileNetV3 [54] 100% 100% 73.6%

RegNet-32 [55] 99.5% 100% 78.5%
Ours 100% 100% 97.3%
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Our LiOSR-SAR model demonstrates significant advantages in model size and com-
putational efficiency. As evidenced in Table 11, our model significantly reduces complexity,
with a size of just 7.5 MB, and outperforms other methods in processing speed, completing
tasks in only 851.0 s. Despite its smaller size and faster processing, LiOSR-SAR maintains
a 100% accuracy on the FIS-SBR and FIS-BSBR datasets and achieves a competitive 94.2%
accuracy on the MSTAR dataset, as detailed in Table 12.

4.2.2. Comparison with OSR Methods

Currently, few models are specifically designed for OSR in SAR imageries. Both
classic DL-based models and OSR methods from the literature have been benchmarked,
providing a comprehensive evaluation. In Table 13, accuracy comparisons of complete OSR
methods, directly referenced from the literature, are presented. Table 14 highlights combi-
nations of feature extraction and classification strategies from different sources, allowing
for a more granular comparison of their individual contributions to OSR performance in
SAR imageries.

Table 13. Accuracy comparison with DL-based methods for OSR from the literature.

Methods FIS-SBR FIS-BSBR MSTAR

Literature [25] 83.5% 90.2% 88.2%
Literature [29] 84.4% 88.3% 85.8%

Ours 86.9% 97.9% 94.1%
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Table 14. Model size comparison with DL-based methods for OSR from the literature.

Methods FIS-SBR FIS-BSBR MSTAR

Literature [25] 36.7 MB 36.7 MB 36.7 MB
Literature [29] 44.2 MB 44.2 MB 44.2 MB

Ours 7.5 MB 7.5 MB 7.5 MB

Our method achieved superior performance across all datasets in Table 13, with a
97.9% accuracy on the FIS-BSBR and 94.1% on MSTAR, outperforming the OSMIL [25] and
extended OpenMax [29] methods. This suggests that our approach not only handles the
complexities of SAR images effectively but also shows strong generalization capabilities in
both simulated and real-world data.

Table 14 provides a comparison of model sizes between our proposed method and
those from the literature. As shown, our model significantly reduces the size to 7.5 MB,
making it much more lightweight compared to the literature models, which range from
36.7 MB to 44.2 MB.

Table 15 outlines the comparative effectiveness of different models, incorporating
different classification layers such as SoftMax [27], OSmIL [25], and extended OpenMax [29].
It not only showcases the performance on closed sets but also demonstrates the effectiveness
in managing unknown categories within open sets. LiOSR-SAR shows superior OSR
accuracy, maintaining this lead even amidst the complexities of the MSTAR dataset. The
consistency in model size across both open- and closed-set scenarios, due to the tests
being differentiated only in the test phase, underscores the robustness and adaptability of
our model.

Table 15. Accuracy comparison of combined feature extraction and classification strategies for OSR.

Methods FIS-SBR FIS-BSBR MSTAR

ResNet-50 [50] + SoftMax [27] 83.1% 86.0% 79.5%
ResNet-50 [50] + OSmIL [25] 84.7% 88.9% 75.7%
ResNet-50 [50] + Extended

OpenMax [29] 76.0% 76.2% 81.1%

ResNet-101 [51] + SoftMax [27] 83.3% 87.7% 78.6%
ResNet-101 [51] + OSmIL [25] 81.8% 84.3% 80.7%
ResNet-101 [51] + Extended

OpenMax [29] 62.5% 77.2% 74.5%

DenseNet-121 [53] + SoftMax [27] 83.3% 89.5% 81.4%
DenseNet-121 [53] + OSmIL [25] 81.6% 85.8% 74.1%
DenseNet-121 [53] + Extended

OpenMax [29] 75.0% 85.8% 82.1%

MobileNetV3 [54] + SoftMax [27] 83.7% 83.7% 75.0%
MobileNetV3 [54] + OSmIL [25] 86.2% 85.6% 69.6%
MobileNetV3 [54] + Extended

OpenMax [29] 53.7% 89.1% 76.5%

EfficientNet-B3 [52] + SoftMax [27] 85.2% 87.0% 73.1%
EfficientNet-B3 [52] + OSmIL [25] 89.1% 86.2% 63.1%
EfficientNet-B3 [52] + Extended

OpenMax [29] 63.9% 88.5% 72.3%

RegNet-32 [55] + SoftMax [27] 84.3% 89.1% 75.7%
RegNet-32 [55] + OSmIL [25] 89.1% 91.6% 69.5%
RegNet-32 [55] + Extended

OpenMax [29] 87.9% 81.6% 77.2%

Ours 86.9% 97.9% 94.1%

4.3. Ablation Experiments

To validate the effectiveness of the integrated modules within our approach, we
conducted three ablation experiments focusing on the compact attribute focusing (CAF)
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module and the open-prediction (OP) module. These experiments provide a detailed
analysis of how each component affects the overall performance of our system.

4.3.1. On CAF Module

Table 16 presents a comparison of results with and without the CAF module. After
incorporating the CAF module, recognition accuracy improved by 46.1% on the FIS-SBR,
18.7% on the FIS-BSBR, and 7.7% on MSTAR. Furthermore, as shown in Table 17, the
inclusion of the CAF module leads to a substantial reduction in model size by 83.0%
and a decrease in training time by 4.9%. The averages for model size and training times
reported in Table 17 reflect data across the three datasets, indicating consistent performance
enhancements due to the CAF module.

Table 16. Ablation study for the CAF module on accuracy.

Dataset CAF Module Accuracy

FIS-SBR
× 40.8%√

86.9%

FIS-BSBR
× 79.2%√

97.9%

MSTAR
× 82.4%√

94.1%

Table 17. Ablation study for the CAF module on size and training time.

CAF Module Size/MB Training Time/s

× 44.2 910.4√
7.5 867.6

4.3.2. On OP Module

Table 18 details the improvements in recognition accuracy achieved by integrating
the OP module compared to scenarios where it is absent. Table 19 presents specific data
regarding model size and training time for both configurations. With the inclusion of
the OP module, recognition accuracy increased by 53.6% for the FIS-SBR; 64.6% for the
FIS-BSBR; and 38.4% for MSTAR. This demonstrates that the OP module is crucial for
handling unknown classes, which is a core challenge in open-set recognition. Furthermore,
despite the significant improvement in accuracy, the inclusion of the OP module does not
increase model size or extend training time, as shown in Table 19. This balance between
model efficiency and performance enhancement highlights the practical applicability of the
OP module in real-world deployments, where computational resources may be limited.

Table 18. Ablation study for the OP module on accuracy.

Dataset OP Module Accuracy

FIS-SBR
× 33.3%√

86.9%

FIS-BSBR
× 33.3%√

97.9%

MSTAR
× 55.7%√

94.1%

Table 19. Ablation study for the OP module on size and training time.

OP Module Size/MB Training Time/s

× 7.5 867.6√
7.5 867.6
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4.3.3. Learning Rate Cycle Discussion

The proposed LiOSR-SAR employs a cosine annealing regulator to adjust the learning
rate during the training process, as depicted in Figure 8. The model trains over 50 epochs,
with the first five serving as a warm-up phase, where the learning rate linearly ascends
to its peak. It is illustrated through three learning rate variation curves, namely a black
dashed line for a 10-epoch cycle, a blue dotted line for a 25-epoch cycle, and a solid red line
for a 45-epoch cycle.
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Table 20 presents the accuracy performance across three datasets for cycles of 10, 25,
and 45 epochs. The results demonstrate the crucial impact of the learning rate on model
performance. For instance, on the FIS-SBR dataset, the accuracy peaks at a learning rate
of 25 with 85.6%. It drops slightly at 45, indicating potential overfitting or instability.
Conversely, for the FIS-BSBR dataset, a higher learning rate of 45 gives the best result,
reaching 97.9%. This suggests that a more aggressive learning rate optimizes performance
for this dataset. Similarly, on the MSTAR dataset, the model performs best at the highest
learning rate, achieving 94.1%. These results show the importance of adjusting the learning
rate according based on the characteristics of the dataset. This helps strike a balance
between convergence speed and model stability.

Table 20. Accuracy under different learning rates of LiOSR-SAR.

Datasets
T

10 25 45

FIS-SBR 83.5% 85.6% 84.4%
FIS-BSBR 94.0% 80.1% 97.9%
MSTAR 89.1% 85.9% 94.1%

To further assess the performance and learning dynamics, Figures 9 and 10 plot the
training loss and accuracy across epochs. During the initial 10 epochs, there is a rapid
decrease in loss and a marked improvement in accuracy, signaling effective early learning.
Examining different cosine annealing cycles (T = 10, 25, 45) reveals that a T = 45 cycle yields
greater stability in accuracy during later training stages. Magnified views of the loss curves
for the final 10 epochs, especially under logarithmic scaling, reveal smoother declines with
a T = 45 cycle. It indicates that a longer cosine annealing cycle not only stabilizes but also
enhances the generalizability and effectiveness across datasets, especially under unknown
data conditions.
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5. Conclusions

A novel LiOSR-SAR is proposed in this paper to address the dual challenges of main-
taining high accuracy and managing model size in classifiers, particularly when dealing
with unknown categories. The LiOSR-SAR integrates two advanced modules, the CAF mod-
ule and the OP module. These are specifically designed to bolster classifier performance
against unknown categories while preserving a lightweight model architecture.
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The effectiveness of LiOSR-SAR, augmented by the CAF and OP modules, is demon-
strated through a comparative analysis with existing DL-based classifiers. The efficacy of
these modules is substantiated by detailed ablation studies. Additionally, the FIS-BSBR
technique is proposed for the rapid creation of simulated datasets, generating radar images
with enhanced target details that significantly benefit the testing of cost-effective classifiers.

The experimental results confirm that LiOSR-SAR achieves a 97.9% accuracy on the
FIS-BSBR dataset and 94.1% on the MSTAR dataset, outperforming other lightweight
classifiers. Ablation studies demonstrate that removing the CAF or OP modules leads to a
significant drop in performance, highlighting their importance. These findings validate
that LiOSR-SAR maintains an excellent balance between accuracy and model size, making
it suitable for practical applications.
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