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Abstract: Strong salinity stratification induced by large freshwater fluxes in the northern Bay of
Bengal (BOB) results in the formation of a quasi-permanent barrier layer (BL) that covers almost the
entire BOB and leads to a unique temperature inversion within the thick BL in winter. In the presence
of temperature inversions, the entrainment process at the bottom of the mixed layer (ML) induces
warming effects in the ML, but little is known about this. In this paper, we quantify the contribution
of the entrainment process to the ML temperature (MLT) in the northern BOB during the winter of
2013 using monthly and daily data from the Ocean General Circulation Model for the Earth Simulator
version 2 (OFES2). It is found that the warming effect of the daily entrainment heat flux (EHF), which
resolved the high-frequency variations, is 4 orders of magnitude larger than the monthly EHF for
most of the wintertime. This significantly enhanced warming effect in daily data offsets up to 87%
of the surface cooling induced by net heat flux during wintertime. A further analysis reveals that
the larger daily EHF warming effect compared to its monthly counterpart is closely related to the
deepened ML, the larger temperature difference within the ML and vertical velocity at the bottom of
the ML.

Keywords: barrier layer; Bay of Bengal; mixed layer heat budget; high-frequency variability

1. Introduction

In the upper ocean, the formation of a layer with uniform temperature and density,
known as the oceanic mixed layer (ML), is influenced by factors such as wind mixing
or thermal convection. In most parts of the global ocean, the depth of the ML (MLD) is
dominated by the stratification of temperature. Consequently, the MLD usually corresponds
to the isothermal layer (IL; Figure 1). However, in the tropical oceans and major estuaries,
the strong near-surface salinity stratification, induced by a large amount of freshwater
input from precipitation and river discharge, can lead to a shallower ML above the base of
the IL. The layer between the base of the IL and the base of the ML is known as the barrier
layer (BL) [1]. The BL impedes heat exchange between the ML and the deep ocean and
plays an important role in modulating the surface heat budget, sea surface temperature
(SST), and thus the coupled air–sea interactions [2–4]. With the presence of the BL, the
solar shortwave radiation can penetrate through the ML and accumulate within the BL,
leading to an increase in the temperature within the BL [5]. Moreover, as the sea surface
cools in winter, the ML temperature (MLT) decreases significantly, which results in warmer
water in the BL than at the surface, which is known as temperature inversion (Figure 1) [6].
Then, the entrainment process may bring warmer water from the BL into the ML and lead
to a warming effect on the ML [7]. This warming effect can have a significant impact on
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the regional climate. For example, it can exert a vital influence on the intensity of tropical
cyclones [8] and the onset of the South Asian monsoon [9].
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upper layers in the BOB the freshest in the Indian Ocean, and has a substantial influence 
on the vertical stratification of the upper ocean [11–13]. Consequently, quasi-permanent 
BLs are found in the BOB throughout the year [14,15], and have remarkable seasonal var-
iabilities with notably pronounced BLs in the northern bay during summer and winter 
[16]. Many studies have been conducted to understand the dynamics of such seasonal 
variabilities of BLs in the bay. The redistribution of low-salinity waters induced by the 
surface seasonal circulation has a dominant influence on the extent and BL thickness (BLT) 
during summer and winter [17]. Other processes such as Ekman pumping and propagat-
ing Rossby waves forced by Kelvin waves along the eastern boundary also modulate the 
variations in the BLs [18,19]. 

Figure 1. Schematic diagram of the depths of isothermal layer depth (ILD), mixed layer depth (MLD),
barrier layer thickness (BLT) and temperature inversion thickness (ILT), calculated by the vertical
profile of salinity (blue curves) and temperature (red curves) from OFES2 at the location of 18.45◦N,
92.35◦E on 24 January 2013. The green area is MLD and grey area is BLT. The associated parameters
of ILT, including dT, Tmin, and Tmax, are also shown.

The Bay of Bengal (BOB), a tropical semi-enclosed basin strongly influenced by the
Indian monsoons, is characterized by large freshwater influx from rivers as well as excess
monsoonal precipitation over evaporation [10]. The abundant freshwater flux makes the
upper layers in the BOB the freshest in the Indian Ocean, and has a substantial influence on
the vertical stratification of the upper ocean [11–13]. Consequently, quasi-permanent BLs
are found in the BOB throughout the year [14,15], and have remarkable seasonal variabilities
with notably pronounced BLs in the northern bay during summer and winter [16]. Many
studies have been conducted to understand the dynamics of such seasonal variabilities of
BLs in the bay. The redistribution of low-salinity waters induced by the surface seasonal
circulation has a dominant influence on the extent and BL thickness (BLT) during summer
and winter [17]. Other processes such as Ekman pumping and propagating Rossby waves
forced by Kelvin waves along the eastern boundary also modulate the variations in the
BLs [18,19].

Corresponding with the spatiotemporal variations in the BLs mentioned above, tem-
perature inversion is confined to the northern BOB, specifically to north of 15◦N, where the
BL is relatively thick during the winter months with sea surface cooling (i.e., November to



Remote Sens. 2024, 16, 3742 3 of 14

the following February) [20]. Correspondingly, the entrainment process occurring within
the warm BL that leads to ML warming is predominantly observed during the winter
months, as expected, and contributes to the seasonal and interannual variability of the SST
in the northern bay [21–27]. However, based on the monthly observational data or model
output, the results show that the contribution of the entrainment heat flux (EHF) to ML
warming is rather small, at approximately one order of magnitude smaller than that of
atmosphere heating [24,26,27]. In contrast, the Southern Ocean is also characterized by the
warm BL underlying the cool ML in austral winter, and thus provides a unique heating
effect on the ML through the entrainment processes at the base of the ML, similar to the
BOB [28]; however, in the Southern Ocean, the comparison between the daily and monthly
EHF warming indicates that the high-frequency variations in the ML resolved in the daily
data can contribute to mixed layer warming nearly twice as much as the monthly data in
the BL period, which is enough to compensate for or even surpass the surface heat loss.
They argue that this larger degree of warming in the daily results is due to the stronger
relative rate of the MLD deepening and larger temperature differences between the ML
and the layer immediately below. Similar results were reported by Foltz et al. (2009) [29].
They found that in the central Tropical North Atlantic, a daily time series observed by a
buoy at 15◦N 38◦W clearly detected a 1–2-month intermittent warming of the ML induced
by the EHF under temperature inversion conditions during December–February, while the
warming disappeared when the EHF is averaged to the monthly climatological means.

Compared to the results in the Southern Ocean and the North Atlantic [28,29], the
relatively small contribution from the EHF to the MLT with large residuals has been shown
in the aforementioned studies [24,26,27] in the BOB. Due to a lack of observations, these
studies on the seasonal and interannual variations in the heat budget of the ML in the BOB
merely relied on monthly data, and resulted in a relatively small EHF and large residuals.
By using monthly data, high-frequency variations and their contributions to mixing and
entrainment are not included in the EHF [28] and consequently result in large residuals.
Till now, the contribution of the EHF to the variations in the MLT in the BOB by considering
high-frequency processes has not been properly assessed. Such studies could expand
our understanding of the role of salinity and the BL on the regional climate and related
dynamic mechanisms, which may contribute to the prediction of South Asian monsoons
and tropical cyclones with a reasonable consideration of the influence of salinity and the
BL in the model.

Therefore, in this study, we employ a comparative analysis using daily and monthly
model outputs to investigate the differences in the EHF calculated from these two temporal
resolutions during the winter temperature inversion period and discuss the related mech-
anisms. The rest of this paper is organized as follows: Section 2 introduces the data and
methods, Section 3 analyzes the impacts of winter BLs on the MLT by comparing the daily
and monthly results, and Section 4 presents the conclusion and discussion.

2. Data and Methods
2.1. Data

The temperature, salinity, current, and surface net heat flux data employed in this study
are from the Ocean General Circulation Model for the Earth Simulator version 2 (OFES2)
provided by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) [30].
The OFES2 is based on the Modular Ocean Model version 3 (MOM 3) and utilizes a
latitude and longitude grid system. Previous studies have suggested that this dataset has
successfully simulated the upper layer thermohaline structure and ocean circulation in the
BOB [25,31,32]. It provides both monthly and daily resolved data, and thus facilitates an
evaluation of the contribution of the entrainment processes associated with high-frequency
processes. Both the daily and monthly datasets cover the period from January 1958 to
December 2022, with a spatial resolution of 0.1◦ × 0.1◦ and 105 vertical layers. There are
44 layers above 300 m. The wind data driving the OFES2 model is from the Japanese
55-year atmospheric reanalysis-based surface dataset for driving ocean–sea ice models
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(JRA55-do) [33], and it is used to explore the relationship of the high-frequency variations
between surface wind and the EHF.

In the BOB, the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO)
can greatly induce interannual variability in the BLT [18,34]. To isolate such interannual
signals in the BLT associated with the IOD and ENSO, we selected a normal year of 2013
during the Argo period (i.e., after 2003), and compare the effects of the EHF on the MLT
between monthly and daily data under the normal conditions of the BLT during that year.
Thus, the OFES2 dataset from September 2013 to April 2014 is used in this study. OFES2
temperature and salinity data are used to calculate the MLD, IL depth (ILD) and BLT. In
addition, these two types of data, together with surface heat flux and ocean current data,
are used in the analysis for the ML heat budget.

Monthly Argo temperature and salinity data from the Asia-Pacific Data-Research
Center (http://apdrc.soest.hawaii.edu, format: accessed on 8 March 2024.), covering the
same period as the OFES2 dataset (September 2013 to April 2014), with a horizontal
resolution of 1◦ × 1◦, are used to validate the BLT results of the OFES2 dataset.

2.2. Methods
2.2.1. Calculation of ILD, MLD and BLT

The calculation of ILD, MLD, and BLT follow the definitions proposed by De Boyer
Montégut et al. [15]. ILD is defined as the depth where temperature decreases by 0.2 ◦C
relative to the 10 m layer. Similarly, the MLD is defined as the depth where potential density
σθ = σs + σ∆, with σs being the potential density at 10 m, and σ∆ representing the increase
in potential density due to a constant salinity relative to the 10 m layer and a temperature
decrease of 0.2 ◦C. BLT is defined as the difference between IL depth and MLD when IL is
deeper than ML.

2.2.2. Calculation of Temperature Inversion

The calculation of temperature inversion follows the definition proposed by Li et al. [20].
The temperature inversion layer thickness (ILT) is defined as the depth below 10 m where
the temperature increases with depth, and its amplitude (dT) is characterized by the
difference between the maximum (Tmax) and the minimum (Tmin) within the ILT (Figure 1).

2.2.3. ML Heat Budget

The ML heat budget formula used in this study is based on that from Wang et al. [28]:

∂Tml
∂t

=
Qml

ρCph
−

(
uml

∂Tml
∂x

+ vml
∂Tml
∂y

)
− ∆T

h
we + RES (1)

From left to right, the terms represent the temperature tend (TEND), surface net heat
flux (SNHF), horizontal advection heat flux (HADV), entrainment heat flux (EHF) and
residual (RES). Here, h is the MLD, Tml is the MLT, ρ is seawater density, Cp is the specific
heat capacity, uml and vml are the zonal and meridional components of the mean flow in
the ML, Qml = Qnet − Qpen is the net heat flux for air–sea exchange within the ML, Qnet

is the net heat flux at the sea surface, Qpen = 0.47 × QSW ·e−0.04·h accounts for shortwave
flux penetration through the ML [23], where QSW is the shortwave radiation, ∆T is the
difference between the average MLT and the temperature below the ML bottom. The
formula for entrainment velocity we is based on that from Wang et al. [28]:

we =
∂h
∂t

+

(
u−h

∂h
∂x

+ v−h
∂h
∂y

)
+ w−h (2)

Here, −h represents the bottom of the ML. The entrainment velocity we is decomposed
into three terms from left to right: local variations in the ML (we1), lateral induction
(we2), and vertical velocity at the bottom of the ML (we3). This study only considers the
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entrainment processes. When we > 0, entrainment processes are considered while it is set
to be zero otherwise (we ≤ 0).

Therefore, the EHF consists of the three terms. The local term (Ent1), −∆T
h

∂h
∂t , repre-

sents the effect of local MLD variability. The advection term (Ent2), −∆T
h

(
u−h

∂h
∂x + v−h

∂h
∂y

)
,

represents horizontal advection across the bottom of the ML. The vertical velocity (Ent3),
−∆T

h w−h, represents vertical advection across the bottom of the ML.
The ∆T is the temperature difference between the ML average and the ML base

which is hard to determine with the real data. Therefore, the common practice is to
use the temperature difference between a fixed depth difference beneath the ML base.
Various thresholds of depth beneath the ML base were selected in previous studies, such as
5 m [22,35], 10 m [36,37] and 20 m [38,39]. In the present study, we select 5 m below the ML
base and ∆T is calculated as the difference between the average MLT and the temperature
5 m below the ML base. To examine the sensitivity of EHF to the different thresholds of
depth, we compare the result of 5 m depth difference (EHF05) with a moderate threshold of
10 m depth difference (EHF10). The difference between the values of EHF10 and EHF05 is
small, with its mean value 27.4% higher than that of EHF05 during the winter months (i.e.,
November–following February) of 2013. This small difference between them underpins
the fact that the values of EHF are not very sensitive to the depth if moderate thresholds
are selected, such as 5 m or 10 m. Thus, in previous studies, EHF is estimated by using the
temperature difference between a fixed depth beneath the mixed layer base, as mentioned
above. However, it should be noted that the method we used may overestimate the values
of EHF to a certain degree, due to the possible impact of other mixing processes below the
mixed layer, such as shear-induced mixing and convective mixing.

3. Results
3.1. Distribution of the BL and Temperature Inversion in Winter 2013

Firstly, we conducted a comparative analysis between the BLT calculated from the
OFES2 reanalysis data and the results from the Argo observation to validate the reliability
of the OFES2 reanalysis dataset (Figure 2). Both of the two datasets show a similar distribu-
tion of the BLT. According to the OFES2 data, during autumn (September–October), the
BL is relatively thin in most areas of the bay (25 m to 35 m), with thicker layers (45 m to
55 m) observed near the Sunda Strait, the Andaman Sea, and the Myanmar coast. During
the winter (November to the following February), the BOB displays a much thicker BL
compared to that in the other seasons [18], which persists into early spring (March). Partic-
ularly, from December to next March, the BLT in the northern bay (north 15◦N) can exceed
60 m, while the southern bay exhibits thinner layers. The thicker BL in the wintertime in
the northern bay is partly contributed by the shallower ML associated with the southward
transport of the freshwater input from the northern tip of the bay [17]. Additionally, a
region near the Sunda Strait also presents thick BLs during December and January. In April,
the BLT throughout the bay is generally less than 5 m. In general, these OFES2 results agree
well with the Argo observations in terms of the spatial distribution patterns and seasonal
variations in the BL, except for those from the Andaman Sea, which is blanked in the Argo
results due to the few Argo observations there. In addition, the OFES2 results indicate
that the thickest BL is located in the central bay between 14◦ and 19◦N, and the BL in the
northern bay (>19◦N) is much thinner than that in the central bay (Figure 2f). However,
the Argo results show that the BLT decreases southward. Thus, the noticeable difference
in the BL distribution between these two types of data is located in the northern bay, and
this is due to the sparse Argo data in that region. Despite these differences, the general
consistency between the two datasets, although the slightly smoother appearance of Argo
data due to its lower spatial resolution, underscores the ability of OFES2 to reliably depict
the distribution and variations in the BL in the study region.
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Figure 3 displays the monthly distribution of the dT. Temperature inversions mainly
occur in the northern BOB (north 15◦N) during winter, which is generally consistent with
the spatial extent of the thick BL. The temperature inversion begins in November at the
northern tip of the bay and gradually extends southward. Both the spatial coverage and
the amplitude reach peaks in January, with a maximal dT up to 3.0 ◦C. From February,
the distribution of the temperature inversion recedes northward, accompanied by a cor-
responding decrease in the amplitude. By April, the temperature inversion completely
disappears due to the rise in the SST. This phase-locking of the temperature inversion
in the northern bay during the winter months is predominantly attributed to the unique
wintertime ocean–atmosphere forcings. Previous studies [22] suggest that this is attributed
to the intense latent heat release from the dry and cold winter monsoon winds, leading to
a substantial cooling of the ML. In addition, the advection of fresh water input from the
rivers around the northern boundary of the bay also plays a role in maintaining the thicker
BL and the temperature inversion in it. In the presence of winter temperature inversion, the
ocean dynamic processes such as advection and entrainment at the bottom of the ML result
in the transfer of warmer water from the BL to the ML and consequently warm the ML from
the subsurface [24]. In the following sections, we will analyze the impact of entrainment
processes in the BL on the MLT in the winter of 2013, based on the heat budget equation of
the ML mentioned in Section 2.2.

3.2. Impact of Winter BLs on the Temperature of the ML: Comparative Analysis between Daily and
Monthly Data

The entrainment process is a small-scale vertical transport process that persists over
a long time scale. Therefore, the cumulative effects of high-frequency eddy advection
variations are expected to differ significantly from monthly averaged data. To clarify the
impact of high-frequency processes, we chose Region A (87◦E–94◦E, 15◦N–21◦N, as shown
in Figure 3e) to calculate the ML heat budget. Region A is characterized by a thick BL and
significant dT in the northern bay (Figures 2 and 3e). Figure 4 displays the time series of
the EHF in the ML over Region A calculated using daily and monthly OFES2 data. The
differences between the daily and monthly EHF are mainly observed from November to
the following February. Both the results from the daily and monthly data are positive, but
the daily EHF is larger than that from the monthly results most of the time. This difference
increases with the temperature inversion, and decreases after reaching a maximum in
December. The maximum daily EHF can be up to 3.49 ◦C/month, which is nearly an
order of magnitude higher than the monthly values. The accumulating daily EHF in
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each month (monthly’ EHF) is 1.12–1.79 ◦C/month during November to the following
February (Figure 4a), with an average value of 1.17 ◦C/month, which is 4 times larger than
the monthly result (Figure 4b). The difference arises because the daily results not only
include the low-frequency entrainment processes resolved by the monthly data, but also
incorporate the EHF induced by high-frequency variations, which is almost absent in the
monthly data.
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Figure 4. (a) Comparison of EHF warming calculated from daily (red curves) and monthly (blue
curves) OFES2 data. The daily EHF values were multiplied by the number of days in each month.
The black curve denotes the monthly EHF averaged from its daily values (monthly’ EHF). The
grey area represents the period of the thick barrier layer (November to the following February).
(b) Average of monthly EHF and of monthly’ EHF during the 2013 winter months of November to
the following February.

Merely relying on the monthly data, the previous studies have reported that the SNHF
is the dominant factor affecting the heat budget of the ML in the BOB during winter, while
the contributions of HADV and EHF are one order smaller than that of SNHF [24,27]. As the
monthly data cannot properly detect the high-frequency processes, it may underestimate
the role of EHF, and results in the large residual term partly associated with the high-
frequency variations [24,27]. Using the same monthly resolution data as in the previous
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studies, we can see that the monthly EHF tends to warm the ML and offsets the surface
cooling induced by the SNHF, but its contribution is very small, as expected (Figure 5b),
which is consistent with previous studies [24,27]. The absolute ratio of it to the value of
the SNHF is around 10% in most of the winter months. In contrast, when accounting for
the impact of high-frequency variations, the EHF obtained from the daily data exhibits
a more significant warming effect on the MLT (Figures 4 and 5a). This warming effect
greatly weakens the surface cooling associated with the SNHF. The absolute daily ratio
of the warming effect of the EHF to the value of the SFHF cooling effect is approximately
50% in November and December, and surpasses 90% in January and February (Figure 5a).
Similarly, the absolute ratio of the monthly’ EHF warming effect to the cooling value of the
monthly’ SFHF cooling effect exceeds 50% during these winter months, and is much larger
than the monthly EHF results (Figure 5b; black line vs. blue line).

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 16 
 

 

data exhibits a more significant warming effect on the MLT (Figures 4 and 5a). This warm-
ing effect greatly weakens the surface cooling associated with the SNHF. The absolute 
daily ratio of the warming effect of the EHF to the value of the SFHF cooling effect is 
approximately 50% in November and December, and surpasses 90% in January and Feb-
ruary (Figure 5a). Similarly, the absolute ratio of the monthly’ EHF warming effect to the 
cooling value of the monthly’ SFHF cooling effect exceeds 50% during these winter 
months, and is much larger than the monthly EHF results (Figure 5b; black line vs. blue 
line). 

 
Figure 4. (a) Comparison of EHF warming calculated from daily (red curves) and monthly (blue 
curves) OFES2 data. The daily EHF values were multiplied by the number of days in each month. 
The black curve denotes the monthly EHF averaged from its daily values (monthly’ EHF). The grey 
area represents the period of the thick barrier layer (November to the following February). (b) Av-
erage of monthly EHF and of monthly’ EHF during the 2013 winter months of November to the 
following February. 

 
Figure 5. (a) Daily EHF (red curves), SNHF (yellow curves) and their ratio (blue curves) during the 
period from September 2013 to April 2014. The daily EHF values were multiplied by the number of 
days in each month. (b) Same as (a) but for monthly results. The ratio (black curves) of the monthly 
EHF averaged from its daily values (monthly’ EHF) to the corresponding SNHF (monthly’ SNHF) 

Figure 5. (a) Daily EHF (red curves), SNHF (yellow curves) and their ratio (blue curves) during the
period from September 2013 to April 2014. The daily EHF values were multiplied by the number of
days in each month. (b) Same as (a) but for monthly results. The ratio (black curves) of the monthly
EHF averaged from its daily values (monthly’ EHF) to the corresponding SNHF (monthly’ SNHF) is
included in (b). The grey area in (a,b) represents the period of the thick barrier layer (November to
the following February).

Figure 6 compares each heat budget term in the ML between the daily and monthly
data. For the monthly data, the surface cooling trend of −0.26 ◦C/month is dominated
by the SNHF (−1.71 ◦C/month). The warming effect from HADV and EHF is very weak
(0.06 ◦C/month and 0.25 ◦C/month, respectively), which only offsets 18% of the overcool-
ing caused by the SNHF. Consequently, the RES is very large (Figure 6c; the solid black
curves vs. the dash black curves), with the averaged value reaching up to 1.40 ◦C/month,
close to the dominant term of the SNHF (Figure 6d). The large RES may be due to the
contributions from the high-frequency EHF and the other mixing processes which are
absent in the monthly data. For the daily data, the surface cooling trend of −0.25 ◦C/month
is also primarily caused by the SNHF (−1.34 ◦C/month), which is consistent with the
monthly results. However, the significantly enhanced monthly’ EHF makes the RES rather
small (Figure 6a; the solid black curves vs. the dash black curves). It has an averaged value
of 1.17 ◦C/month during wintertime and offsets 87% of the SNHF cooling, resulting in a
relatively small RES value (0.60 ◦C/month; Figure 6b). These differences in the daily and
monthly results underpin the fact that the analysis of the heat budget of the ML using daily
data can give a more reliable estimation of the heat balance due to the more accurate EHF
term in the daily results.



Remote Sens. 2024, 16, 3742 9 of 14

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 16 
 

 

is included in (b). The grey area in (a) and (b) represents the period of the thick barrier layer (No-
vember to the following February). 

Figure 6 compares each heat budget term in the ML between the daily and monthly 
data. For the monthly data, the surface cooling trend of −0.26 °C/month is dominated by 
the SNHF (−1.71 °C/month). The warming effect from HADV and EHF is very weak (0.06 
°C/month and 0.25 °C/month, respectively), which only offsets 18% of the overcooling 
caused by the SNHF. Consequently, the RES is very large (Figure 6c; the solid black curves 
vs. the dash black curves), with the averaged value reaching up to 1.40 °C/month, close to 
the dominant term of the SNHF (Figure 6d). The large RES may be due to the contributions 
from the high-frequency EHF and the other mixing processes which are absent in the 
monthly data. For the daily data, the surface cooling trend of −0.25 °C/month is also pri-
marily caused by the SNHF (−1.34 °C/month), which is consistent with the monthly re-
sults. However, the significantly enhanced monthly’ EHF makes the RES rather small (Fig-
ure 6a; the solid black curves vs. the dash black curves). It has an averaged value of 1.17 
°C/month during wintertime and offsets 87% of the SNHF cooling, resulting in a relatively 
small RES value (0.60 °C/month; Figure 6b). These differences in the daily and monthly 
results underpin the fact that the analysis of the heat budget of the ML using daily data 
can give a more reliable estimation of the heat balance due to the more accurate EHF term 
in the daily results. 

 
Figure 6. (a) The monthly heat budget terms in the ML averaged from the daily values during the 
period from September 2013 to April 2014, derived from daily OFES2 data, and (b) their averaged 
values during the 2013 winter (i.e., November to the following February). (c,d) are the same as (a,b), 
respectively, but for the monthly results derived directly from monthly OFES2 data. The grey area 
in (a) and (c) represents the period of the thick barrier layer (November to the following February). 
The RES is the accumulation of the absolute values of the respective residual terms. 

The aforementioned daily EHF is greatly enhanced compared to the monthly EHF in 
the winter months. Considering that the entrainment term consists of the local term (Ent 
1), the advection term (Ent 2), and the vertical velocity term (Ent3), we further analyzed 
the contributions of these three terms to the winter EHF. Figure 7 shows their contribu-
tions during the period from September to April. Large difference in Ent1 between the 
daily and monthly results primarily appears in the winter months, peaking in December 
or January (Figure 7a). On average, for the winter months (i.e., November to the following 
February), the daily Ent1 is 0.30 °C/month, 0.25 °C/month larger than the monthly Ent1 

Figure 6. (a) The monthly heat budget terms in the ML averaged from the daily values during the
period from September 2013 to April 2014, derived from daily OFES2 data, and (b) their averaged
values during the 2013 winter (i.e., November to the following February). (c,d) are the same as (a,b),
respectively, but for the monthly results derived directly from monthly OFES2 data. The grey area in
(a,c) represents the period of the thick barrier layer (November to the following February). The RES
is the accumulation of the absolute values of the respective residual terms.

The aforementioned daily EHF is greatly enhanced compared to the monthly EHF in
the winter months. Considering that the entrainment term consists of the local term (Ent 1),
the advection term (Ent 2), and the vertical velocity term (Ent3), we further analyzed the
contributions of these three terms to the winter EHF. Figure 7 shows their contributions
during the period from September to April. Large difference in Ent1 between the daily and
monthly results primarily appears in the winter months, peaking in December or January
(Figure 7a). On average, for the winter months (i.e., November to the following February),
the daily Ent1 is 0.30 ◦C/month, 0.25 ◦C/month larger than the monthly Ent1 (Figure 7d).
Similarly, the daily Ent2 and Ent3 have larger values compared to the monthly results, with
a difference of 0.34 ◦C/month and 0.39 ◦C/month, respectively. Therefore, the analysis
above reveals that these three terms have a comparable contribution to the larger degree of
warming of the ML in the daily EHF compared to the monthly results in winter.

As shown in Equations (1) and (2), Ent1, Ent2 and Ent3 are all directly controlled by
the Th term: the ratio of the temperature difference within the ML to the MLD (−∆T

h ). In
addition, they are also affected by local variations in the ML (we1), lateral induction (we2),
and vertical velocity at the bottom of the ML (we3), respectively. As shown in Figure 8a, the
difference in the Th term is large between the daily and monthly results, and it is primarily
caused by ∆T (Figure 8b,c). In general, the averaged value of the daily Th term is twice
as large as that of the monthly Th term (0.02 ◦C/m vs. 0.01 ◦C/m; Figure 8d), which is
dominated by the difference between the daily ∆T and monthly ∆T (0.63 ◦C vs. 0.30 ◦C),
partly contributed by the difference from the MLD (17.15 m vs. 14.08 m; Figure 8e,f).

Besides the aforementioned effect from the Th term, we1, we2 and we3 also contribute
to Ent1, Ent2 and Ent3, respectively (Figure 9). We can see that both the daily we1 and
we3 are approximately 5 times larger than the monthly results (Figure 9a–c). In contrast,
the average value of the daily we2 is 68% larger (21.62 m/month vs. 12.89 m/month)
than that of the monthly we2 (Figure 9b,c). Therefore, the enhanced Ent1 and Ent3 are
mainly caused by we1 and we3, and ∆T plays a secondary role. In contrast, the difference
between the daily and monthly Ent2 result primarily comes from ∆T, and we2 also makes
an important contribution.
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Figure 7. Comparison of daily and monthly local terms (Ent1) (a), advection term (Ent2) (b), and
vertical velocity term (Ent3) (c) during September 2013 and April 2014. The daily values were
multiplied by the number of days in each month. The monthly Ent1, Ent2 and Ent3 averaged from its
respective daily values (i.e., monthly’ Ent1, monthly’ Ent2, and monthly’ Ent3) are shown in (a–c)
as black curves, respectively, and (d) their averaged values by a comparison with their monthly
counterparts in the 2013 winter months of November to the following February. The grey area in
(a–c) represents the period of the thick barrier layer (November to the following February).
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Figure 8. Comparison of daily and monthly Th term (a), MLD (b) and −∆T (c) during the period
from September 2013 to April 2014. The monthly Th term, MLD and −∆T averaged from their
respective daily values (i.e., monthly’ Th term, monthly’ MLD and monthly’ −∆T) are shown in (a–c)
as black curves, respectively, and Th term (d), MLD (e) and −∆T (f) are shown as the averaged values
through a comparison with their monthly counterparts in the 2013 winter months of November to the
following February. The grey area in (a–c) represents the period of the thick barrier layer (November
to the following February).
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Figure 9. Comparison of daily and monthly local variations in the ML (we1) (a), lateral induction (we2)
(b) and w at the bottom of the ML (we3) (c) during the period from September 2013 to April 2014.
The daily EHF was multiplied by the number of days in each month. The monthly we1, we2 and we3

averaged from their respective daily values (i.e., monthly’ we1, monthly’ we2 and monthly’ we3) are
shown in (a–c) as black curves, respectively, and (d) their averaged values by a comparison with their
monthly counterparts in the 2013 winter months of November to the following February. The grey
area in (a–c) represents the period of the thick barrier layer (November to the following February).

4. Discussion

In the BOB, as the daily data include high-frequency processes, the EHF warming
calculated from the daily data can give a more reliable estimation of the role of the BL on
the MLT. Both the daily EHF and the monthly values averaged from it are much larger than
those calculated directly from the monthly data (e.g., Figure 4). Thus, the EHF estimated
using the monthly numerical model output of the turbulent heat flux is expected to be
more accurate than the results estimated directly from the monthly model outputs.

According to previous studies, the enhanced EHF in the daily data compared to that
in the monthly data is probably related to high-frequency fluctuations in surface wind
fields [40]. Therefore, we discussed the short-timescale fluctuations in the MLD and ∆T
in relation to winds. Considering that, in JRA55-do, wind is used as the surface forcing of
the OFES2 model [6], we therefore construct the daily JRA55-do wind from the original 3 h
wind forcing of OFES2 to explore its possible impact on the high-frequency variations in
the MLD and ∆T. Figure 10a shows the power spectrum of the MLD, ∆T and surface wind
speed during the 2013 winter months (i.e., November to the following February). One can
see that there are several significant peaks of energetic oscillation of the surface wind found
within the time bands 10–30 and 5–10 days, corresponding to the sub-monthly and weekly
oscillations, respectively. Similarly, the MLD time series shows high variabilities at these
two time bands, and ∆T indicates strong oscillations in the sub-monthly band. Furthermore,
the correlation coefficients of the MLD and ∆T with the surface wind speed are significant
at the 95% confident level at these frequencies (Figure 10b). The consistencies between them
implies that surface wind is likely the major forcing factor for the high-frequency variations
in the MLD and ∆T on the sub-monthly time scales. That is to say, the high-frequency
fluctuations in the EHF were likely driven by sea surface wind during winter 2013.
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Figure 10. (a) The power spectrum of daily wind speed (black solid curves), MLD (red solid curves)
and ∆T (blue solid curves) in the study region (87◦E–94◦E, 15◦N–21◦N) during winter 2013. All
three signals were normalized (divided by their respective maximum power). (b) The correlation
coefficients of wind speed with MLD (red solid curves) and ∆T (blue solid curves) at each frequency
band during the period 2–75 days. The black dash line represents the 95% confidence level.

5. Conclusions

In this study, we utilize OFES2 reanalysis together with Argo observations to explore
the ML warming induced by the BL over the BOB during the winter of 2013. Firstly, a
comparison with the Argo results indicates that OFES2 data accurately captures the spatial
distribution and seasonal variation characteristics of the BL and temperature inversion in
the winter of 2013, validating the reliability of OFES2 data.

Based on the mixed-layer heat budget formula, we investigated the impacts of the
winter entrainment process in the BL to the variations in the MLT. The analysis reveals that
the presence of temperature inversion within the BL results in a warming of the ML in both
the daily and monthly EHF data. However, the daily EHF values are 4 orders of magnitude
higher than the monthly EHF values for most of the winter months. This suggests that the
monthly data, due to its inability to resolve the high-frequency process which is present
in the daily data, consequently underestimates the contribution of EHF. Therefore, the
warming effect of the monthly EHF can inevitably underestimate the contribution of the
BL to the temperature of the ML. Consistent with previous studies [24,27], our analysis
indicates that the absolute ratio of its contribution to the SNHF is approximately 10%
in most of the winter months. In contrast, the ratio of the monthly EHF warming effect
calculated from the daily data to the SNHF is larger than 50%. This significantly enhanced
EHF (i.e., monthly’ EHF) offsets up to 87% of the SNHF cooling effect during wintertime,
resulting in a relatively small RES value. This result underlines that the analysis of the heat
budget in the ML using daily data may give a more reliable estimation of the heat balance
due to the more accurate EHF term in the daily results.

A further analysis reveals that the significantly enhanced daily EHF in winter is caused
by the three vertical terms, including the local term (Ent1), the advection term (Ent2) and
vertical velocity term (Ent3), which have a comparable contribution to the warming of
the ML in the daily EHF values. Moreover, the strengthened Ent1 and Ent3 were mainly
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induced by the enhanced local variations in the ML and vertical velocity at the bottom of
the ML, respectively, while Ent2 is dominated by ∆T. Hence, we explore the relationship
between the high-frequency variations in the surface wind and the MLD and ∆T, both of
which contribute to the enhanced daily EHF values. This reveals that the high-frequency
variations in the MLD and ∆T are likely induced by surface wind, and consequently lead
to the enhanced daily EHF associated with high-frequency processes.

The high-frequency BL entrainment process plays a vital role in modulating the SST,
and its cumulative effects over a long time scale are expected to have important impacts on
the seasonal or even interannual variability in the SST in the northern BOB. By considering
the EHF induced by the high-frequency processes in the ML, how and to what extent the
BL affects the low-frequency variability in the SST and the associated air–sea interaction
processes can be studied further.
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