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Abstract: Low carbon management and policies should refer to local long-term inter-annual carbon
uptake. However, most previous research has only focused on the quantity and spatial distribution of
gross primary product (GPP) for the past 50 years because most satellite launches, the main GPP data
source, were no earlier than 1980. We identified a close relationship between the tree-ring index (TRI)
and vegetation carbon dioxide uptake (as measured by GPP) and then developed a nested TRI-GPP
model to reconstruct spatially explicit GPP values since 1895 from seven tree-ring chronologies. The
model performance in both phases was acceptable: We chose general regression neural network
regression and random forest regression in Phase 1 (1895–1937) and Phase 2 (1938–1985). With
the simulated and real GPP maps, we observed that the GPP for grassland and overall GPP were
increasing. The GPP landscape patterns were stable, but in recent years, the GPP’s increasing rate
surpassed any other period in the past 130 years. The main local climate driver was the Palmer
Drought Severity Index (PDSI), and GPP had a significant positive correlation with PDSI in the
growing season (June, July, and August). With the GPP maps derived from the nested TRI-GPP
model, we can create fine-scale GPP maps to understand vegetation change and carbon uptake over
the past century.

Keywords: gross primary product; tree-ring indices; Midwest U.S.; GIS; random forest regression

1. Introduction

A substantial amount of greenhouse gasses is emitted by human activities contributing
to global warming and the increasing frequency of extreme weather [1,2]. High levels of
CO2 emission have disrupted the equilibrium between carbon sink and carbon source [3].
Many researchers have examined historical records or applied mathematical models to
reconstruct early anthropogenic carbon emissions [4,5], but few studies have evaluated
the quantity or spatial distribution of carbon sinks over a long temporal period. Currently,
satellite imagery is the main source to monitor or quantitatively estimate the amount and
the spatial distribution of the gross primary product (GPP) or net primary product (NPP),
two key metrics to evaluate the storage of carbon sinks [6,7]. However, most optical satellite
launches were later than the 1980s. It was inaccessible to obtain GPP landscape patterns
via satellites earlier than 50 years ago [8]. Tree rings, an ideal proxy for dating, have three
advantages in GPP reconstruction. Firstly, tree-ring width reflects tree growth and energy
conversion via photosynthesis (GPP) [9]. Secondly, tree rings record tree growth annually,
so the temporal resolution of GPP data is 1 year. Lastly, trees are globally widespread, so
we can use tree rings to reconstruct GPP around the world.

Some dendrochronology studies have investigated the relationship between vegetation
indices and tree-ring width [10,11]. Wang et al. [12], by employing a linear regression
model to reconstruct NPP with tree-ring indices (TRI), demonstrated a positive relationship.
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Liang et al. [13] determined that the tree-ring index (TRI) had a strong relationship with
NDVI in grassland close to the collection plot. Most studies treated an entire study area
as a singular dot, and the reconstruction was at a very coarse scale. But in reality, there
is still a heterogeneous landscape with many forests, grasslands, or water patches in one
study site, which were completely ignored by those studies. Li et al. [14] achieved an NDVI
reconstruction with tree-ring indices at a fine scale with a spatial resolution of 30 m. But
their study had obvious limitations in balancing the number of plots involved in the study
and the temporal extent of their study when the reconstruction time was constrained to the
temporal overlap of the trees on the plots. The more plots that are involved, the shorter
the reconstruction time that was available in the common period. Our research generated
annual GPP fine-scale maps since 1895, and the nested reconstruction approach enabled us
to use the full time period of the individual chronologies.

2. Methods

The whole study time was divided into three phases: Phase 1 (1895–1937), Phase 2
(1938–1985), and Phase 3 (1986–2013). The training set included GPP values from 1986 and
tree-ring indices (TRI) of multiple plots from 1986 to 2013. For Phase 1 and Phase 2, we
trained the GPP–TRI models individually and chose the best models for these two phases
(Figure 1).
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Figure 1. The workflow of our study.

2.1. Study Areas

Our study is located across the boundary of Illinois and Indiana, in the Midwest U.S.
(Figure 2). The whole area covers 3510 km2 (117 km × 30 km), ranging from 36.97◦N
to 42.51◦N in latitude and from 84.78◦W to 91.51◦W in longitude, located in the humid
continental climate zone.
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Figure 2. The location of our study and tree plot distributions in two phases. Note: (A,B) show the
location of the study sites within the United States. (C,D) indicate the available tree plots in Phase
1 (1895–1937) and Phase 2 (1938–1985). The tree plots in the maps are the following: No. 1: IL018,
No. 2: IL030, No. 3: IN012, No. 4: IN013, NO. 5: IN014, No. 6: IN035, and No. 7: our collection.
(C,D) displays the plots involved in Phase 1 and Phase 2 regression.

Local average temperatures in summer and winter are 24 degrees Celsius and −4 de-
grees, respectively. The annual precipitation is 300 mm. (https://weatherspark.com/
y/13301/Average-Weather-in-Normal-Illinois-United-States-Year-Round (accessed on
13 August 2024).

Our study area covers five cities: Terre Haute (Indiana), Marshall (Illinois), Martinsville
(Illinois), Casey (Illinois), and Greenup (Illinois). In our study area, there are no obvious
counter-urbanization sites where former built-up areas have reverted back to forest and
grassland patches, so we assume that the forest and grassland in 2013 were kept stable
for the whole study period (1895–2013). According to the NLCD 2013 [15], we reclassified
the whole area into five land covers: forest, grassland (including cropland), urban areas,
water, and wetland. Li et al.’s research [14] demonstrated that the regression between
tree-ring indices and vegetation index could work well only in grasslands and forests.
So, we excluded water, wetlands, and built-up areas and only focused on grasslands and
forests. The term “whole area” in later paragraphs only indicates all forest and grassland
in our study site. The local dominant species include white oak (Quercus alba), red oak
(Quercus rubra), shagbark hickory (Carya ovata), and sugar maple (Acer saccharum).

2.2. Date Source and Data Preprocessing

The main data sources in our study are tree-ring indices and GPP products. We
collected tree-ring data from seven plots, where six of them were from the International
Tree-Ring Databank (ITRDB) and one of them was from our collection in Lincoln Trail State
Park, Illinois. All collected tree cores in Lincoln Trail State Park were dried in the laboratory
fume hood and were sanded with progressively finer sandpaper (120, 320, and 400 grit).
Then, we hand-sanded the samples with 3 M 30 ųm sanding film until no scratches were
visible under the microscope [16]. The samples were scanned with an Epson V600 scanner
at 2400 DPI and measured using the CooRecorder program [17] with an output of 0.001 mm
precision. We checked the dating of each core against its paired tree-level core (A vs. B) in
CooRecorder, built a local master with a kernel of well-dated samples, and checked the date
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of the rest of the samples against that kernel. We checked the quality of the measurements
and the dating between cores for the whole site in CDendro [17] and COFECHA [18]. Then,
the raw ring widths were detrended using an age-dependent spline for all chronologies in
ARSTAN [18]. We cut off the tree-ring index (TRI) when the expressed population signal
(EPS) fell below 0.85 [19]. Among those seven plots, there were two white oak plots, one
sugar maple plot, one shagbark hickory plot, one tulip tree plot, one red oak plot, and one
white ash plot (Table 1). Among seven plots, tree-ring indices from four of them were used
in Phase 1 reconstruction, and all of them were used in Phase 2.

Table 1. The background information of the seven selected plots.

Order ITRDB ID Species Name Scientifc Name Earliest Year Latest Year Available Phases

1 IL018 White Oak Quercus alba 1847 2014 Phase 1 and Phase 2
2 IL030 Sugar Maple Acer saccharum 1895 2016 Phase 1 and Phase 2
3 IN012 Shagbark Hickory Carya ovata 1912 2013 Phase 2
4 IN013 Tuliptree Liriodendron tulipifera 1920 2013 Phase 2
5 IN014 Red Oak Quercus rubra 1892 2013 Phase 1 and Phase 2
6 IN035 White Ash Fraxinus americana 1938 2013 Phase 2
7 Our collection White Oak Quercus alba 1855 2023 Phase 1 and Phase 2

Note: The earliest years of Plot 3, Plot 4, and Plot 5 were not in the range of Phase 1 (1895–1937), so they could not
join Phase 1 regression.

The annual GPP data from 1986 to 2013 were from the Numerical Terradynamic
Simulation Group (NTSG) [20], whose spatial resolution was 30 m and temporal resolution
was 16 days. The unit of the product was g C/m−2 year−1 GPP. For each year, we chose all
available GPP images in the growing season (June, July, and August) and generated annual
GPP maps by averaging the values for these 3 months. Then, the non-vegetation areas
(water, wetland, and built-up areas) were masked out. All data processing mentioned above
was via Google Earth Engine. Though the NTSG GPP was the simulated GPP product with
the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images,
the Landsat series satellite actually provided us with reliable satellite images since 1986. So,
in the paper, we call the GPP product “real data”. After we simulated the GPP data prior to
1986, we called the combination of the simulated data and the real data “combined data”.

In general, there are three main climate drivers to influence vegetation photosynthesis
and GPP absorption: pure temperature, pure precipitation, and the combined effect of
precipitation and temperature [21]. The Palmer Drought Severity Index (PDSI) is a stan-
dardized index to evaluate regional dryness with temperature and precipitation. The index
ranges from −10 to 10, where a positive index indicates more moisture. If the value is lower
than −2, we define the weather as drought (https://climatedataguide.ucar.edu/climate-
data/palmer-drought-severity-index-pdsi (accessed on 1 September 2024). Monthly local
precipitation, temperature, and PDSI from 1895 to 2013 could be assessed via the following
website (https://wrcc.dri.edu/wwdt/time/ (accessed on 13 August 2024)).

2.3. Pixel by Pixel Regression

All of our regression analyses were at the pixel level. The whole study period consisted
of two sub-periods: Phase 1 and Phase 2. In Phase 2 (1938–1985), we developed the models
for each pixel in our study areas between GPP values in that pixel from 1986 to 2013 and TRI
of seven plots from 1986 to 2013 as our independent and dependent variables, respectively,
in model training. We used 5-fold validation to evaluate the model performances (Table 2)
where, for each pixel, there were 22 pairs of training samples (GPP and multiple TRIs) in
the training sets. In Phase 1 (1895–1937), only four of them met our requirements, so we
built up the models for each pixel between GPP and TRI of four plots. The reconstruction
process in Phase 1 and Phase 2 was similar to each other, except that there are four available
plots and seven available plots in Phase 1 and Phase 2, respectively [22]. For each phase,
we explored the relationship between GPP and TRI with three models (Figure 3): Random

https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi
https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi
https://wrcc.dri.edu/wwdt/time/
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forest regression (RF), Support Vector Machine regression (SVM), and General Regression
Neural Network regression (GRNN).

Table 2. The 5-fold cross-validation scheme.

Order Training Set (22) Validation Set (6) Validation Year

Fold 1 1992–2013 1986–1991 1990
Fold 2 1986–1990, 1997–2013 1991–1996 1995
Fold 3 1986–1995, 2002–2013 1996–2001 2000
Fold 4 1986–2000, 2007–2013 2001–2006 2005
Fold 5 1986–2007 2008–2013 2010
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Figure 3. The GPP reconstruction in two phases. Note: Pixel A can be any pixel in our study areas. In
Phase 1 and Phase 2, we have four plots and seven plots, individually.

Random forest (RF) regression applies the bootstrap aggregating technique and con-
structs multiple decision trees (100 trees in our study) at the same time. Each tree generates
an individual regression algorithm, and the RF calculates the mean of all decision tree
outputs. The application of RF regression is widespread in remote sensing and GIS [23,24].

The General Regression Neural Network regression (GRNN) is an improved neural
network learning approach. The approach is one-pass learning algorithm with one radial
basis layer and one special linear layer [25]. Single-pass learning does not need back-
propagation, and the use of Gaussian function guarantees a high accuracy even though
the inputs have noise. The GRNN was widely applied in many fields like soil moisture
downscaling [26], urban flood mapping [27], and burn area mapping [28].

The Support Vector Machine regression (SVM) is a supervised learning algorithm
to find a hyper-plane in an N-dimensional space. The ideal hyper-plane has the largest
distance between two separate classes. The algorithm usually has good performance in
a small training set [29]. In our study, the number of training samples for each pixel is
only 28 (1986–2013), so we chose it as one of candidate models. The SVM has been a
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popular approach in leaf index regression [30], snow-depth retrieval [31], and forest cover
change [32].

2.4. Model Evaluation

Based on model performance, we selected the best model among the three models
for two phases, respectively. There are four evaluation metrics: Adjusted R2 (Adj R2,
Equation (1)), Root Mean Squared Error (RMSE, Equation (2)), Mean Absolute Error (MAE,
Equation (3)), and Mean Absolute Percentage Error (MAPE, Equation (4)).

Adj R2 = 1 −
(

n − 1
n − p

)
SSE
SST

(1)

where SSE and SST are the sum of square error and the sum of squared total, respectively;
n and p are the number of samples and the number of regression coefficients, respec-
tively. Spiess and Neumeyer [33] warned that in some cases, R square in nonlinear fitting
was inappropriate.

RMSE =

√
∑n

i=1
(Si − Ri)

2

n
(2)

MAE =
∑n

i=1|Si − Ri|
n

(3)

MAPE =
∑n

i=1

∣∣∣ Si−Ri
Ri

∣∣∣
n

(4)

where S and R are the simulated value and real value; n is the number of samples.
We applied a 5-fold cross-validation to test model performance for two phases. From

1986 to 2013 (28 years), we chose 22-year data as our training set and the rest of the years
(6 years) as the validation set. Then, we chose the data in 1 specific year among those
6 years as our validation year. We repeated the same process five times and averaged the
metrics from the 5-fold validation. Then, we chose the best and reran the best model with
28 years of data.

2.5. Analysis of the Relationship between GPP and Climate Factors

We calculated the annual GPP of forest, grassland, and whole area in the growing
season. We also collected monthly precipitation (mm), temperature (degrees Celsius), and
PDSI. Then, we computed the correlation (Equation (5)) between GPP and those three
climate factors. Some researchers have demonstrated that precipitation and temperature in
previous years, like the snowpack, might still influence vegetation growth and then affect
photosynthesis and GPP production [34], so we computed the correlations between GPP
and the factors from previous May to current September. The GPP collection time was from
June to August, so we would not calculate the correlations after September.

r =
∑n

i=1 (gi − g)(ci − c)√
∑n

i=1 (gi − g)2∑(ci − c)2
(5)

where gi and ci are the GPP value and climate factor value; g and c are mean values of the
GPP series and climate factor series; and n is the number of samples.

We calculated the correlations in two datasets (long-term combined dataset and short-
term dataset). If the correlation values in two datasets had substantial differences, we
assume the differences come from two possible reasons. One is that the short-term dataset
could not fully reflect the real situations, while the other is that the extreme climate change
re-generates the current situations. No matter which reason, we will have a further investi-
gation on the differences.
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3. Results
3.1. Model Performance

In both phases, we conducted three approaches (RF, GRNN, and SVM) to reconstruct
GPP values and applied five validations in each phase. In Phase 1 (1895–1937), tree-ring
indices (TRI) in four plots were involved in our regression (Figure 4), and the rest of the
three plots did not have available data from 1895 to 1937. GRNN obviously outperformed
the other approaches of RMSE, MAPE, MAE, and Adjusted R2 of GRNN were the following:
559.45 g C m−2 year−1, 13.91%, 428.45 g C m−2 year−1, and 0.53, so we chose GRNN. The
SVM was the worst whose RMSE (1203.08 g C m−2 year−1) was more than twice as much
as GRNN’s. In Phase 2 (1938–1985), all seven plots were used in our research. The RF had
the lowest RMSE (520.21 g C m−2 year−1), the lowest MAPE (13.17%), and the lowest MAE
(404.64 g C m−2 year−1), even though SVM had the highest adjusted R square (0.69). The R
square could not fit non-linear curves very well, and the rest of the metrics for SVM were
the worst among the three. Then, we chose RF as our best model in Phase 2 and GRNN
ranked second. For the same approach, the performance in Phase 2 using seven plots was
always better than that in Phase 1 using four plots where RF’s RMSE in Phase 1 and Phase 2
were 580.98 g C m−2 year−1 and 520.21 g C m−2 year−1, while GRNN RMSEs in Phase 1
and Phase 2 were 559.45 g C m−2 year−1 and 541.03 g C m−2 year−1, respectively. Even
though the GRNN was the best model in Phase 1, its metrics were still worse than the RF’s
(the best model in Phase 2). More details about the 5-fold validations can be found in the
Appendix A.

3.2. GPP Tendency in Our Study Areas

Compared to the GPP in 2013 (mean GPP = 3614.7 g C m−2 year−1), the GPP in 1895
(Figure 5A) for the whole study area was low (mean GPP = 3148.7 g C m−2 year−1), but the
pattern was still very similar with the most recent one where the high GPP clusters were in
the west and east of our study area. But the center was a little lower than the two sides. In
1936 (the Dust Bowl period), the average GPP was 2980.6 g C m−2 year−1. The GPP in the
west of our study was decreasing while the PDSI reached −3.95 (Figure 5B). In 1954, the
PDSI was −7.18, while the mean GPP was also very low (mean GPP = 2990.7 g C m−2 year−1).
The landscape pattern was similar to that in 1936 (Figure 5C). In wet years like 1974,
whose PDSI was 3.52, the greenness increases (mean GPP = 3337.8 g C m−2 year−1)
were visible across the whole area, compared to the dry year (Figure 5D). In 2013, the
moisture (PDSI = 4.09) was even higher than in 1974, while the GPP also increased to
3614.7 g C m−2 year−1. Large deep greenness patches (high GPP clusters) covered the
whole area (Figure 5E). The simulated annual NPP maps can be found in Figure 5.

There were three GPP tendencies from 1895 to 2013: GPP in forest, GPP in grassland,
and GPP in forest and grassland (Figure 5F). The tendency in the whole period was
divided into two sub-periods: the period (1895–1985) using simulated data and the period
(1986–2013) using real data. The tendency lines of GPP in grassland using combined data
and GPP in the whole area using combined data were GPP = 0.2292 Year + 2931.4 and
GPP = 0.1007 Year + 3041.1, whose tendency slopes were positive but flat (Figure 5F). The
tendencies of GPP in grassland, and in the whole area, using only real data are positive and
steep (GPP = 22.511 Year − 41,622 and GPP = 15.908 Year − 28,559). The tendency of GPP in
forests with real data was contrary to that with combined data (GPP = 0.1742 Year + 3275.6;
GPP = 1.7789 Year − 607.92).
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3.3. GPP and Climate

GPP production has a close relationship with the local climate. The climate in current
and previous years influences the growth of plant tissues and, hence, the efficiency of
photosynthesis. There are three candidate drivers to affect GPP: pure temperature, pure
precipitation, and the combined effects of temperature and precipitation.

Pure precipitation could affect GPP absorption (Figure 6A). Precipitation in June
had a positive relationship with GPP using real data and combined data (R forest com-
bined June = 0.483; R grass combined June = 0.516; R forest real June = 0.511; R grass
real June = 0.592). Precipitation in the previous June had a positive correlation with GPP
in grassland using real data (R grass real PreJune = 0.205), but in the same month, the
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correlation of forest and grassland using combined data did not meet the significant level
(R forest combined PreJune = 0.039; R = grass combined PreJune = 0.122).
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Temperature could influence our GPP absorption (Figure 6B). The temperature in
July had negative relationships with GPP in the whole study area, including forest and
grassland (R forest combined July = −0.317; R grass combined July = −0.233; R forest real
July = −0.623; R grass real July = −0.467). The temperature in March had positive correla-
tions with GPP using real data (R forest real March = −0.537; R grass real March = −0.398),
but in the same month, the correlation using combined data did not show significant low
values (R forest combined March = −0.130; R grass combined March = −0.098).

The combined effects of temperature and precipitation could affect GPP absorption
(Figure 6C). PDSI in June, July, August, and September had positive relationships with
GPP in the whole study area including forest and grassland using combined data and real
data. PDSI in the previous September had a positive correlation with GPP in grassland
using real data (R grass real PresSep = 0.191), but in the same month, a high correlation
could not be found in GPP in forest and grassland using combined data (R forest combined
PresSep = 0.043; R grass combined PresSep = 0.096).

4. Discussion
4.1. Choosing the Best Models

The conventional studies considered the study site as one point where the spatial
heterogeneity of the study area was neglected. But our study reconstructed GPP for every
pixel in the whole area, and we also ran reconstruction models for two nested time periods
(Phase 1 and Phase 2). We tried to make full use of all plots in Phase 2 and build a robust
model with less error. In the meantime, we extended our study period to 1895 with fewer
plots (Phase 1). In Phase 1 (1895–1937), we chose the GRNN with the highest adjusted R2

and lowest RMSE, MAPE, and MAE among all three approaches. In Phase 2 (1938–1985),
we selected the RF with the lowest RMSE, MAPE, and MAE. Previous researchers [14]
only ran the model in Phase 1 and guaranteed model performance with as many plots as
possible. They chose the intersection of all plots as their starting year, which shortened
their study period. But if we intended to directly reconstruct our GPP from 1895 to 1985,
we would only have four plots for the whole temporal period with more errors.

From the best model in Phase 1 and Phase 2, the performance using the best model in
Phase 2 (RF) outperformed that in Phase 1 (GRNN) for all four evaluation metrics (RMSE,
MAPE, MAE, and adjusted R square). Even for the same model in two phases, the model
in Phase 1 was worse than that in Phase 2, which confirmed that the number of variables
may determine model performance. The four metrics (RMSE, MAE, MAPE, and adjusted R
square) of the two selected models were acceptable (Figure 4). Even when we compared
our results with other GPP reconstruction studies using in situ data, our model perfor-
mance exceeded theirs. Our RMSEs in Phase 1 and Phase 2 were 559.45 g C m−2 year−1

(1.53 g C m−2 day−1) and 520.21 g C m−2 year−1 (1.43 g C m−2 day−1), while the GPP
reconstruction with eddy covariance flux towers was 2.01 g C m−2 day−1 [35]. Our study
not only extended the study period but also presented the reconstruction with lower errors.

4.2. Analyzing GPP Variation over a Century

This is the first time that we witnessed the GPP spatial distribution more than 100 years
ago at a fine scale. From 1895 to 2013, the landscape pattern in our study area was
comparatively stable where high GPP clusters were concentrated in the west and the east of
our study area (Figure 5A,D,E), but dramatic GPP changes can be found. In severe drought
years (Figure 5B,C), the high GPP clusters were not visible compared to the map in 1974,
but in the center of our study area, there were only some subtle GPP variations. In wet
years, (Figure 4D,E), GPP was on the rise in the east and west of the study site.

The historical satellite images since 1980 could explain many variations in GPP. Our
study found that GPP for grassland and for the whole area showed increasing tendencies
(Figure 5F) with both datasets (combined GPP dataset and real GPP dataset). However,
there are still some ecological processes like forest growth or ecological succession that may
need more time to monitor [36,37]. When further studies are about local ecosystems and
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their restoration, the long-term dataset (combined dataset) can be more helpful. Our work
demonstrates the feasibility of creating fine spatial scale GPP maps for large areas that
extend over the time period of the tree-ring chronologies. As we develop longer tree-ring
chronologies in a denser network, we will be able to push this type of reconstruction further
back over larger areas.

In the long term (1895–2013), GPP for forests showed a decreasing tendency
(GPP = −0.1007 × Year + 3041.1), while in the short term (1986–2013), the GPP tendency
was increasing (GPP = 1.7789 × Year − 607.92). Even for the same increasing tendencies of
GPP for grassland and for the whole area, the increasing magnitudes were also different
between the long-term dataset and short-term dataset. In recent decades (1986–2013),
the increasing rate was incredibly high, while during the full 119 years (1895–2013), the
tendencies were flat. Our research could not judge which one was correct, but the long-
term data provided us another dimension to observe GPP variation earlier over a much
longer period of time. Within 119 years, we could not find any similar magnitude of GPP
variations in the most recent three decades (1986–2013).

4.3. The Relationship between GPP and Climate over a Century

Even though under the influences of pure precipitation and pure temperature, GPP
had a significantly high correlation with drivers in specific months like previous August
precipitation, current May precipitation, current June precipitation, and temperature in
July (Figure 6A,B). There were no strong seasonal precipitation responses with multiple
months that remained significant. Only PDSI met the requirement when the R values in
June, July, August, and September reached significance (Figure 6C). We believe that the
local GPP climate driver was PDSI, the combined effects of precipitation, and temperature.
Similar findings were supported by Maxwell and Harley [38], whose study area was just
less than 50 km from our site. Their reconstructed PDSI in the growing season derived
from tree-ring indices had a strong correlation (R = 0.77, p < 0.01).

If we only use real data to draw a conclusion about local climate, we might be misled.
For example, the temperature in the previous September and October had significant
positive correlations with GPP using real data, but the R values in forest and grassland
were low using combined data (Figure 6B). Similar contradictions in short-term and long-
term records have also been found in other studies [14]. The conclusions about climate and
GPP refer to a long time series of historical records, but, simultaneously, short-term records
could explain the sudden and tremendous climate change in the current time. If two data
sources (the short term and long term) both indicate one tendency, the reliability could be
much more than any conclusions only supported by a single dataset. If they are contrary to
each other, we may need more references to make a decision. In order to have a long-term
dataset, our reconstruction simulated GPP values, and then we calculated the correlations
using the combined dataset.

4.4. Limitations and Future Research

With the TRI–GPP reconstruction in two phases, we confirmed that the more plots that
are involved, the higher accuracy the model had (models in Phase 2 were always better than
those in Phase 1). In further studies, we would collect more tree cores and increase the plot
density in our study areas. From the simulated GPP values, the reconstruction of extreme
values needs to be improved where some low GPP values in extreme drought could not
be simulated very well. We speculated that less extreme values in training samples might
lead to this issue. We tested the Convolutional Neural Network (CNN) in two small areas
within our study site whose performances were worse than our chosen model due to the
small sample size. We assume that if a deep-learning approach can adjust the size of our
sample, the model may have a substantial improvement in future regression.

Once our model (TRI–GPP) is constructed successfully, there are two fields where we
can make full use of our models. Firstly, we will enlarge our research areas into a larger area
or introduce certain advanced methods. Trees are around the whole world, so in theory,
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we could reconstruct a long-term simulated GPP for every vegetation area and witness
some long-term ecological processes, including forest succession, vegetation dynamics, and
others. Secondly, we might challenge some obsolete conclusions only based on 40-year
satellite images (1986–present). We also found that there were some contradictions between
the short-term dataset and the long-term dataset. It is worthwhile to list the scope of both
datasets where researchers should know which dataset is more appropriate to their research.
But this is not the end. With the simulated GPP, we expect more updates on outmoded
findings established in the old era.

5. Conclusions

With the nested TRI–GPP model, we reconstructed and mapped the spatial distribution
of GPP from 1895 to 1985 in Eastern Illinois with 30 m resolution. The selected models
(GRNN in Phase 1 and RF in Phase 2) performed well. The nested model was robust
and could be applied to other areas to monitor GPP variation 100 years ago. Only with
short-term data, some statements might be unilateral, and two datasets could present more
comprehensive conclusions. Both datasets suggested that GPPs for grassland and the whole
area were increasing, and high GPP clusters remained in the east and west of our study
area with a relatively stable landscape pattern. The combined effects of temperature and
precipitation (especially for the PDSIs in the growing season) are the local climate drivers
to dominate GPP variations. While the PDSI gets higher (lower), the GPP would increase
(decrease) in the west and the east of our study areas. This is the first time we have been
able to visualize GPP for the past 130 years at a fine scale (30 m). With these techniques,
researchers can observe annual GPP variations for centuries.
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Appendix A

Table A1. The 5-fold validation for three approaches.

Adjust R2 RMSE MAPE MAE

1895

Fold 1
RF_1990 0.139 779.987 0.222 540.724

GRNN_1990 0.057 862.972 0.245 592.908
SVM_1990 0.267 696.191 0.199 490.286

Fold 2
RF_1995 0.731 319.574 0.085 242.784

GRNN_1995 0.759 351.308 0.099 282.886
SVM_1995 0.454 1312.242 0.331 1018.100

Fold 3
RF_2000 0.622 653.610 0.150 564.771

GRNN_2000 0.628 646.874 0.148 558.365
SVM_2000 0.266 907.202 0.202 763.053

Fold 4
RF_2005 0.301 726.716 0.162 567.789

GRNN_2005 0.599 491.448 0.106 372.735
SVM_2005 0.001 1515.378 0.354 1230.154

Fold 5
RF_2010 0.601 425.005 0.091 309.606

GRNN_2010 0.619 444.631 0.097 335.374
SVM_2010 0.194 1584.388 0.358 1222.076

Average
RF 0.479 580.978 0.142 445.135

GRNN 0.532 559.447 0.139 428.454
SVM 0.236 1203.080 0.289 944.734
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Table A1. Cont.

Adjust R2 RMSE MAPE MAE

1938

Fold 1
RF_1990 0.202 763.054 0.218 530.606

GRNN_1990 0.071 853.562 0.242 584.347
SVM_1990 0.920 227.233 0.056 164.110

Fold 2
RF_1995 0.786 474.795 0.141 411.942

GRNN_1995 0.755 365.801 0.104 296.900
SVM_1995 0.677 579.609 0.158 479.357

Fold 3
RF_2000 0.668 569.506 0.129 483.791

GRNN_2000 0.662 603.192 0.137 517.190
SVM_2000 0.682 628.358 0.147 540.424

Fold 4
RF_2005 0.777 370.025 0.078 275.672

GRNN_2005 0.623 464.811 0.100 349.872
SVM_2005 0.659 566.820 0.135 473.535

Fold 5
RF_2010 0.689 423.658 0.092 321.172

GRNN_2010 0.651 417.758 0.091 311.620
SVM_2010 0.521 899.115 0.194 651.968

Average
RF 0.625 520.208 0.132 404.637

GRNN 0.552 541.025 0.135 411.986
SVM 0.692 580.227 0.138 461.879

Table A2. The correlations (r) between GPP and precipitation.

Precipitation PreMay PreJun PreJul PreAug PreSep PreOct PreNov PreDec

Real Forest 0.022 0.043 −0.161 0.291 0.157 −0.051 −0.373 −0.293
Real Grass 0.111 0.205 −0.322 0.260 0.161 −0.012 −0.362 −0.229

Real+ Simulated Forest −0.053 0.039 −0.068 0.280 0.058 −0.037 −0.145 −0.051
Real+ Simulated Grass −0.014 0.122 −0.110 0.243 0.054 −0.022 −0.191 −0.008

Precipitation January February March April May June July August September

Real Forest 0.005 0.155 −0.082 0.073 0.379 0.511 0.199 −0.113 −0.110
Real Grass 0.223 0.147 −0.132 0.138 0.371 0.592 −0.063 −0.046 −0.129

Real+ Simulated Forest 0.101 0.138 0.055 −0.061 0.197 0.483 0.271 −0.107 −0.114
Real+ Simulated Grass 0.184 0.128 0.040 −0.040 0.182 0.516 0.162 −0.084 −0.125

Note: The values in bold and italic indicate those p values are less than 0.05. Pre indicates previous year.

Table A3. The correlations (r) between GPP and temperature.

Temperature PreMay PreJun PreJul PreAug PreSep PreOct PreNov PreDec

Real Forest −0.057 −0.204 −0.317 0.007 0.216 0.273 −0.333 −0.266
Real Grass 0.042 −0.187 −0.197 −0.003 0.224 0.314 −0.109 −0.089

Real+ Simulated Forest 0.107 −0.068 −0.163 −0.023 0.100 0.100 −0.101 −0.094
Real+ Simulated Grass 0.168 −0.050 −0.108 −0.042 0.087 0.089 −0.011 0.002

Temperature January February March April May June July August September

Real Forest −0.106 0.029 −0.537 −0.038 −0.330 −0.190 −0.623 −0.244 0.134
Real Grass −0.168 −0.037 −0.398 0.129 −0.168 −0.120 −0.467 −0.056 0.176

Real+ Simulated Forest −0.047 0.020 −0.130 −0.041 −0.178 −0.287 −0.317 −0.180 −0.028
Real+ Simulated Grass −0.070 −0.006 −0.098 0.003 −0.103 −0.241 −0.233 −0.095 −0.026

Note: The values in bold and italic indicates those p values are less than 0.05. Pre indicates previous year.

Table A4. The correlations (r) between GPP and PDSI.

PDSI PreMay PreJun PreJul PreAug PreSep PreOct PreNov PreDec

Real Forest −0.090 −0.030 −0.073 0.008 0.051 −0.009 −0.099 −0.133
Real Grass −0.050 0.136 0.037 0.155 0.191 0.113 −0.012 −0.069

Real + Simulated Forest −0.101 −0.086 −0.074 0.023 0.043 0.022 −0.032 −0.022
Real + Simulated Grass −0.075 −0.019 −0.023 0.080 0.095 0.072 −0.008 −0.002

PDSI January February March April May June July August September

Real Forest −0.125 −0.139 −0.124 −0.111 0.171 0.453 0.617 0.696 0.613
Real Grass −0.042 −0.023 −0.030 −0.023 0.169 0.499 0.540 0.694 0.590

Real + Simulated Forest 0.004 0.030 0.057 0.033 0.127 0.304 0.415 0.442 0.399
Real + Simulated Grass 0.040 0.071 0.088 0.060 0.124 0.307 0.380 0.426 0.375

Note: The values in bold and italic indicate those p values are less than 0.05. Pre indicates previous year.
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Figure A1. The simulated and real NPP maps from 1895 to 2013. 
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