Evaluating the Prediction Performance of the WRF-CUACE Model in Xinjiang, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Region
2.2. Observational Data
2.3. Model Settings
2.4. Model Data Processing
2.5. Evaluation Metrics
3. Results
3.1. Assessment of Dust Process
3.2. Analysis of Dust Process
3.3. Assessment of Pollution Process
4. Discussion
5. Conclusions
- (1)
- During the dust event, the model performed well in predicting meteorological conditions. The 2 m temperature data exhibited a high correlation across all stations, especially in the Turpan area, where the R-value reached 0.94. The errors were reasonable with the MAEs of the six stations ranging from 1.61 to 2.45 °C. The wind speed R-values were between 0.20 and 0.61, and the RMSEs were below 2.61 m·s−1.
- (2)
- The WRF-CUACE model accurately predicted the timing of the dust peak, and the PM10 trend was consistent with observations. The Hotan station yielded the highest R-value (0.85) with MAE and RMSE values of 721.36 and 886.68 µg·m−3, respectively. For the Aksu, Kashgar, and Korla stations, the R-value exceeded 0.4 with MAE values ranging from 599.72 to 840.31 µg·m−3. However, the Atux and Turpan regions demonstrated relatively low correlation coefficients. Additionally, the model demonstrated good capability for predicting the AOD with the spatial R of 0.78 at March 25.
- (3)
- Dust emissions occurred in eastern Xinjiang and the northeastern Taklamakan Desert. Under the influence of strong easterly wind, with speeds greater than 8 m·s−1 and a dust layer thickness of 2000 m, dust storms occurred and propagated westward. The intensity of the dust storms exceeded 5000 μg·m−3 with a thickness reaching 1800 m. Due to the blocking effect of the high mountains in western Xinjiang, wind speeds decreased, and dust particles accumulated and descended over the cities in western Xinjiang.
- (4)
- During the air pollution event, significant differences were observed in the forecasting performance for PM2.5 and PM10 across different cities. Ürümqi exhibited the best performance, whereas Changji and Shihezi exhibited relatively poor results. The AQI forecast of the model performed well in Ürümqi with R-values greater than 0.7 for both 24 and 48 h intervals and MAEs less than 30 µg·m−3. Conversely, significant forecasting errors were observed for Changji and Shihezi.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sokolik, I.N.; Winker, D.; Bergametti, G.; Gillette, D.; Carmichael, G.; Kaufman, Y.; Gomes, L.; Schuetz, L.; Penner, J. Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res. Atmos. 2001, 106, 18015–18027. [Google Scholar] [CrossRef]
- Heinold, B.; Tegen, I.; Schepanski, K.; Hellmuth, O. Dust radiative feedback on Saharan boundary layer dynamics and dust mobilization. Geophys. Res. Lett. 2008, 35, L20817. [Google Scholar] [CrossRef]
- Rizza, U.; Avolio, E.; Morichetti, M.; Di Liberto, L.; Bellini, A.; Barnaba, F.; Virgili, S.; Passerini, G.; Mancinelli, E. On the Interplay between Desert Dust and Meteorology Based on WRF-Chem Simulations and Remote Sensing Observations in the Mediterranean Basin. Remote Sens. 2023, 15, 435. [Google Scholar] [CrossRef]
- Liu, J.; Ding, J.; Rexiding, M.; Li, X.; Zhang, J.; Ran, S.; Bao, Q.; Ge, X. Characteristics of dust aerosols and identification of dust sources in Xinjiang, China. Atmos. Environ. 2021, 262, 118651. [Google Scholar] [CrossRef]
- Sreekanth, V. Dust aerosol height estimation: A synergetic approach using passive remote sensing and modelling. Atmos. Environ. 2014, 90, 16–22. [Google Scholar] [CrossRef]
- Guo, J.; Lou, M.; Miao, Y.; Wang, Y.; Zeng, Z.; Liu, H.; He, J.; Xu, H.; Wang, F.; Min, M. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling. Environ. Pollut. 2017, 230, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Kanatani, K.T.; Ito, I.; Al-Delaimy, W.K.; Adachi, Y.; Mathews, W.C.; Ramsdell, J.W. Desert dust exposure is associated with increased risk of asthma hospitalization in children. Am. J. Respir. 2010, 182, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Sun, Y.; Wang, Q.; Zhao, J.; Wang, J.; Ge, X.; Xie, C.; Zhou, W.; Du, W.; Li, J. Changes in aerosol chemistry from 2014 to 2016 in winter in Beijing: Insights from high-resolution aerosol mass spectrometry. J. Geophys. Res. Atmos. 2019, 124, 1132–1147. [Google Scholar] [CrossRef]
- Hachicha, A.A.; Al-Sawafta, I.; Said, Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew. Energy 2019, 141, 287–297. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Weinzierl, B.; Sauer, D.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A. On the visibility of airborne volcanic ash and mineral dust from the pilot’s perspective in flight. Phys. Chem. Earth Parts A/B/C 2012, 45, 87–102. [Google Scholar] [CrossRef]
- Shen, Y.-J.; Shen, Y.; Guo, Y.; Zhang, Y.; Pei, H.; Brenning, A. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), central Asia. Catena 2020, 187, 104343. [Google Scholar] [CrossRef]
- Han, Z.; Ge, J.; Chen, X.; Hu, X.; Yang, X.; Du, J. Dust activities induced by nocturnal low-level jet over the Taklimakan desert from WRF-Chem simulation. J. Geophys. Res. Atmos. 2022, 127, e2021JD036114. [Google Scholar] [CrossRef]
- Bao, C.; Yong, M.; Bueh, C.; Bao, Y.; Jin, E.; Bao, Y.; Purevjav, G. Analyses of the dust storm sources, affected areas, and moving paths in Mongolia and China in early spring. Remote Sens. 2022, 14, 3661. [Google Scholar] [CrossRef]
- Chen, R.; Yin, P.; Meng, X.; Wang, L.; Liu, C.; Niu, Y.; Liu, Y.; Liu, J.; Qi, J.; You, J. Associations between coarse particulate matter air pollution and cause-specific mortality: A nationwide analysis in 272 Chinese cities. Environ. Health Perspect. 2019, 127, 017008. [Google Scholar] [CrossRef]
- Karroum, K.; Lin, Y.; Chiang, Y.-Y.; Ben Maissa, Y.; El Haziti, M.; Sokolov, A.; Delbarre, H. A review of air quality modeling. Mapan 2020, 35, 287–300. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, L.; Li, Z.; Zhou, X.; Zhang, X.; Wang, F.; Peng, J.; Cao, C.; Chen, Z.; Yu, H.; et al. Air pollution in heavy industrial cities along the northern slope of the Tianshan Mountains, Xinjiang: Characteristics, meteorological influence, and sources. Environ. Sci. 2023, 30, 55092–55111. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Li, S.; Yu, X.; Jv, C. Verification of CUACE air quality forecast in urumqi. Desert Oasis Meteorol. 2014, 8, 63–68. [Google Scholar]
- Shen, Y.; Zhang, L.; Fang, X.; Ji, H.; Li, X.; Zhao, Z. Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China. Sci. Total Environ. 2019, 655, 13–26. [Google Scholar] [CrossRef]
- Wang, W.; Samat, A.; Abuduwaili, J.; Ge, Y. Spatio-temporal variations of satellite-based PM2.5 concentrations and its determinants in Xinjiang, northwest of China. Int. J. Environ. Res. 2020, 17, 2157. [Google Scholar] [CrossRef] [PubMed]
- Rupakheti, D.; Yin, X.; Rupakheti, M.; Zhang, Q.; Li, P.; Rai, M.; Kang, S.J.E.P. Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China. Environ. Pollut. 2021, 268, 115907. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, X.; Mauren, A.; Zhong, Y.; Wang, H. Characteristics of air pollution and its polluted weather types of urban agglomeration on the north slope of the middle Tianshan Mountains from 2017 to 2019. Arid. Land Geogr. 2022, 45, 1082–1092. [Google Scholar]
- Zhang, L.; Gong, S.; Zhao, T.; Zhou, C.; Wang, Y.; Li, J.; Ji, D.; He, J.; Liu, H.; Gui, K. Development of WRF/CUACE v1. 0 model and its preliminary application in simulating air quality in China. Geosci. Model Dev. 2021, 14, 703–718. [Google Scholar] [CrossRef]
- Kim, K.M.; Kim, S.W.; Choi, M.; Kim, M.; Kim, J.; Shin, I.; Kim, J.; Chung, C.Y.; Yeo, H.; Kim, S.W. Modeling Asian dust storms using WRF-Chem during the DRAGON-Asia Field Campaign in April 2012. J. Geophys. Res. Atmos. 2021, 126, e2021JD034793. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Kumar, R.; Barth, M.C.; Pfister, G.G.; Naja, M.; Brasseur, G.P. WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: Influences on aerosol optical properties and radiation budget. Atmos. Chem. Phys. 2014, 14, 2431–2446. [Google Scholar] [CrossRef]
- Liu, L.; Huang, X.; Ding, A.; Fu, C. Dust-induced radiative feedbacks in north China: A dust storm episode modeling study using WRF-Chem. Atmos. Environ. 2016, 129, 43–54. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, X.; Wu, S.; Sha, T. Dust emission and transport in Northwest China: WRF-Chem simulation and comparisons with multi-sensor observations. Atmos. Res. 2020, 241, 104978. [Google Scholar] [CrossRef]
- Ma, Y.; Jin, Y.; Zhang, M.; Gong, W.; Hong, J.; Jin, S.; Shi, Y.; Zhang, Y.; Liu, B. Aerosol optical properties of haze episodes in eastern China based on remote-sensing observations and WRF-Chem simulations. Sci. Total Environ. 2021, 757, 143784. [Google Scholar] [CrossRef]
- Mancinelli, E.; Avolio, E.; Morichetti, M.; Virgili, S.; Passerini, G.; Chiappini, A.; Grasso, F.; Rizza, U. Exposure Assessment of Ambient PM2.5 Levels during a Sequence of Dust Episodes: A Case Study Coupling the WRF-Chem Model with GIS-Based Postprocessing. Int. J. Environ. Res. Public Health 2023, 20, 5598. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Chen, S.; Yang, B.; Yan, H.; Li, J.; Zhang, C.; Lou, G.; Chen, J.; Lian, L. Impacts of dynamic dust sources coupled with WRF-Chem 3.9.1 on the dust simulation over East Asia. Geosci. Model Dev. Discuss. 2023, 17, 847–864. [Google Scholar] [CrossRef]
- Uno, I.; Wang, Z.; Chiba, M.; Chun, Y.; Gong, S.L.; Hara, Y.; Jung, E.; Lee, S.S.; Liu, M.; Mikami, M. Dust model intercomparison (DMIP) study over Asia: Overview. J. Geophys. Res. Atmos. 2006, 111, D22207. [Google Scholar] [CrossRef]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781–7816. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Wang, J.; Ge, X.; Zhang, Z.; Zhang, Z.; Zuo, H. Validation of the fine resolution of the MODIS MAIAC aerosol optical depth product over arid areas. Natl. Remote Sens. Bull. 2023, 27, 406–419. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.-i.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Wang, M.; Liu, Z.; Mamtimin, A.; Pan, X. A new dataset of erodibility in dust source for WRF-Chem model based on remote sensing and soil texture-Application and Validation. Atmos. Environ. 2023, 315, 120156. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Kalashnikova, O.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 2013, 118, 13253–13264. [Google Scholar] [CrossRef]
- Han, T.; Pan, X.; Wang, X. Evaluating and improving the sand storm numerical simulation performance in Northwestern China using WRF-Chem and remote sensing soil moisture data. Atmos. Res. 2021, 251, 105411. [Google Scholar] [CrossRef]
- Semlali, B.-E.B.; El Amrani, C.; Ortiz, G.; Boubeta-Puig, J.; Garcia-De-Prado, A. SAT-CEP-monitor: An air quality monitoring software architecture combining complex event processing with satellite remote sensing. Comput. Electr. Eng. 2021, 93, 107257. [Google Scholar] [CrossRef]
Physics Schemes | Options |
---|---|
Shortwave radiation | RRTMG |
Longwave radiation | RRTMG |
Microphysics | Lin |
Cumulus | New Grell |
Planet boundary layer | YSU |
Surface layer | Revised MM5 |
Land surface | Noah |
Chemical process | RADM2 and GOCART |
Aerosol chemistry | GOCART |
Dust emission | Simple GOCART |
Variables | Indicates | Hotan | Kashgar | Aksu | Atux | Korla | Turpan |
---|---|---|---|---|---|---|---|
T2 | R | 0.88 | 0.76 | 0.82 | 0.73 | 0.94 | 0.91 |
MAE | 1.61 | 1.81 | 1.65 | 2.45 | 1.57 | 2.39 | |
RMSE | 2.06 | 2.40 | 2.02 | 3.25 | 1.94 | 2.80 | |
WS10 | R | 0.34 | 0.35 | 0.31 | 0.51 | 0.63 | 0.20 |
MAE | 2.11 | 1.43 | 1.31 | 1.61 | 1.82 | 1.19 | |
RMSE | 2.69 | 2.03 | 1.65 | 2.13 | 2.35 | 1.53 | |
PM10 | R | 0.85 | 0.54 | 0.62 | 0.19 | 0.43 | 0.26 |
MAE | 721.36 | 840.31 | 628.65 | 908.59 | 599.72 | 534.11 | |
RMSE | 886.68 | 1146.70 | 985.50 | 1265.40 | 769.66 | 650.71 |
Variables | Indicates | March 24 | March 25 | March 26 |
---|---|---|---|---|
AOD | R | 0.35 | 0.78 | 0.58 |
Variables | Indicates | Ürümqi | Changji | Shihezi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 280 h | 24 h | 48 h | 72 h | 280 h | 24 h | 48 h | 72 h | 280 h | ||
PM2.5 | R | 0.60 | 0.54 | 0.32 | 0.35 | 0.51 | 0.17 | 0.04 | 0.18 | 0.53 | 0.12 | 0.27 | 0.33 |
MAE | 28.92 | 29.10 | 32.32 | 40.59 | 55.06 | 53.31 | 51.87 | 52.24 | 43.03 | 48.40 | 54.73 | 76.78 | |
RMSE | 32.03 | 33.59 | 38.69 | 48.61 | 57.40 | 57.72 | 57.81 | 63.32 | 53.06 | 56.13 | 61.26 | 90.02 | |
PM10 | R | 0.78 | 0.64 | 0.62 | 0.46 | 0.56 | 0.01 | 0.03 | 0.21 | 0.76 | 0.23 | 0.25 | 0.27 |
MAE | 54.15 | 47.43 | 56.83 | 95.58 | 51.16 | 52.03 | 48.46 | 56.61 | 67.59 | 82.08 | 74.94 | 73.65 | |
RMSE | 61.57 | 57.88 | 71.33 | 125.10 | 60.31 | 62.23 | 59.73 | 70.30 | 83.03 | 103.72 | 94.87 | 92.34 | |
AQI | R | 0.79 | 0.70 | 0.54 | 0.39 | 0.52 | 0.01 | 0.05 | 0.19 | 0.72 | 0.24 | 0.27 | 0.26 |
MAE | 24.21 | 27.56 | 30.91 | 47.45 | 67.62 | 68.05 | 64.08 | 61.22 | 39.17 | 56.49 | 58.67 | 76.67 | |
RMSE | 28.59 | 32.15 | 36.92 | 63.90 | 72.81 | 76.19 | 73.50 | 75.67 | 47.03 | 66.64 | 67.29 | 90.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wulayin, Y.; Li, H.; Zhang, L.; Mamtimin, A.; Liu, J.; Huo, W.; Liu, H. Evaluating the Prediction Performance of the WRF-CUACE Model in Xinjiang, China. Remote Sens. 2024, 16, 3747. https://doi.org/10.3390/rs16193747
Wulayin Y, Li H, Zhang L, Mamtimin A, Liu J, Huo W, Liu H. Evaluating the Prediction Performance of the WRF-CUACE Model in Xinjiang, China. Remote Sensing. 2024; 16(19):3747. https://doi.org/10.3390/rs16193747
Chicago/Turabian StyleWulayin, Yisilamu, Huoqing Li, Lei Zhang, Ali Mamtimin, Junjian Liu, Wen Huo, and Hongli Liu. 2024. "Evaluating the Prediction Performance of the WRF-CUACE Model in Xinjiang, China" Remote Sensing 16, no. 19: 3747. https://doi.org/10.3390/rs16193747
APA StyleWulayin, Y., Li, H., Zhang, L., Mamtimin, A., Liu, J., Huo, W., & Liu, H. (2024). Evaluating the Prediction Performance of the WRF-CUACE Model in Xinjiang, China. Remote Sensing, 16(19), 3747. https://doi.org/10.3390/rs16193747