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Abstract: Dust and air pollution events are increasingly occurring around the Taklimakan Desert
in southern Xinjiang and in the urban areas of northern Xinjiang. Predicting such events is crucial
for the advancement, growth, and prosperity of communities. This study evaluated a dust and air
pollution forecasting system based on the Weather Research and Forecasting model coupled with the
China Meteorological Administration Chemistry Environment (WRF-CUACE) model using ground
and satellite observations. The results showed that the forecasting system accurately predicted
the formation, development, and termination of dust events. It demonstrated good capability for
predicting the evolution and spatial distribution of dust storms, although it overestimated dust
intensity. Specifically, the correlation coefficient (R) between simulated and observed PM10 was up
to 0.85 with a mean absolute error (MAE) of 721.36 µg·m−3 during dust storm periods. During air
pollution events, the forecasting system displayed notable variations in predictive accuracy across
various urban areas. The simulated trends of PM2.5 and the Air Quality Index (AQI) closely aligned
with the actual observations in Ürümqi. The R for simulated and observed PM2.5 concentrations at
24 and 48 h intervals were 0.60 and 0.54, respectively, with MAEs of 28.92 µg·m−3 and 29.10 µg·m−3,
respectively. The correlation coefficients for simulated and observed AQIs at 24 and 48 h intervals
were 0.79 and 0.70, respectively, with MAEs of 24.21 and 27.56, respectively. The evolution of
the simulated PM10 was consistent with observations despite relatively high concentrations. The
simulated PM2.5 concentrations in Changji and Shihezi were notably lower than those observed,
resulting in a lower AQI. For PM10, the simulation–observation error was relatively small; however,
the trends were inconsistent. Future research should focus on optimizing model parameterization
schemes and emission source data.

Keywords: dust; air pollution; WRF-CUACE; evaluation

1. Introduction

Aerosols play a crucial role in the atmosphere as they impact the radiation balance
through the absorption and scattering of shortwave and longwave radiation [1,2]. This both
directly and indirectly affects various aspects, such as global surface temperature, climate
patterns, hydrologic cycles, and terrestrial ecosystems [3]. Dust aerosols account for ap-
proximately 25% of the global total aerosol mass and possess strong absorption properties
that directly affect the radiative balance and thermal equilibrium of the Earth–atmosphere
system, accelerating the melting rate of surface snow [4,5]. Furthermore, dust aerosols
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transport elements such as nitrogen and iron over long distances to the oceans, leading
to eutrophication and consequently affecting the global carbon cycle [6]. However, dust
aerosols can adversely affect human health and increase the risk of respiratory and cardio-
vascular diseases [7,8].

Moreover, dust storms can reduce the lifespan of electrical equipment, impact urban
transportation, lower solar energy efficiency, and damage crop yields [9–11]. Xinjiang
Province is a typical arid and semi-arid area in China characterized by a dry climate,
scarce precipitation, sparse vegetation, and strong winds, making the surface susceptible to
wind erosion and dust emissions. Frequent dust activity poses a significant threat to the
ecological environment in arid regions [12]. Dust events are particularly prevalent during
the warm season in the Taklamakan Desert with high concentrations noticeably impacting
the surrounding areas [13]. Bao et al. [14] analyzed dust events from 2016 to 2020 using
high-resolution imagery from the Himawari-8 satellite and found that the Taklamakan
Desert experienced 138 dust events, which was the highest frequency of dust occurrences
in East Asia.

Ensuring good air quality is crucial for maintaining healthy living environments.
Long-term exposure to polluted air deteriorates the respiratory system and increases the
risk of cardiovascular diseases [15,16]. In recent years, China has placed a strong emphasis
on promoting high-quality economic growth by implementing environmentally friendly
measures aimed at decreasing pollution and carbon emissions as well as safeguarding
the ecological environment. Therefore, the precise prediction of air quality is vital for
protecting public health and shaping governmental strategies for pollution prevention and
control. The economic center of Xinjiang is situated north of the Tianshan Mountains and is
heavily reliant on heavy industries with a high concentration of industrial factories. Over
the past decade, this area has contributed over 50% of Xinjiang’s GDP [17]. However, this
area faces challenges related to high pollution levels, particularly during the winter months,
when emissions from coal and biomass burning increase. These emissions, combined
with unfavorable meteorological conditions that hinder pollutant dispersion, have led to
significant increases in atmospheric pollutant levels. It is widely recognized that human
activities, such as industrial processes, are the primary sources of air pollution in this
region [18–22].

Given these circumstances, accurate prediction and early warning provisions for dust
and air pollution events are essential for the advancement, growth, and welfare of the
population of Xinjiang. To address the need for accurately forecasting dust storms and
severe pollution events, a dust–air pollution forecasting system was developed based
on the Weather Research and Forecasting model coupled with the China Meteorological
Administration Unified Atmospheric Chemistry Environment (WRF-CUACE) model [23],
which was designed to meet the unique dust and environmental prediction requirements of
Xinjiang. Regional models have advantages in forecasting dust and air pollution events due
to their high spatial resolution, which enables a better simulation of meteorological elements
such as temperature, humidity, and wind speed [24]. The WRF-CUACE model, based
on the WRF-Chem model (version 3.8.1), effectively simulates meteorological conditions
as well as the emissions, formation, transport, mixing, chemical reactions, deposition,
and radiative effects of trace gases and aerosols. Therefore, it has unique advantages in
simulating dust storms and atmospheric pollution [25–27]. The WRF-CUACE model can
accurately simulate the basic characteristics of dust and pollution processes and is widely
used in their simulation and forecasting [13,23,28–31]. However, owing to differences in
model parameterization schemes, meteorological conditions, and surface characteristics,
the simulation results exhibit a level of uncertainty with significant variations between
regions [32,33].

This study aimed to evaluate a dust–air pollution forecasting system based on the WRF-
CUACE model. The remainder of this paper is organized as follows: Section 2 describes
the observational data, WRF-CUACE model domain, physics schemes, and evaluation
methodology. Section 3 evaluates the simulation results for dust and air pollution events
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using both ground- and satellite-based measurements. Section 4 presents the principal
conclusions and recommendations for future research.

2. Data and Methods
2.1. Study Region

Xinjiang, China, is situated in the western part of the Central Asian region. The world’s
second largest shifting desert, the Taklamakan Desert, is located in the southern Xinjiang
on the southside of the Tienshan Mountains (Figure 1). During spring and summer, the
occurrence of dust storms in the Taklamakan Desert and neighboring regions of southern
Xinjiang noticeably impacts agriculture, transportation, tourism, and the production of
solar and wind energy. Conversely, during autumn and winter, major industrial cities
in northern Xinjiang often experience air pollution events that present health hazards to
the local population. To enhance predictive capabilities for dust and air pollution events
and minimize their consequences, we developed a dust–air pollution forecasting product
based on the WRF-CUACE model specifically for Xinjiang. The model is activated every
day at 08:00 Beijing Standard Time using a 9 km resolution for the entire region and a
3 km resolution for pollution-concentrated cities in northern Xinjiang. It provides hourly
forecasts for the next 156 h, including spatial distribution and monitoring station forecasts
for PM2.5, PM10, NO2, SO2, CO, O3, the Air Quality Index (AQI), and dust intensity.
Furthermore, it provides balloon trajectory forecasts for Ürümqi, Changji, and Shihezi.
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Figure 1. Domains and terrain height of the WRF-CUACE model. Black dots denote the location of
environmental monitoring stations.

2.2. Observational Data

In this study, ground and satellite observations are used to validate the model’s
performance only. The hourly surface 2 m temperature and 10 m wind speed data were ob-
tained from the China Meteorological Administration (http://data.cma.cn/, accessed on 12
January 2023), using national benchmark station. The hourly PM10 and PM2.5 data were ob-
tained from the China National Environmental Monitoring Center (http://www.cnemc.cn/,

http://data.cma.cn/
http://www.cnemc.cn/
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accessed on 12 January 2023), using national urban monitoring station. The distribution of
the monitoring stations is shown in Figure 1. Daily aerosol optical depth (AOD) remote
sensing data were obtained from the Multi-Angle Implementation of Atmospheric Correc-
tion (MAIAC) algorithm-based Level-2 gridded aerosol optical thickness product of the
MODIS Terra and Aqua satellite combination with a horizontal resolution of 1 km (https://
ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD19A2, ac-
cessed on 12 January 2023). MAIAC is a new advanced algorithm which uses time series
analysis and a combination of pixel- and image-based processing to improve accuracy
of cloud detection, aerosol retrievals, and atmospheric correction. The AOD is originally
retrieved in MODIS blue band B3 (0.47 um). Because the common input for the chemi-
cal transport models as well as AOD validation and AOD product intercomparison are
standardized to 0.55 um, a “green” band (B4) AOD is also provided. The high spatial
resolution AOD data from MAIAC are promising for studying fine aerosols in arid areas
and improving local air quality research [34].

2.3. Model Settings

The WRF-CUACE model in the forecasting system used two domains: the outer do-
main covering the Central Asian region centered on Xinjiang and the inner domain focusing
on the primary polluted cities in northern Xinjiang (Figure 1). The horizontal grid dimen-
sions and resolutions were 279 × 219 (9 km) and 264 × 165 (3 km), respectively. The vertical
direction comprised 32 unevenly spaced sigma layers with a top pressure of 100 hPa. Table 1
lists the physical and chemical parameterization schemes used in the model. The terrain
and land use/land cover data incorporated the latest terrain data from the WRF model and
MODIS_30s land use data provided by the National Centers for Environmental Prediction,
accurately reflecting the complex surface conditions of Xinjiang. The initial fields and
boundary conditions, updated every 6 h, were derived from the CMA-GFS (China Meteo-
rological Administration Global Assimilation Forecasting System) data with a resolution
of 0.25◦ × 0.25◦ (25 km × 25 km). Anthropogenic emissions are derived from the MIX
emission inventory representative for 2010 (http://www.meicmodel.org/dataset-mix.html,
accessed on 10 January 2023). The inventory provides monthly grid emission data with
0.25◦ spatial resolution for five emission sectors (electricity, industry, civil, transportation,
and agriculture), including PM2.5, PM10, NOx, SO2, CO, NH3, black carbon (BC), organic
carbon (OC), and non-methane volatile organic compounds (NMVOCs). During the simu-
lation span from 2013 to 2017, China carried out strict air pollution control measures, which
had a considerable impact on anthropogenic emissions. To make the anthropogenic emis-
sions more suitable for the real emissions scenarios in the simulated years, the emissions in
mainland China were replaced with the MEIC (Multi-resolution Emission Inventory model
for Climate and air pollution research) emissions inventory representative for 2012, 2014,
and 2016 to represent the emissions scenarios in 2013, 2015, and 2017, respectively [35]. The
dust sources are a new dataset of erodibility developed by Li et al. [36] for the GOCART
dust emission model, offering a more accurate description of the erosive characteristics of
dust source regions. The land cover, vegetation cover vegetation fraction, soil moisture and
soil texture data are preprocessed by resampling the resolution (1000 m) and spatial match-
ing by GIS tools. The surface cover map is used to calculate the wind erosion distribution
map, where the barren or sparse vegetated land is set to 1 and other areas were 0, to obtain
preliminary bare soil surface EROD1 data. The vegetation-free areas are then screened
using vegetation coverage, and the vegetation at the pixel scale is removed by multiplying
with EROD1 to obtain EROD2. Based on this step, soil texture data are introduced to
determine areas with a sand content ratio greater than 0.6 as potential sand source areas to
obtain EROD3. Subsequently, SMAP soil moisture data were used to identify regions with
soil moisture) less than 0.1, obtaining a surface prone to wind erosion, EROD4.

https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD19A2
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD19A2
http://www.meicmodel.org/dataset-mix.html
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Table 1. Parameterization schemes of the WRF-CUACE model.

Physics Schemes Options

Shortwave radiation RRTMG
Longwave radiation RRTMG

Microphysics Lin
Cumulus New Grell

Planet boundary layer YSU
Surface layer Revised MM5
Land surface Noah

Chemical process RADM2 and GOCART
Aerosol chemistry GOCART

Dust emission Simple GOCART
RRTMG: Rapid Radiative Transfer Model for General Circulation Models. Lin: Lin Microphysics Scheme. YSU:
Yonsei University Planetary Boundary Layer Scheme. RADM2: Regional Acid Deposition Model version 2.
GOCART: Global Ozone Chemistry Aerosol Radiation and Transport Model.

Dust size distribution in the GOCART module is approximated by five dust bins [37].
Dust density is assumed to be 2500 kg·m−3 for the first dust bin and 2650 kg·m−3 for dust
bins 2–5. The GOCART module calculates the vertical dust flux in five-size bins based
on the 10 m wind speed, soil erodibility factor, and other constant parameters. The dust
emission mass flux Fp for each size bin is determined using Equation (1):

Fp =

{
CSspu2

10m(u10m − ut), u10m > ut
0, u10m ≤ ut

(1)

where C is a spatially uniform factor which controls the magnitude of dust emission flux; S
is the source function that characterizes the spatial distribution of dust emissions; sp is the
fraction of each size class of the emitted dust bins (p = 1, 2, . . ., 5); u10m is the horizontal
wind speed at 10 m; and ut is the threshold velocity, which is a function of dust particle
density and size, and it is determined by using Equation (2):

ut = 0.13
(

ρdgd
ρa

)0.5


(
1 + 0.06

ρdgd2.5

)
1.928(1.331d1.56 + 0.38)0.92 − 1

 (2)

where ρd is the density of the dust particles; ρa is the density of dry air; d is the particle
diameter, and g is the acceleration due to gravity.

2.4. Model Data Processing

Studies have shown a correlation between the atmospheric dust concentrations in
desert regions and elevated AOD [38]. Therefore, the performance of the model for pre-
dicting the horizontal distribution of dust events was evaluated using the MODIS AOD
dataset. The simulated AOD was calculated using Equations (3) and (4):

z =
ph + phb

9.8 × 1000
(3)

AOD =
∫ Z

0
extcof55dz (4)

where z denotes the model layer height; ph is the perturbation geopotential height; phb
is the base geopotential height, and extcof55 is the atmospheric extinction coefficient at
550 nm. ph, phb, and extcof55 are variables output directly by the model.

In order to compare the spatial distribution of AOD between MODIS and WRF-
CUACE, we performed spatial correlation on the two datasets. Since the spatial resolution
of MODIS AOD is 1 km, higher than WRF-CUACE, we resampled the MODIS AOD
according to the WRF-CUACE grids with NaN values not included in the statistics.
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2.5. Evaluation Metrics

To evaluate the performance of the model in forecasting dust and air pollution
events, we used statistical metrics including the correlation coefficient (R), mean abso-
lute error (MAE), and root mean square error (RMSE). The formulas are presented in
Equations (5)–(7):

R =
∑N

i=1
(

Fi−F
)(

Oi−O
)√

∑N
i=1

(
Fi−F

)2
∑N

i=1
(
Oi−O

)2
(5)

MAE =
1
N ∑N

i=1(|Fi −Oi| ) (6)

RMSE =

√
∑N

i=1(Fi−Oi)
2

N
(7)

where Fi and Oi represent the simulated and observed values for the ith sample, respectively,
and F and O are their mean values, respectively. The correlation coefficient (R) reflects the
consistency in trends between the simulated and observed values. The MAE represents
the average deviation between the simulated and observed values. The RMSE quantifies
the overall deviation between the simulated and observed values. Instances with missing
observational data were excluded from these calculations, ensuring the overall results
remained unaffected.

3. Results
3.1. Assessment of Dust Process

Meteorological conditions play crucial roles in the formation and development of dust
storms. Therefore, observational data from meteorological stations were used to assess the
forecasting performance of the model for the meteorological parameters. As illustrated in
Figure 2, the model accurately predicted 2 m temperature data, which closely aligned with
the observed trends at all six stations. The simulated and observed 2 m temperature data
exhibited a high correlation with an R-value of 0.94 at Korla station. The model predictions
showed a relatively small bias compared to that of observations with MAE values ranging
from 1.61 to 2.39 ◦C and RMSE values ranging from 1.94 to 3.25 ◦C (Table 2). Notably,
the model tended to underestimate the minimum nighttime temperature (Figure 2). In
terms of wind speed, the model accurately predicted high wind speeds during dust storms
(Figure 3) with predicted values closely matching observed values, demonstrating the
highest R-value of 0.63 at Korla station. However, there were variations in MAE for wind
speed across stations with the smallest MAE of 1.31 m·s−1 at Turpan station and the largest
of 2.21 m·s−1 at Hotan station, where the model significantly overestimated the wind speed.
The RMSE values at the six stations ranged from 1.65 to 2.69 m·s−1 (Table 2), indicating
that the forecasting errors of the model are generally within an acceptable range.

Table 2. Correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE)
between simulations and observations for T2, WS10, and PM10.

Variables Indicates Hotan Kashgar Aksu Atux Korla Turpan

T2
R 0.88 0.76 0.82 0.73 0.94 0.91

MAE 1.61 1.81 1.65 2.45 1.57 2.39
RMSE 2.06 2.40 2.02 3.25 1.94 2.80

WS10
R 0.34 0.35 0.31 0.51 0.63 0.20

MAE 2.11 1.43 1.31 1.61 1.82 1.19
RMSE 2.69 2.03 1.65 2.13 2.35 1.53

PM10
R 0.85 0.54 0.62 0.19 0.43 0.26

MAE 721.36 840.31 628.65 908.59 599.72 534.11
RMSE 886.68 1146.70 985.50 1265.40 769.66 650.71
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PM10 concentration is a crucial indicator of dust storms with concentrations typically
increasing during dust events. To evaluate the dust forecasting performance of the model,
the simulated PM10 data were compared with observations from multiple stations during
a dust storm (Figure 4), which was followed by a quantitative evaluation (Table 2). The
results revealed good agreement between the simulated and observed PM10 concentrations,
particularly at the Hotan station, where the model accurately forecasted the peak PM10
concentration on March 25 (Figure 4a), achieving an R-value of 0.85 and an MAE of
721.36 µg·m−3. This demonstrated the proficiency of the model in predicting severe dust
events. The model also exhibited satisfactory performance in predicting peak values at the
Aksu and Korla stations (Figure 4c,e), with R-values of 0.6 and 0.43, respectively, albeit with
slightly higher MAE values. Although the predicted peaks at Kashgar, Atux, and Turpan
stations lagged behind the observations (Figure 4b,d,f), the model adequately captured the
overall trend in dust concentration variations. The RMSE values for the six stations ranged
from 650.71 to 1265.40 µg·m−3, indicating acceptable performance for severe dust events.
Overall, despite the tendency of the model to overestimate dust intensity at different stations
to varying degrees, it proficiently predicted the initiation, progression, and termination of
dust events, demonstrating strong performance in predicting fluctuations in dust intensity
and peak occurrence times.
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Figure 5 illustrates the daily averaged distribution of MODIS and simulated AOD
from March 24 to 26, indicating a strong agreement in the spatial distribution between the
simulated and observed AOD. The model effectively predicted both the spatial distribution
and intensity features of AOD in the western Taklamakan Desert in southern Xinjiang.
The high AOD values on March 25 and 26 aligned with the high PM10 concentrations
observed, especially on March 25, where the spatial correlation reaches 0.78 (Table 3).
Nevertheless, the model overestimated AOD intensity in the eastern Xinjiang Basin, as
shown in Figure 4f. Despite certain forecasting errors, the model effectively predicted the
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spatiotemporal distribution of dust storms, highlighting its capability for dust forecasting
and early warnings.
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R 0.34  0.35  0.31  0.51  0.63  0.20  

MAE 2.11  1.43  1.31  1.61  1.82  1.19  
RMSE 2.69  2.03  1.65  2.13  2.35  1.53  

PM10 
R 0.85  0.54  0.62  0.19  0.43  0.26  

MAE 721.36  840.31  628.65  908.59  599.72  534.11  
RMSE 886.68  1146.70  985.50  1265.40  769.66  650.71  

Figure 5. Comparison between simulated aerosol optical depth (AOD) and MODIS satellite observa-
tions from 24 to 26 March 2022.

Table 3. Spatial correlation coefficient (R) between simulations and observations for AOD.

Variables Indicates March 24 March 25 March 26

AOD R 0.35 0.78 0.58

3.2. Analysis of Dust Process

Figure 6 presents the spatial distribution of the daily averaged dust emission flux,
dust transport flux, and dust deposition flux from 24 to 25 March 2022, to characterize the
details of the dust process. On March 24, dust emission occurred in eastern Xinjiang and
the northeastern Taklamakan Desert, where Gobi and the desert terrain experienced high
wind speeds greater than 6 m·s−1, leading to dust emission under strong wind erosion
(Figure 6a). However, on March 25, the wind speed zone moved westward and decreased,
resulting in a shift in the dust emission area to the eastern and southern regions of the
Taklamakan Desert with a significant decrease in intensity compared to that on March 24
(Figure 6b).
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Figure 6. Spatial distribution of averaged dust emission fluxes coupled with 10 m wind speed (a,b),
dust transport fluxes and divergence (c,d), and dry dust deposition fluxes (e,f) from 24 to 25
March 2022.

Figure 6c,d illustrate the transport and divergence of dust aerosols by low-level
flows in three primary directions on March 24. The dust transmission flux is obtained by
multiplying the average wind speed and the average dust concentration below 2500 m. The
sources of transportation were consistent with the areas of dust emission. One direction led
eastward to northern China, whereas the other two directions led southward and westward
to the eastern and central Taklamakan Desert, respectively. On March 25, the transport of
dust aerosols continued with accumulation occurring in the western Taklamakan Desert
and cities in western Xinjiang (Figure 6e,f).

Vertical profiles were constructed along line AB from 08:00 on March 24 to 00:00 on
March 26 to illustrate the vertical structure of the dust event. Line AB (Figure 6c,d), located
1000 m above sea level (Figure 1), is characterized by relatively flat terrain favorable for
easterly winds and dust aerosols. On March 24, easterly winds intruded from altitudes
below 2500 m with speeds exceeding 8 m·s−1, leading to the formation of dust storms
in the eastern Taklamakan. Dust concentrations exceeded 5000 µg·m−3 with dust layers
reaching a thickness of up to 200 m. As lower-level wind speeds decreased, the dust storm
developed, reaching a dust layer thickness of 1000 m by 16:00 on March 24 before shifting
toward the central Taklamakan Desert. Although the vertical development of the dust storm
subsided, its intensity remained high, exceeding 5000 µg·m−3, as it continued to progress
westward toward the western Taklamakan. The easterly winds significantly weakened as
they encountered high mountains, resulting in the accumulation of dust aerosols to the east
of the mountains with thicknesses of approximately 1800 m. Eventually, the dust storm
traversed the mountains and reached a height of 3500 m (Figure 7). To a certain extent,
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the height of dust aerosols matches the height of the boundary layer especially in areas
with moderate dust concentration during the day. In areas with higher dust concentration,
the boundary layer height is slightly lower than the dust height, suggesting that high dust
concentration may affect the development of the boundary layer.
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Figure 7. Vertical distribution of averaged dust concentrations and wind vectors along line AB
[(92.0◦E, 40.5◦N) to (76.0◦E, 38.0◦N)] from 24 to 26 March 2022. Brown field represents terrain height
(units: m), and blue lines represents boundary layer height (units: m).

3.3. Assessment of Pollution Process

PM2.5 and PM10 constitute the main sources of pollution in the urban agglomeration
situated on the northern slope of the Tianshan Mountains. From 2017 to 2019, the annual
average number of days with PM2.5 as the primary pollutant surpassed 90 d in Ürümqi,
Changji, and Shihezi. Meanwhile, the average number of days with PM10 as the primary
pollutant ranged from 5 to 15 d [22]. Therefore, to assess the prediction performance of
the forecasting system, we compared the simulated PM2.5 and PM10 concentration data
with the observations from Ürümqi, Changji, and Shihezi during the pollution period
from 14 to 26 December 2023 (Figure 8) and conducted quantitative evaluations (Table 4).
To present a comprehensive overview of the pollution scenario in these three cities, the
observational results from different environmental monitoring stations within the same
city were averaged. Similarly, simulation results were collected from the grid points closest
to the environmental monitoring stations and subsequently averaged.
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Figure 8. Comparison between simulated and observed PM2.5 and PM10 concentrations in
(a,b) Ürümqi, (c,d) Changji, and (e,f) Shihezi from 14 to 26 December 2023.

Table 4. Comparison of R-values, MAE, and RMSE between simulated and observed PM2.5, PM10,
and AQI.

Variables Indicates Ürümqi Changji Shihezi

24 h 48 h 72 h 280 h 24 h 48 h 72 h 280 h 24 h 48 h 72 h 280 h

PM2.5
R 0.60 0.54 0.32 0.35 0.51 0.17 0.04 0.18 0.53 0.12 0.27 0.33

MAE 28.92 29.10 32.32 40.59 55.06 53.31 51.87 52.24 43.03 48.40 54.73 76.78
RMSE 32.03 33.59 38.69 48.61 57.40 57.72 57.81 63.32 53.06 56.13 61.26 90.02

PM10
R 0.78 0.64 0.62 0.46 0.56 0.01 0.03 0.21 0.76 0.23 0.25 0.27

MAE 54.15 47.43 56.83 95.58 51.16 52.03 48.46 56.61 67.59 82.08 74.94 73.65
RMSE 61.57 57.88 71.33 125.10 60.31 62.23 59.73 70.30 83.03 103.72 94.87 92.34

AQI
R 0.79 0.70 0.54 0.39 0.52 0.01 0.05 0.19 0.72 0.24 0.27 0.26

MAE 24.21 27.56 30.91 47.45 67.62 68.05 64.08 61.22 39.17 56.49 58.67 76.67
RMSE 28.59 32.15 36.92 63.90 72.81 76.19 73.50 75.67 47.03 66.64 67.29 90.80

Figure 8 presents a comparison between the simulated and observed levels of PM2.5
and PM10, the two primary pollutants, in the three urban areas. The analysis revealed
that the accuracy of the model in forecasting these pollutants varied considerably among
the cities. Specifically, Ürümqi showed the most accurate PM2.5 estimations, and the
model successfully captured the trends in PM2.5 concentrations. The R-values between the
simulation and observation for 24 and 48 h intervals were 0.60 and 0.54, respectively, with
the simulated peak times aligning closely with those of the actual observations (Figure 8a).
Moreover, the errors between simulations and observations were relatively small, with
24 and 48 h MAEs of 28.92 and 29.10 µg·m−3, respectively, and an MAE of 40.59 µg·m−3

for 280 h intervals. In contrast, the PM2.5 forecasting performance in Changji and Shihezi
was notably inferior to that in Ürümqi. Between December 18 and 24, the model failed
to accurately predict high PM2.5 concentrations with the simulated concentrations being
lower than the observations (Figure 8c,e). Although the R for 24 h intervals exceeded 0.5,
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the MAE and RMSE were relatively large, indicating significant discrepancies between the
model forecasts and observations.

For PM10 simulation, the model accurately predicted the trend in PM10 variations in
Ürümqi, with R-values reaching 0.78, 0.64, and 0.72 for 24, 48, and 72 h intervals, respec-
tively. However, the model significantly overestimated PM10 concentrations, resulting in
notable errors. The mean MAE and RMSE for 24 h were 54.15 µg·m−3 and 61.57 µg·m−3,
respectively, while the overall MAE and RMSE for 280 h intervals exceeded 95 µg·m−3.
In comparison, the PM10 forecasting errors in Changji were relatively minor and stable
with MAE differences within 5 µg·m−3 and RMSE differences within 10 µg·m−3 across
various forecast lead times. However, there were significant differences in the R-values for
different forecast lead times in Changji, indicating poor forecasting trends. In Shihezi, the R
for 24 h intervals reached 0.76, with an MAE and RMSE of 67.59 µg·m−3 and 83.03 µg·m−3,
respectively. Conversely, the R-values for other forecast lead times were lower, and the
MAE and RMSE were larger, indicating significant forecasting errors.

The AQI is a crucial indicator for quantitatively assessing air quality, directly reflecting
its impact on human health. This forecast quantity has received considerable attention in
daily life. The formula for the AQI model follows the Industry Standard of Air Quality
Forecasting in China, as shown in Equations (8) and (9):

IAQIp =
(CP − CBP,Lo) (IAQIHi − IAQILo)

CBP,Hi − CBP,Lo
+ IAQILo (8)

AQI =max
{

IAQIpm2.5, IAQIpm10, IAQIno2, IAQIso2, IAQIco, IAQIo3

}
(9)

where IAQIP represents the air quality sub-index of pollutant P (PM2.5, PM10, NO2,
SO2, CO, and O3); Cp denotes the mass concentration of pollutant P; CPB,Lo and CPB,Hi
are the lower and upper limits of pollutant concentration values closely related to Cp,
respectively; IAQILo corresponds to CPB,Lo and represents the air quality sub-index; and
IAQIHi corresponds to CPB,Hi and represents the air quality sub-index.

Figure 9 compares the simulated and observed AQI values. Significant disparities
in the predictive performance of the AQI were evident across different cities. The model
exhibited the most favorable predictive performance in Ürümqi, accurately tracking AQI
trends with predicted peaks that closely matched the observed values (Figure 9a). The
R-values for the 24 and 48 h intervals were 0.79 and 0.70, respectively. Moreover, the
prediction errors were relatively minor, with MAEs of 24.21 and 27.56 for the 24 and 48 h
intervals, respectively. Even for 280 h intervals, the MAE was 47.45, which is below the
minimum cutoff for the AQI classification. In contrast, the model yielded reasonably
accurate predictions for the first 24 h intervals in Changji and Shihezi, with R-values of 0.52
and 0.72, respectively. However, after the first 24 h, the R-values decreased to less than
0.3 with an MAE exceeding 50. The model failed to accurately capture the observed peak
values and significantly underestimated the AQI (Figure 9b,c).
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4. Discussion

Overall, this study preliminarily evaluated the accuracy and reliability of a dust and
air pollution forecasting system based on the WRF-CUACE model. The results highlighted
that the model generally provides accurate forecasts of meteorological conditions during
dust events particularly for predicting temperature and wind speed. The wind speed
predictions closely matched the observations, particularly for capturing peak wind speeds,
which are crucial for simulating dust movement. The predicted PM10 concentrations
showed a trend consistent with the observations particularly at the time of the dust peak.
This study also showed that the simulated spatial distribution and intensity of AOD were
consistent with observations from the MODIS satellite. Another major finding was that
the model’s prediction performance varied significantly across different cities during the
pollution process with high R- and low RMSE values for PM2.5 and AQI at different time
intervals in Ürümqi.

In contrast to earlier evaluations conducted by Han et al. [39], we found that the
simulated PM10 showed a better match with the observations at Hotan station during the
dust storm. The horizontal characteristics of dust emissions and transport also supported
the results of recent studies [4,13,28], and we provided the vertical evolution structure of
the dust storms to more clearly reveal its characteristics. In addition, the assessment of
prediction performance for the primary pollutants in Xinjiang complements the research
conducted by Zhang et al. [23], who developed a WRF-CUACE model and evaluated its
performance in simulating air quality in eastern China.

However, this study had certain limitations. There were instances of wind speed
and dust intensity overestimations in the forecasts, and the PM10 level in Ürümqi was
higher than expected, while the PM2.5 levels in Changji and Shihezi were significantly
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lower during the air pollution events. These results may be attributed to the parameter
configurations of the model and additional influencing factors, such as surface conditions,
dust, and anthropogenic emissions. Because of the spatiotemporal resolution and repre-
sentative scenarios, the quality of anthropogenic emissions inventory may be the major
influencing factor causing uncertainty. Additionally, this study evaluated only two typical
events. Future studies should focus on enhancing the performance of this model. Adjust-
ments are required in the parameterization scheme to mitigate wind speed overestimation
and dust intensity forecasting errors. Furthermore, the optimization of the simulation
parameters and input data tailored to specific city conditions is essential for enhancing the
forecasting accuracy of PM2.5 and PM10 in Changji and Shihezi. Future research should
include a comprehensive evaluation of dust and pollution events at different temporal and
spatial scales.

5. Conclusions

Air pollution has become a significant issue that threatens human health and environ-
mental resources [40].This study used ground and satellite observational data to evaluate
dust and air pollution forecasting systems based on the WRF-CUACE model. Preliminary
forecasting performance results were obtained at different temporal and spatial scales
during a dust and air pollution event. The conclusions are as follows:

(1) During the dust event, the model performed well in predicting meteorological con-
ditions. The 2 m temperature data exhibited a high correlation across all stations,
especially in the Turpan area, where the R-value reached 0.94. The errors were reason-
able with the MAEs of the six stations ranging from 1.61 to 2.45 ◦C. The wind speed
R-values were between 0.20 and 0.61, and the RMSEs were below 2.61 m·s−1.

(2) The WRF-CUACE model accurately predicted the timing of the dust peak, and the
PM10 trend was consistent with observations. The Hotan station yielded the highest
R-value (0.85) with MAE and RMSE values of 721.36 and 886.68 µg·m−3, respectively.
For the Aksu, Kashgar, and Korla stations, the R-value exceeded 0.4 with MAE values
ranging from 599.72 to 840.31 µg·m−3. However, the Atux and Turpan regions demon-
strated relatively low correlation coefficients. Additionally, the model demonstrated
good capability for predicting the AOD with the spatial R of 0.78 at March 25.

(3) Dust emissions occurred in eastern Xinjiang and the northeastern Taklamakan Desert.
Under the influence of strong easterly wind, with speeds greater than 8 m·s−1 and
a dust layer thickness of 2000 m, dust storms occurred and propagated westward.
The intensity of the dust storms exceeded 5000 µg·m−3 with a thickness reaching
1800 m. Due to the blocking effect of the high mountains in western Xinjiang, wind
speeds decreased, and dust particles accumulated and descended over the cities in
western Xinjiang.

(4) During the air pollution event, significant differences were observed in the forecasting
performance for PM2.5 and PM10 across different cities. Ürümqi exhibited the best
performance, whereas Changji and Shihezi exhibited relatively poor results. The AQI
forecast of the model performed well in Ürümqi with R-values greater than 0.7 for
both 24 and 48 h intervals and MAEs less than 30 µg·m−3. Conversely, significant
forecasting errors were observed for Changji and Shihezi.
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