Melt Pond Evolution along the MOSAiC Drift: Insights from Remote Sensing and Modeling
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. Icepack Model
3.2. Melt Pond Evolution Scheme
3.3. Model Setup
4. Results and Discussion
4.1. Gradient Descent Scheme
4.2. Comparison between Different Melt Pond Schemes
4.3. Meltwater Budget
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fetterer, F.; Untersteiner, N. Observations of melt ponds on Arctic sea ice. J. Geophys. Res. Oceans 1998, 103, 24821–24835. [Google Scholar] [CrossRef]
- Pedersen, C.A.; Roeckner, E.; Lüthje, M.; Winther, J. A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model. J. Geophys. Res. Atmos. 2009, 114, D08101. [Google Scholar] [CrossRef]
- Flocco, D.; Feltham, D.L.; Turner, A.K. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. Oceans 2010, 115, C08012. [Google Scholar] [CrossRef]
- Holland, M.M.; Bailey, D.A.; Briegleb, B.P.; Light, B.; Hunke, E. Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact of Melt Ponds and Aerosols on Arctic Sea Ice. J. Clim. 2012, 25, 1413–1430. [Google Scholar] [CrossRef]
- Perovich, D.K.; Grenfell, T.C.; Richter-Menge, J.A.; Light, B.; Tucker, W.B., III; Eicken, H. Thin and thinner: Sea ice mass balance measurements during SHEBA. J. Geophys. Res. Ocean. 2003, 108, 8050. [Google Scholar] [CrossRef]
- Polashenski, C.; Perovich, D.; Courville, Z. The mechanisms of sea ice melt pond formation and evolution. J. Geophys. Res. Oceans 2012, 117, C01001. [Google Scholar] [CrossRef]
- Landy, J.; Ehn, J.; Shields, M.; Barber, D. Surface and melt pond evolution on landfast first-year sea ice in the Canadian Arctic Archipelago. J. Geophys. Res. Oceans 2014, 119, 3054–3075. [Google Scholar] [CrossRef]
- Webster, M.A.; Rigor, I.G.; Perovich, D.K.; Richter-Menge, J.A.; Polashenski, C.M.; Light, B. Seasonal evolution of melt ponds on Arctic sea ice. J. Geophys. Res. Oceans 2015, 120, 5968–5982. [Google Scholar] [CrossRef]
- Eicken, H.; Krouse, H.R.; Kadko, D.; Perovich, D.K. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res. Oceans 2002, 107, SHE 22-1–SHE 22-20. [Google Scholar] [CrossRef]
- Light, B.; Maykut, G.A.; Grenfell, T.C. Effects of temperature on the microstructure of first-year Arctic sea ice. J. Geophys. Res. Oceans 2003, 108, 3051. [Google Scholar] [CrossRef]
- Maus, S.; Schneebeli, M.; Wiegmann, A. An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice. Cryosphere 2021, 15, 4047–4072. [Google Scholar] [CrossRef]
- Webster, M.A.; Holland, M.; Wright, N.C.; Hendricks, S.; Hutter, N.; Itkin, P.; Light, B.; Linhardt, F.; Perovich, D.K.; Raphael, I.A.; et al. Spatiotemporal evolution of melt ponds on Arctic sea ice. Elem. Sci. Anthr. 2022, 10, 000072. [Google Scholar] [CrossRef]
- Oggier, M.; Eicken, H. Seasonal evolution of granular and columnar sea ice pore microstructure and pore network connectivity. J. Glaciol. 2022, 68, 833–848. [Google Scholar] [CrossRef]
- Hunke, E.C.; Hebert, D.A.; Lecomte, O. Level-ice melt ponds in the Los Alamos sea ice model, CICE. Ocean Model. 2013, 71, 26–42. [Google Scholar] [CrossRef]
- Hunke, E.; Allard, R.; Bailey, D.A.; Blain, P.; Craig, A.; Dupont, F.; DuVivier, A.; Grumbine, R.; Hebert, D.; Holland, M.; et al. CICE-Consortium/CICE: CICE, version 6.3.1; Zenodo: Geneva, Switzerland, 2022. [CrossRef]
- Taylor, P.D.; Feltham, D.L. A model of melt pond evolution on sea ice. J. Geophys. Res. Oceans 2004, 109, C12007. [Google Scholar] [CrossRef]
- Lüthje, M.; Feltham, D.L.; Taylor, P.D.; Worster, M.G. Modeling the summertime evolution of sea-ice melt ponds. J. Geophys. Res. Oceans 2006, 111, C02001. [Google Scholar] [CrossRef]
- Skyllingstad, E.D.; Paulson, C.A.; Perovich, D.K. Simulation of melt pond evolution on level ice. J. Geophys. Res. 2009, 114, C12019. [Google Scholar] [CrossRef]
- Popović, P.; Abbot, D. A simple model for the evolution of melt pond coverage on permeable Arctic sea ice. Cryosphere 2017, 11, 1149–1172. [Google Scholar] [CrossRef]
- Nicolaus, M.; Hoppmann, M.; Arndt, S.; Hendricks, S.; Katlein, C.; Nicolaus, A.; Rossmann, L.; Schiller, M.; Schwegmann, S. Snow Depth and Air Temperature Seasonality on Sea Ice Derived From Snow Buoy Measurements. Front. Mar. Sci. 2021, 8, 655446. [Google Scholar] [CrossRef]
- Rabe, B.; Heuzé, C.; Regnery, J.; Aksenov, Y.; Allerholt, J.; Athanase, M.; Bai, Y.; Basque, C.; Bauch, D.; Baumann, T.M.; et al. Overview of the MOSAiC expedition: Physical oceanography. Elem. Sci. Anthr. 2022, 10, 00062. [Google Scholar] [CrossRef]
- Shupe, M.D.; Rex, M.; Blomquist, B.; Persson, P.O.G.; Schmale, J.; Uttal, T.; Althausen, D.; Angot, H.; Archer, S.; Bariteau, L.; et al. Overview of the MOSAiC expedition: Atmosphere. Elem. Sci. Anthr. 2022, 10, 00060. [Google Scholar] [CrossRef]
- Krumpen, T.; von Albedyll, L.; Goessling, H.F.; Hendricks, S.; Juhls, B.; Spreen, G.; Willmes, S.; Belter, H.J.; Dethloff, K.; Haas, C.; et al. MOSAiC drift expedition from October 2019 to July 2020: Sea ice conditions from space and comparison with previous years. Cryosphere 2021, 15, 3897–3920. [Google Scholar] [CrossRef]
- Niehaus, H.; Spreen, G.; Birnbaum, G.; Istomina, L.; Jäkel, E.; Linhardt, F.; Neckel, N.; Fuchs, N.; Nicolaus, M.; Sperzel, T.; et al. Sea Ice Melt Pond Fraction Derived From Sentinel-2 Data: Along the MOSAiC Drift and Arctic-Wide. Geophys. Res. Lett. 2023, 50, e2022gl102102. [Google Scholar] [CrossRef]
- Jackson, K.; Wilkinson, J.; Maksym, T.; Meldrum, D.; Beckers, J.; Haas, C.; Mackenzie, D. A Novel and Low-Cost Sea Ice Mass Balance Buoy. J. Atmos. Ocean. Technol. 2013, 30, 2676–2688. [Google Scholar] [CrossRef]
- Lei, R.; Cheng, B.; Hoppmann, M.; Zuo, G. Snow depth and sea ice thickness derived from the measurements of SIMBA buoys deployed in the Arctic Ocean during the Legs 1a, 1, and 3 of the MOSAiC campaign in 2019–2020. PANGAEA 2021. [Google Scholar] [CrossRef]
- Wang, M.; König, M.; Oppelt, N. Partial Shape Recognition for Sea Ice Motion Retrieval in the Marginal Ice Zone from Sentinel-1 and Sentinel-2. Remote Sens. 2021, 13, 4473. [Google Scholar] [CrossRef]
- Wang, M.; Su, J.; Landy, J.; Leppäranta, M.; Guan, L. A New Algorithm for Sea Ice Melt Pond Fraction Estimation From High-Resolution Optical Satellite Imagery. J. Geophys. Res. Oceans 2020, 125, e2019jc015716. [Google Scholar] [CrossRef]
- Hoppmann, M.; Kuznetsov, I.; Fang, Y.-C.; Rabe, B. Raw seawater temperature, conductivity and salinity obtained at different depths by CTD buoy 2019O5 as part of the MOSAiC distributed network. PANGAEA 2021. [Google Scholar] [CrossRef]
- Wang, M.; Oppelt, N. Estimating Early Summer Snow Depth on Sea Ice Using a Radiative Transfer Model and Optical Satellite Data. Remote Sens. 2023, 15, 5016. [Google Scholar] [CrossRef]
- Hunke, E.; Allard, R.; Bailey, D.A.; Blain, P.; Craig, A.; Dupont, F.; DuVivier, A.; Grumbine, R.; Hebert, D.; Holland, M.; et al. CICE-Consortium/Icepack: Icepack, Version 1.3.1; Zenodo: Geneva, Switzerland, 2022. [CrossRef]
- Feltham, D.L.; Untersteiner, N.; Wettlaufer, J.S.; Worster, M.G. Sea ice is a mushy layer. Geophys. Res. Lett. 2006, 33, L14501. [Google Scholar] [CrossRef]
- Briegleb, B.P.; Light, B. A Delta-Eddington Mutiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model (No. NCAR/TN-472+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, 2007. [Google Scholar] [CrossRef]
- Turner, A.K.; Hunke, E.C. Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model. J. Geophys. Res. Oceans 2015, 120, 1253–1275. [Google Scholar] [CrossRef]
- Fuchs, N.; von Albedyll, L.; Birnbaum, G.; Linhardt, F.; Oppelt, N.; Haas, C. Sea ice melt pond bathymetry reconstructed from aerial photographs using photogrammetry: A new method applied to MOSAiC data. Cryosphere 2024, 18, 2991–3015. [Google Scholar] [CrossRef]
- Landy, J.C.; Ehn, J.K.; Barber, D.G. Albedo feedback enhanced by smoother Arctic sea ice. Geophys. Res. Lett. 2015, 42, 10714–10720. [Google Scholar] [CrossRef]
- Nasonova, S.; Scharien, R.K.; Haas, C.; Howell, S.E.L. Linking Regional Winter Sea Ice Thickness and Surface Roughness to Spring Melt Pond Fraction on Landfast Arctic Sea Ice. Remote Sens. 2017, 10, 37. [Google Scholar] [CrossRef]
- Wang, M.; Su, J.; Li Tao Wang, X.; Ji, Q.; Cao, Y.; Lin, L.; Liu, Y. Study on the method of extracting Arctic melt pond and roughness information on sea ice surface based on UAV observation. Chin. J. Polar Res. 2017, 29, 436. [Google Scholar] [CrossRef]
- Eicken, H.; Alexandrov, V.; Gradinger, R.; Ilyin, G.; Ivanov, B.; Luchetta, A.; Martin, T.; Olsson, K.; Reimnitz, E.; Pac, R.; et al. Distribution, structure and hydrography of surface melt puddles. Ber. Polarforsch. 1994, 149, 73–76. Available online: https://epic.awi.de/id/eprint/26327/1/BerPolarforsch1994149.pdf (accessed on 21 January 2023).
- Morassutti, M.P.; LeDrew, E.F. Albedo and depth of melt ponds on sea-ice. Int. J. Climatol. A J. R. Meteorol. Soc. 1996, 16, 817–838. [Google Scholar] [CrossRef]
Label | Pond Scheme | Horizonal Drainage | Description |
---|---|---|---|
CNTL | Gradient Descent | Yes | Control run |
TOPO | topo | No | Topo pond scheme |
LVL | lvl | No | Level-ice formulation |
TOPO-H | Enhanced topo | Yes | Adding horizonal drainage to topo scheme |
LVL-H | Enhanced lvl | Yes | Adding horizonal drainage to level-ice formulation |
GRID | Gradient Descent | Yes | High ice surface roughness |
RADIAL | Gradient Descent | Yes | Low ice surface roughness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Linhardt, F.; Lion, V.; Oppelt, N. Melt Pond Evolution along the MOSAiC Drift: Insights from Remote Sensing and Modeling. Remote Sens. 2024, 16, 3748. https://doi.org/10.3390/rs16193748
Wang M, Linhardt F, Lion V, Oppelt N. Melt Pond Evolution along the MOSAiC Drift: Insights from Remote Sensing and Modeling. Remote Sensing. 2024; 16(19):3748. https://doi.org/10.3390/rs16193748
Chicago/Turabian StyleWang, Mingfeng, Felix Linhardt, Victor Lion, and Natascha Oppelt. 2024. "Melt Pond Evolution along the MOSAiC Drift: Insights from Remote Sensing and Modeling" Remote Sensing 16, no. 19: 3748. https://doi.org/10.3390/rs16193748
APA StyleWang, M., Linhardt, F., Lion, V., & Oppelt, N. (2024). Melt Pond Evolution along the MOSAiC Drift: Insights from Remote Sensing and Modeling. Remote Sensing, 16(19), 3748. https://doi.org/10.3390/rs16193748