
Citation: Wang, M.; Linhardt, F.; Lion,

V.; Oppelt, N. Melt Pond Evolution

along the MOSAiC Drift: Insights

from Remote Sensing and Modeling.

Remote Sens. 2024, 16, 3748. https://

doi.org/10.3390/rs16193748

Academic Editor: Yi Luo

Received: 23 August 2024

Revised: 6 October 2024

Accepted: 8 October 2024

Published: 9 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Melt Pond Evolution along the MOSAiC Drift: Insights from
Remote Sensing and Modeling
Mingfeng Wang * , Felix Linhardt , Victor Lion and Natascha Oppelt

Earth Observation and Modelling, Department of Geography, Kiel University, Ludewig-Meyn-Str. 8,
24098 Kiel, Germany; linhardt@geographie.uni-kiel.de (F.L.); lion@geographie.uni-kiel.de (V.L.);
oppelt@geographie.uni-kiel.de (N.O.)
* Correspondence: m.wang@geographie.uni-kiel.de

Abstract: Melt ponds play a crucial role in the melting of Arctic sea ice. Studying the evolution of melt
ponds is essential for understanding changes in Arctic sea ice. In this study, we used a revised sea ice
model to simulate the evolution of melt ponds along the MOSAiC drift at a resolution of 10 m. A
novel melt pond parameterization scheme simulates the movement of meltwater under the influence
of gravity over a realistic sea ice topography. We evaluated different melt pond parameterization
schemes based on remote sensing observations. The absolute deviation of the maximum pond
coverage simulated by the new scheme is within 3%, while differences among parameterization
schemes exceed 50%. Errors were found to be primarily due to the calculation of macroscopic
meltwater loss, which is related to sea ice surface topography. Previous studies have indicated
that sea ice with a lower surface roughness has a larger catchment area, resulting in larger pond
coverage during the melt season. This study has identified an opposing mechanism: sea ice with
lower surface roughness has a larger catchment area connected to the macroscopic flaws of the sea
ice surface, which leads to more macroscopic drainage into the ocean and thereby a decrease in melt
pond coverage. Experimental simulations showed that sea ice with 46% higher surface roughness,
resulting in 12% less macroscopic drainage, exhibited a 38% higher maximum pond fraction. The
presence of macroscopic flaws is related to the fragmentation of sea ice cover. As Arctic sea ice cover
becomes increasingly fragmented and mobile, this mechanism will become more significant.

Keywords: sea ice; melt pond; remote sensing; modeling

1. Introduction

The Earth’s climate is subject to continual changes, notably in the Arctic region, where
the melting of snow and sea ice leads to the formation of melt ponds in summer [1].
These melt ponds, characterized by a lower albedo compared to the surrounding ice,
contribute to the increased absorption of solar radiation. Recognizing the significance of this
phenomenon, various studies have been conducted to integrate precise parameterizations
of melt ponds into regional sea ice or global climate models, aiming to enhance the accuracy
of sea ice forecasts [2–4]. Researchers have extensively investigated the dynamics of melt
pond coverage on sea ice [5–8]. The evolution of pond coverage can be divided into
different stages [9]. In the initial stage, the ponds experience rapid growth while the ice
remains impermeable. Subsequently, as the ice transitions from impermeable to permeable,
the ponds undergo a swift drainage process, resulting in a reduction in pond coverage. The
pond water generally maintains the sea level until either the ponds refreeze or, in the event
of an ice floe breakup, the ice disperses. Incorporating these insights into global climate
models is imperative for improving the accuracy of sea ice forecasts and advancing our
understanding of the impacts of climate change on polar regions.

Melt ponds are distributed in local topographic lows of the sea ice, with water volume
being determined by the balance of inflow and outflow. Sea ice is a complex multiscale
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porous medium with diverse and multiscale pore structures and multiple permeability
properties [9–13]. Outflow of meltwater can occur through vertical drainage through the
interconnected pore structure within the ice or through horizontal movement of meltwater
across the ice surface to macroscopic flaws, such as ice floe edges [1], cracks, and leads [9].
The simulation of the fluid flow behavior of sea ice has traditionally relied on sub-grid
parameterization exemplified by approaches like the topo (topographic) [3] and lvl (level-
ice formation) [14] schemes in the Los Alamos sea ice model version 6.3.1 (CICE6.3.1) [15]
and the one-dimensional models outlined in the works of Eicken et al. (2002) [9], Taylor et al.
(2004) [16], Lüthje et al. (2006) [17], and Skyllingstad et al. (2009) [18]. Lüthje et al. (2006)
presented a model that initialized with the surface topographies of sea ice and studied the
importance of the vertical seepage rate of melt pond evolution [17]. Popović et al. (2017)
introduced a model for the evolution of melt pond coverage on permeable sea ice floes
based on the assumption that the whole floe is in hydrostatic balance [19]. However, none
of these models parameterized the horizontal drainage of meltwater across macroscopic
flaws in the ice floe and simply provided a lenient and unsophisticated parameterization.
The impact of different outflow pathways on melt pond evolution at different stages has
not been compared. In this study, we indicate the dominant role of macroscopic outflow in
the first stage of melt pond evolution, which determines an important parameter of sea ice
variation, the maximum melt pond fraction (MPF), on the ice surface.

As Arctic sea ice becomes more fragmented during the melting season, meltwater
runoff from the macroscopic flaws is expected to increase. However, the topic has received
limited research attention. To address this gap, a new approach is proposed to enhance
the understanding of meltwater budgets during the melting season. We leverage a G-D
(Gradient Descent) algorithm to explicitly govern the horizontal movement of meltwater.
The methodology begins by addressing vertical drainage through the application of Darcy’s
Law, as elucidated by Eicken et al. (2002) [9]. Subsequently, any remaining meltwater,
post-vertical drainage, is systematically redistributed horizontally to local topographic
lows or macroscopic flaws of sea ice through iterations of the G-D algorithm. This model
aims to simulate the dynamic evolution of melt ponds on individual ice floes. Using the
model, we aim to (a) simulate the melt pond evolution on ice floes along the track of the
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) from
21 June to 2 August 2020, (b) compare the simulated MPF with remote sensing observations
and the simulation results of the CICE6 schemes, and (c) study the relative importance of
the two different outflow pathways (vertical drainage and runoff from the macroscopic
flaws) in regard to the meltwater budget and their influence on the melt pond evolution.
This research therefore contributes to a deeper understanding of the complex dynamics
associated with melt pond evolution on ice floes, particularly in the context of the changing
Arctic sea ice landscape.

2. Data

During the 2019–2020 period, the year-long MOSAiC Arctic research expedition aboard
the research vessel (RV) Polarstern conducted comprehensive measurements and anal-
yses of sea ice, ocean dynamics, atmospheric conditions, ecological phenomena, and
bio-geochemical processes over the course of a complete seasonal rotation [20–22]. The melt
pond evolution of ice floes during the MOSAiC campaign in summer 2020 was investigated
using in situ measurements and optical satellite imagery [8,23,24]. During the MOSAiC
campaign, Snow and Ice Mass Balance Array (SIMBA) buoys were deployed on ice floes
in the Arctic Ocean over the distributed network (DN) and the central observatory [25].
Lei et al. (2021) processed the SIMBA measurements to derive snow depth and ice thick-
ness [26]. The position information of the buoys was used to track and identify ice floe
images. An example of the processing results is shown in Figure 1.
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Figure 1. Drift trajectories of five SIMBA buoys selected for simulation and Sentinel-2 images of the 
floe on which buoy 2019T58 was deployed. 

To validate the modeling results of this study, we use remote sensing data and the
partial shape recognition method to track, identify, and match cloudless (cloud percent-
age less than 10%) Sentinel-2 MSI satellite images of ice floes. The Hausdorff distance is 
used to measure the similarity of segmented ice floes. It is tolerant to perturbations and
deficiencies in floe shapes [27]. The position information of the SIMBA buoys was used to 
track and identify ice floe images. Figure 1 illustrates the drift trajectories of five buoys 
selected for simulation and true-color Sentinel-2 MSI images showing an example floe 
over time. We retrieved cloud-free images of the ice floe throughout the melting season. 
Furthermore, we identified and matched the ice floe in the images and then used the Lin-
earPolar algorithm to identify melt ponds on the processed satellite images of the ice floe; 
the algorithm treats melt ponds as features with variable albedo, and its error is approxi-
mately 30% lower compared to previous algorithms [28]. These images illustrate the var-
ious stages of melt pond evolution on the ice floe from its initial to final stages. As the

Figure 1. Drift trajectories of five SIMBA buoys selected for simulation and Sentinel-2 images of the
floe on which buoy 2019T58 was deployed.

To validate the modeling results of this study, we use remote sensing data and the
partial shape recognition method to track, identify, and match cloudless (cloud percentage
less than 10%) Sentinel-2 MSI satellite images of ice floes. The Hausdorff distance is used to
measure the similarity of segmented ice floes. It is tolerant to perturbations and deficiencies
in floe shapes [27]. The position information of the SIMBA buoys was used to track and
identify ice floe images. Figure 1 illustrates the drift trajectories of five buoys selected for
simulation and true-color Sentinel-2 MSI images showing an example floe over time. We
retrieved cloud-free images of the ice floe throughout the melting season. Furthermore, we
identified and matched the ice floe in the images and then used the LinearPolar algorithm
to identify melt ponds on the processed satellite images of the ice floe; the algorithm treats
melt ponds as features with variable albedo, and its error is approximately 30% lower
compared to previous algorithms [28]. These images illustrate the various stages of melt
pond evolution on the ice floe from its initial to final stages. As the true-color images in
Figure 1 show as an example, ice floes were chosen with minimal shape changes during
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the 2020 melt season. This suggests that these ice floes experienced negligible deformation
during the melt season. Therefore, we reproduced the evolution of these ice floes using a
single-column sea ice model that does not include a dynamic scheme. This helps to simplify
our model and make it more suitable for the study of the melt pond evolution process that
we are concerned with.

The atmospheric forcing for the model includes the following: 2 m temperature,
2 m specific humidity, incoming long-wave radiation, incoming shortwave radiation,
2 m wind speed, and precipitation, which was further categorized into snow and rain.
The forcing data were collected during the MOSAiC expedition and retrieved from the
Atmospheric Radiation Measurement (ARM) User Facility (http://dx.doi.org/10.5439/
1025153, accessed on 27 October 2022). The oceanic forcing field consist of SST, SSS, and
zonal and meridional ocean velocities. The oceanic forcing data were obtained from CTD
(Conductivity, Temperature, Depth) buoys during the MOSAiC Expedition [29]. The data
were resampled to the time step of the model with linear interpolation. The simulated ice
floe sizes were in the range of several kilometers, so the same value was used throughout
the forcing field.

Sentinel-2 images of the ice floe were used to retrieve the depth of the snowdrift. Initial
ice and snow topographies of the floes were generated from the depth of the snowdrift.
We assumed the snow/ice interface to be flat, and any positive change in surface height is
regarded as snowdrift. It should be noted that the uncertainty of this assumption remains
to be verified [20]. The depth of the snowdrift is derived from ice surface reflectivity and ice
surface temperature using Sentinel-2 remote sensing data, following the algorithm of Wang
et al., 2023 [30]. An example of the topography of the observed floe is shown in Figure 2a.
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Figure 2. Illustration of the proposed melt pond scheme. (a) Three-dimensional surface topography
and melt ponds of the floe where SIMBA buoy 2019T58 was deployed. (b) A section of the sea ice
surface marked by the red box in (a) and the pathway of meltwater acceleration at the topography
low determined using G-D.

3. Methodology

This section begins with a description of the Icepack model, which forms the founda-
tion of our simulations, including its key features and the specific configurations applied in
our study. Following this, we introduce the melt pond evolution scheme developed for this
research, highlighting its novel approach to meltwater distribution and drainage within
the spatial grid framework.

3.1. Icepack Model

In this study, we utilized Icepack v1.3.1 [31], a single-column sea ice model in CICE
6. Icepack can be used as a stand-alone model; it simulates all vertical processes in CICE,

http://dx.doi.org/10.5439/1025153
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including an ice thickness distribution scheme, thermodynamics module, solar radiation
module, melt pond scheme, and ocean mixed-layer parameterization scheme. Sea ice
in the Arctic contains a mixture of thin first-year ice, thicker multi-year ice, and thick
pressure ridges. Therefore, in Icepack, snow and ice are represented in multiple layers
and ice thickness is distributed into categories. In this study, we model an individual
ice floe, so we use one ice thickness category, seven layers to represent ice, and three
layers to represent snow or melt ponds. Icepack simulations were run with the mushy-
layer thermodynamical model. This energy-conserving thermodynamical model treats
the ice as a mushy layer [32], a matrix of pure ice that contains pockets of salty meltwater
(brine). The model updates temperatures to compute melt and growth. This ensures that
surface temperatures stay below 0 ◦C and bottom temperatures match the freezing point of
water, with ice temperatures being calculated per layer via heat conduction. The multiple
scattering radiative transfer scheme, the Delta-Eddington scheme, was used to account
for solar radiation absorption, scattering, and transmittance of sea ice, including the effect
of melt ponds [33]. Icepack includes an optional thermodynamic slab ocean mixed-layer
parameterization, which is utilized when running the model without coupling to an ocean
model. In all of our runs, the slab ocean parameterization was switched on.

Icepack offers three different schemes for modeling melt ponds: the CESM scheme,
the topo scheme, and the lvl formulation. The CESM scheme describes melt pond processes
empirically [14]. The topo scheme assumes that meltwater begins to accumulate from the
areas with the minima elevation on the ice surface [3], while the lvl formulation restricts
pond formation to areas of undeformed ice [14]. Both of these schemes consider a part of
the characteristics of meltwater distribution under hydraulic control and therefore have
disadvantages: the topo scheme does not allow for water surface elevation differences
between melt ponds, while the lvl formula does not take into account the formation of melt
ponds over areas of deforming ice. In all schemes, melt pond water can drain depending
on ice permeability, but the meltwater runoff from the macroscopic flaws is parameterized
using the tuning parameter and only depends on ice concentration rather than, e.g., ice
surface roughness [4]. The area and volume of melt ponds were found to be highly sensitive
to the tuning parameter choices [34]. This study used a new meltwater distribution scheme
to provide a more detailed and explicit parameterization of the meltwater runoff from
macroscopic flaws, which will be introduced in the next section.

3.2. Melt Pond Evolution Scheme

A spatial grid was created that was consistent with the Sentinel-2 ice floe images shown
in Figure 1. We applied the column physics (Icepack) model to each grid cell, with neighbor-
ing cells being independent of each other unless the horizontal meltwater flow passes from
one to another. As meltwater drainage occurs more rapidly in the vertical direction than in
the horizontal direction, we first solved the vertical drainage for each computational time
step by using Darcy’s Law and following the “mushy” thermodynamic option according to
Turner and Hunke 2015 [34]. Liquid water, ∆Vmelt, is produced in a given grid cell by the
melting of snow and ice and may be supplemented by liquid precipitation:

∆Vmelt = r(ρi|∆hi|+ ρs|∆hs|+ Frain∆t)ai, (1)

where ρi and ρs are ice and snow densities, ∆hi and ∆hs are the thicknesses of the ice
and snow that melted, Frain is the rainfall rate, r is the fraction of the total meltwater
available that is added to the ponds, ai is the total fractional ice area, and ∆t is the time
step. Calculating meltwater flow through sea ice is highly complex and challenging. The
meltwater u flow through porous sea ice is described with Darcy’s Law:

u = − gρwater

µ
Πh∆h, (2)
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where g is gravitational acceleration, ρwater is the density of water, µ is the dynamic viscosity,
∆h = hsur f − hslvl is the total pressure drop, which is equal to the height difference between
the sea ice surface and sea level, and Πh is the vertical permeability of sea ice with units of
length squared.

Considering the surface elevation f (x, y) as a function of coordinates (x, y), under
the action of gravity, the remaining meltwater after vertical drainage at (xk, yk) will be
distributed to the local minima of f (x, y) in the vicinity of (xk, yk). If there is still meltwater
left in the grid cell after vertical drainage, the remaining meltwater will be horizontally
redistributed to the nearby topographic lows by applying the G-D iteration:

∇ f (x, y) = (
∂ f (x, y)

∂x
,

∂ f (x, y)
∂y

) (3)

(xk, yk) = (xk−1, yk−1)− α∇ f (xk−1, yk−1) k = 0, 1, 2, . . . , n (4)

The iteration comes to an end when:

∇ f (x, y) < ε (5)

or
(xk, yk) ∈

{
(xk, yk)ponds, (xk, yk)ocean

}
, (6)

where f (x, y) is the topography as a function of the spatial coordinate (x, y), k is the number
of iterations, (xk, yk) is the position of k times iteration, and α is the step of the iteration,
representing the size of the change per iteration update, taken as α = 100. ε is a threshold
of slope between position (xk, yk) and (xk−1, yk−1), taken as ε = 0.01.(xk, yk)ponds is the
grid cells of ponded ice and (xk, yk)ocean is the open water grid cells. The meltwater of
the grids gathers in a shared topographic low, forming a collective melt pond, as shown
in Figure 2b, for an arbitrary section of the sea ice surface. The meltwater of the grid
cells reaching the floe edge rather than a local topography low is drained into the ocean.
The iteration step α is important in determining whether the iteration will reach the local
minima or the global minimum. It should be noted that, as a case study, the iteration step α
used here is arbitrary. The appropriateness of this value is related to the size of the melt
ponds and the fluctuation degree of the ice surface elevation (ice surface roughness). A
more representative α value depends on more statistics on these sea ice morphological
parameters, which will be compiled in the next work.

3.3. Model Setup

The experiments in this study were conducted in a single ice floe domain, assuming
no deformation. Therefore, the dynamic module of the CICE model was switched off
and only the Icepack was used. The model was run with a spatial resolution of 10 m,
utilizing a Mercator projection, which matches the resolution of Sentinel-2 MSI images
for comparison. The Icepack thermodynamic model was applied to each model grid to
simulate the production of meltwater. Following this, a meltwater distribution scheme
was applied to simulate meltwater flowing vertically and horizontally through the sea ice.
The original scheme allows all three surface types (ice, snow, pond) to exist within the
same ice thickness category. In the modified scheme, each grid cell can be in one of four
potential states: bare ice, open water, snow-covered ice, and melt pond-covered ice. The
shape of the ice floe was assumed to remain constant, so there is no transition between
open water and the other three states; thus, the open water cell only exists as a mask.
The grid cells of ponded ice were determined by the meltwater distribution scheme, and
snow-covered ice can be converted to melt pond grid cells depending on the meltwater
distribution scheme. Besides control runs, (Table 1) we designed experiments based on the
topo and lvl meltwater schemes in Icepack. In the TOPO run, meltwater starts flooding
from the lowest point of a floe, with all melt ponds maintaining a uniform surface height.
In the LVL run, we confined the melt pond formation to flat ice areas, allowing for elevation
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differences between pond surfaces. To further investigate the differences in simulation
accuracy between the schemes, we designed a TOPO-H run and LVL-H run where the
macro-flaw outflow was added. In the TOPO-H run and LVL-H run, similar to the CNTL
run, the meltwater from grid cells reaching the floe edge, rather than a local topographic
low, is drained into the ocean. It should be note that these experiments do not directly
assess the performance of the schemes in Icepack and CICE, as we utilized a modified
high-resolution model. In our simulations, the grid scale is finer than the physical scale of
meltwater flow, whereas the melt pond schemes in Icepack is a sub-grid parameterization.
Specifically, the lvl scheme in Icepack calculates melt pond coverage based on a fixed
ratio of melt pond depth to fraction, causing our LVL run to differ significantly from the
Icepack scheme. The primary objective of these experiments is to assess the mechanistic
assumptions underlying various melt pond schemes while minimizing the influence of
errors related to ice topography determined by ice thickness distribution.

Table 1. Settings for the control runs and experimental simulations. All of these cases were carried
out for each of the five buoys.

Label Pond Scheme Horizonal Drainage Description

CNTL Gradient Descent Yes Control run

TOPO topo No Topo pond scheme

LVL lvl No Level-ice formulation

TOPO-H Enhanced topo Yes Adding horizonal drainage
to topo scheme

LVL-H Enhanced lvl Yes Adding horizonal drainage
to level-ice formulation

GRID Gradient Descent Yes High ice surface roughness

RADIAL Gradient Descent Yes Low ice surface roughness

All the runs were started from a fixed initial sea ice condition rather than a restart
from a spin-up run. We ran the model from 21 June 2020, when melt ponds were not yet
formed, using a realistic initial sea ice condition retrieved from remote sensing and the
MOSAiC observations. The MOSAiC ice is described as multi-year ice or, more specifically,
as second-year ice [23]. The limitation of running such a short simulation is the non-
representation of multi-year ice. Since we used observational topography data to describe
the deformation of multi-year ice, it is sufficient to set the initial sea ice condition instead
of a restart from a spin-up. All simulations were initialized using the ice thickness, snow
depth, and internal ice temperature (at locations corresponding to the center of the snow
and ice layers) recorded by the SIMBA buoys while assuming that the entire ice floe has
a uniform ice thickness, snow depth, and internal ice temperature profile. Experiments
were also designed to study the effects of different ice surface topography on meltwater
transport and the MPF (Table 1). All simulations utilized a time step of 1800 s. All model
experiments in this study focused on the period from 21 June 2020 to 27 July 2020, for which
extensive forcing data were available from the MOSAiC expedition, and optical remote
sensing data could be used to verify the melt pond simulation results.

4. Results and Discussion

The present study employed a numerical model to simulate variations in the melt
pond coverage of multiple sea ice floes along the MOSAiC observations during the melting
season. Remote sensing observations of melt pond coverage served as the reference, while
different experimental setups were tested to assess the modeling capability of various melt
pond parameterization schemes. Different experimental setups are outlined in Table 1,
with all other settings being kept consistent unless otherwise specified in the table. The
remote sensing-based MPF was derived using the Sentinel-2 algorithm based on Wang
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(2020), which was validated to have an error of less than 4% [28]. Due to the limitation of
cloud cover in visible remote sensing, MPF observations are not continuous daily results
but scattered observations in five weather windows during the melt period (21 June,
30 June, 7 July, 27 July, and 21 July). These observation dates cover all stages of melt pond
development and are therefore representative. The simulation experiments also included
experiments with two different ice surface topographies to investigate the relationship
between sea ice surface topography and melt pond coverage.

4.1. Gradient Descent Scheme

Figure 3 illustrates the seasonal evolution of the maximum MPF simulated using the
G-D scheme (control run in Table 1). The simulated maximum MPF ranges from 15% to
28%, peaking at around 30 June. Initially, pond formation progresses rapidly, reaching the
maximum fraction within a week, followed by a swift decline to half the maximum within
another week. The MPF then stabilizes until mid-July, followed by a continuous decrease
until disappearing around 21 July. The seasonal pond observations from Sentinel-2 data,
also shown in Figure 3, exhibit a similar pattern, with the observed maximum MPF ranging
from 16% to 27%, consistent with the simulation results. Notably, both observations and
simulations demonstrate that the maximum MPF occurs around 30 June, aligning with
high solar radiation input. Due to cloud cover over the ice surface, effective optical remote
sensing observations are limited to clear-sky conditions. A large number of effective visible
remote sensing observations coincide with the maximum or phasic peaks in MPF evolution,
as ice under clear skies receives a significant amount of solar radiation input. Moreover, the
floes were located close to each other throughout the melt season, so the same atmospheric
and oceanic forcing was used. Therefore, the MPF evolution trends were similar in all cases.
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Figure 4 illustrates a comparison between the observed maximum MPF from Sentinel-2
imagery and the modeling results from the control run. The simulation results demonstrate
a close agreement with the Sentinel-2 observations, with a Mean Absolute Error (MAE) of
0.022 and a Root Mean Square Error (RMSE) of 0.027. The modeled maximum MPF closely
matches the observed values, with only a slight underestimation of around 3%. However,
there is a systematic underestimation in the MPF during each stage of the simulation,
particularly notable during the late stages of pond evolution. For instance, on 7 July,
the mean MPF from observations is 0.088, while the mean MPF from the simulation is
0.12, representing an underestimation of 23%. During the other three remote sensing
observation windows, the simulated pond coverage is either zero or close to zero, while
the remote sensing observations indicate a pond coverage of below 4%. This systematic
underestimation in the modeled MPF may be attributed to the spatial resolution (10 m)
of the sea ice surface elevation data, which fails to represent small-scale pits, thereby
preventing the model from simulating some small-sized ponds accurately.
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4.2. Comparison between Different Melt Pond Schemes

In the control run experiment, we simulated the development of MOSAiC melt ponds
using a G-D scheme. The scheme simulated the hydraulic control of melt pond formation in
realistic topography, including the parameterization of meltwater loss to macro-flaws. The
simulation of the process in the CICE model with the topo and lvl schemes is simplified.
One scheme assumes that meltwater begins to accumulate from the areas with the minima
elevation on the ice surface while the other uniformly distributes meltwater across flat ice
areas. Neither of these schemes parameterize the loss of meltwater flowing into macro-
flaws, and the boundary between ice and open water is closed, preventing meltwater from
draining through the ice edge. We designed experiments to discuss the potential impact
of this on the accuracy of melt pond simulation. The effects of different schemes on melt
pond simulation are shown in Figure 5a. Compared to observations, both the topo and
lvl schemes overestimate the MPF in the early stages of melting, with overestimations of
approximately 50% and 40%, respectively, for the maximum MPF. In the late stage, all three
schemes underestimate the MPF, with topo underestimating it by 53% and CNTL and LVL
underestimating it by around 38%.

In the TOPO and LVL runs, the meltwater outflow from macro-flaws is excluded. As
previously mentioned, there are two main differences between the G-D scheme and the
topo and lvl schemes: differences in the parameterization of hydraulic control of pond
formation and meltwater outflow from macro-flaws. As shown in Figure 5b, both the
TOPO-H and LVL-H runs show significant improvements in early-stage pond simulations
compared to the TOPO and LVL runs. The TOPO-H run overestimates the maximum pond
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coverage by 19%, while the LVL-H run overestimates it by only 4.3%, approaching the
accuracy of CNTL. In the late melting stage, the results of the TOPO-H and LVL-H runs
do not show significant changes compared to the TOPO and LVL runs. This suggests that
incorporating macro-flaw outflows can significantly improve the accuracy of early-stage
pond simulations. This also suggests that macro-flaw outflows may be more obvious in
the early stages. We will later explore the effects of different meltwater loss pathways at
different stages.
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Figure 5. Comparison of the MPF evolution. (a) Comparison between the observation and the CNTL,
TOPO, and LVL runs. The black dots indicate the MPF observed from Sentinel-2 images. Lines
indicate the simulated MPF. (b) Comparison between the observation and the CNTL, TOPO-H, and
LVL-H runs. The black dots indicate the MPF observed from Sentinel-2 images. Lines indicate the
simulated MPF. The error bars represent the error of the classification scheme. Note that the y-scales
of (a,b) are not the same.

To further compare the differences between the TOPO-H, LVL-H, TOPO, and LVL
runs, we investigated the spatial distribution of melt ponds on an example floe at different
stages. Figure 6a–f present the simulation results of CNTL, TOPO-H, LVL-H, TOPO, and
LVL, respectively. We found that, compared with TOPO and LVL, the spatial distribution of
melt ponds in CNTL, TOPO-H, and LVL-H is more consistent with observation. The TOPO



Remote Sens. 2024, 16, 3748 11 of 17

and LVL run simulate more melt ponds at the edge of the sea ice than the observations. This
can be explained by the lack of macro-flaw outflows in the TOPO and LVL runs. Meltwater
accumulated at the edge of the ice floe tends to flow into the ocean rather than gathering
into large melt ponds. The spatial correlation between the melt pond distribution of LVL-H
and observations is 32.8% higher compared to TOPO-H. This suggests that the melt pond
distribution in LVL-H aligns more closely with observations, exhibiting a more uniform
distribution across level ice regions. In contrast, the TOPO-H scheme tends to concentrate
on melt ponds in areas of lower elevation.
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Figure 6. Comparison of observed and simulated MPF evolution. The dates in each column from left
to right are 21 June, 30 June, 7 July, 27 July, and 21 July, respectively. (a) Melt ponds observed from
Sentinel-2. (b) Simulated melt pond depth (m) of the CNTL run. (c) Simulated melt pond depth (m)
of the TOPO-H run. (d) Simulated melt pond depth (m) of the LVL-H run. (e) Simulated melt pond
depth (m) of the TOPO run. (f) Simulated melt pond depth (m) of the LVL run.

Figure 7 illustrates statistical analyses on the simulated melt pond depth of the three
schemes. Similar to the spatial distribution of melt ponds, the depth distribution of the
CNTL and LVL-H runs is more consistent, exhibiting differences compared to TOPO-H.
On 30 June, when the melt pond coverage is at its maximum, the probability density of
melt pond depths in CNTL and LVL-H shows a single-peaked distribution, with peaks
of less than 0.1 m. In contrast, TOPO-H exhibits a bimodal distribution with more ponds
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of greater depth. On 7 July, the melt pond depth of CNTL and LVL-H was distributed in
the shallow and medium ranges, with the maximum depth being less than 0.15 m. The
TOPO-H is single-peak-distributed, with deeper melt ponds being concentrated at around
0.20 m. The simulated results are generally consistent with the MOSAiC observations [35],
with the melt pond depths ranging between 0 and 20 cm.
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4.3. Meltwater Budget

To quantitatively investigate the variation in meltwater outflow pathways at different
stages and their effects on melt pond evolution, we conducted GRID and RADIAL runs.
The GRID run corresponds to a floe with a grid-like distribution of ice ridges and higher
ice surface roughness (Figure 8a), whereas the RADIAL run corresponds to a floe with ice
ridges extending radially from the center to the edges, exhibiting a radial distribution and
46% lower surface roughness than that of the GRID run (Figure 8b).

Figure 9 illustrates the variations in total meltwater production and the outflow of
meltwater through different pathways during the melting season. The black lines represent
the daily amount of generated meltwater, including precipitation. Blue indicates the
amount of meltwater outflow to the ocean through vertical drainage and red represents
the amount of meltwater flowing to the ocean through macro-flaws. The amount of
meltwater generation and loss determines the amount of meltwater stored in melt ponds,
thus affecting the surface melt pond coverage of sea ice. The meltwater amount rapidly
increases in the early melting stages, then slowly increases and remains stable during the
melting season. Before reaching the maximum MPF on 30 June, meltwater generation
experiences a rapid increase during this period; additionally, the vertical drainage rate
of sea ice is negligible, with the majority of meltwater loss occurring through macro-
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flaws. This explains the significant improvement in simulation accuracy after adding
macro-flaw meltwater outflows in TOPO-H and LVL-H. After reaching the maximum MPF,
vertical drainage increases and horizontal macro losses decrease. Therefore, the simulation
accuracy of TOPO-H and LVL-H at this stage is not significantly improved compared to
TOPO and LVL.
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The influence of ice topography on melt pond evolution has been well established,
with studies showing that level sea ice forms a larger melt pond coverage than deformed
sea ice during the melting season [36–38]. This is mainly based on studies of continuous ice
covers. However, this study suggests that exceptions may occur in the case of fragmented
ice. In the early stages of the melting season, the RADIAL experiment showed more
meltwater draining from the ice edge into the ocean. This was due to the flatter topography
and a larger horizontal area connected to the ocean, resulting in a lower maximum melt
pond fraction (MPF). In the GRID experiment, a more dispersed network of small melt
ponds formed, disconnected from the ice edge, due to the grid-like distribution of ice ridges,
which prevented meltwater from flowing into the ocean. As a result, horizontal drainage in
the GRID experiment was 12% less than in the RADIAL experiment. Despite the higher
surface roughness of the sea ice in the GRID run, its maximum MPF was 38% higher than
that in the RADIAL run.

This effect of ice morphology on the coverage area of melt ponds is more significant
in the marginal ice zone. Geometrically, this is because the length of the total sea ice edge
increases with increasing ice fragmentation. We used the Monte Carlo method to simulate
the process of random fragmentation of a unit area of sea ice into smaller fragments and
statistically analyzed the change in the total length of edges with an increasing number of
fragments, as shown in Figure 10. This indicates a significant increase in the macro-flaws in
ice floes as the degree of ice fragmentation increases. In the early stages of melting, when
meltwater is generated on ice floes with low vertical permeability, meltwater flows out to
the ocean through the sea ice edge, resulting in a low maximum MPF.
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A limitation of running such a short simulation is the non-representation of multi-year
ice. Since we used observational topography data to describe the deformation of multi-year
ice, it is sufficient to set the initial sea ice condition instead of a restart from a spin-up.

5. Conclusions

The sea ice model simulations exhibited inaccuracies in simulating melt ponds, and
there were significant differences in the simulation results among different parameterization
schemes. The differences in the maximum MPF between simulations using different
parameterization schemes exceeded 50%. The topo and lvl parameterizations simplified
the control of the ice surface terrain on pond formation and the paths of meltwater loss.
The topography scheme assumes that meltwater starts accumulating from the global
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minima, leading to an excessive concentration of meltwater ponds in low-elevation areas.
In contrast, lvl improves by evenly distributing meltwater across all flat ice areas, which is
more consistent with observations. However, it lacks the parameterization of meltwater
loss pathways through macroscopic defects. We propose a new scheme for improvement,
explicitly parameterizing the horizontal transport of meltwater controlled by terrain and
gravity and the resulting loss through macroscopic defects using the G-D method.

We conducted simulation experiments to test the accuracy of different parameteri-
zation schemes and investigate the reasons for simulation errors. The most informative
diagnostic of the simulations is the maximum MPF, as it affects the sea ice mass balance
through the albedo-feedback mechanism [39,40]. We found that the CNTL run using the
new melt pond scheme exhibited the most consistent maximum MPF with observations,
while the TOPO and LVL parameterization schemes overestimated the maximum MPF.
We referred to the period before the appearance of the maximum MPF as the early melt-
ing period, characterized by minimal vertical permeability of sea ice. We compared the
spatial distribution of melt ponds simulated by different runs during this period with
observational results and found that the CNTL run was also most consistent with obser-
vations. In contrast, errors in the LVL run are mainly caused by the increased MPF at the
edges of the sea ice, leading to an overestimation of the MPF. This is due to the lack of
parameterization of meltwater loss at the ice edge. Similar errors were observed in the
TOPO run, with differences from observations being more pronounced in other areas. The
study by Webster et al. on the spatiotemporal evolution of melt ponds during the MOSAiC
expedition showed that, compared to the observations, both the Community Earth System
Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS)
overestimated the summer melt pond coverage, which is consistent with the conclusions of
this study [12]. We further conducted TOPO-H and LVL-H runs, incorporating macro-flaw
outflows into the TOPO and LVL schemes. The results showed significant improvements,
with the simulation results of LVL-H being consistent with observations and the results of
CNTL. This suggests that LVL is more reasonable than TOPO and that its errors are mainly
caused by incomplete parameterization of meltwater outflow processes. The inclusion
of the parameterization of macro-flaw outflows enhanced the simulation results of the
MPF, particularly in the early stages of melt pond evolution when the coverage expands
gradually until reaching its maximum value, with less impact on the subsequent stages of
coverage stability and decline. This indicates that meltwater loss through macro-flaws may
play a dominant role in the early stages of pond development, with its influence varying at
different stages of pond evolution.

Based on the G-D method, we simulated the transport of meltwater on realistic sea
ice topography. The simulation results showed the dominant role of macro-flaws in the
initial stage of melt pond development, which determines an important parameter of sea
ice change, the maximum MPF. In contrast to the high-resolution simulations initialized
by realistic topography in this study, the ice-thickness distribution function is used to
represent topography in CICE. At their intended resolutions, the lvl and topo schemes
offer reasonable approximations of melt pond behavior over larger areas, assuming a
relatively simple topography (lvl) or coarse topographic variations (topo). However, a
high-resolution-based parameterization would likely capture more nuanced interactions
between the ice topography and meltwater flow, leading to more accurate simulations
in both pond coverage and drainage behavior. When scaled to lower resolutions, the
new parameterization would likely outperform the lvl and topo schemes by offering a
more physically grounded representation of melt pond evolution, especially in regions
with complex ice topography or significant ice fragmentation. We suggest parameterizing
macro-flaw outflows using parameters such as the ice size distribution function and lead
fraction. The high-resolution model can be used to study the relationship between these
parameters and meltwater outflow. Moreover, compared to the finite element method
(FEM) and finite volume method (FVM) traditionally used to simulate fluid dynamics, the
G-D method is simpler and easier to introduce into existing sea ice models.
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