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Abstract: Sustainable forest management faces challenges from various biotic and abiotic stresses.
The Asian longhorned beetle (ALB) and drought stress both induce water shortages in poplar trees,
but require different management strategies. In northwestern China, ALB and drought stress caused
massive mortality in poplar shelterbelts, which seriously affected the ecological functions of poplars.
Developing a large-scale detection method for discriminating them is crucial for applying targeted
management. This study integrated UAV-hyperspectral and LiDAR data to distinguish between ALB
and drought stress in poplars of China’s Three-North Shelterbelt. These data were analyzed using
a Partial Least Squares-Support Vector Machine (PLS-SVM). The results showed that the LiDAR
metric (elev_sqrt_mean_sq) was key in detecting drought, while the hyperspectral band (R970) was
key in ALB detection, underscoring the necessity of integrating both sensors. Detection of ALB
in poplars improved when the poplars were well watered. The classification accuracy was 94.85%
for distinguishing well-watered from water-deficient trees, and 80.81% for detecting ALB damage.
Overall classification accuracy was 78.79% when classifying four stress types: healthy, only ALB
affected, only drought affected, and combined stress of ALB and drought. The results demonstrate
the effectiveness of UAV-hyperspectral and LiDAR data in distinguishing ALB and drought stress in
poplar forests, which contribute to apply targeted treatments based on the specific stress in poplars
in northwest China.

Keywords: hyperspectral image; LiDAR; Asian longhorned beetle; drought; poplar

1. Introduction

The Asian longhorned beetle (Anoplophora glabripennis Motschulsky [Coleoptera: Cer-
ambycidae], ALB) is a wood-boring pest that poses a significant biotic threat to broadleaved
forests worldwide [1]. Native to Eastern China and the Korean Peninsula, it is recognized
as one of the 100 worst invasive alien species in the world by the International Union for
Conservation of Nature (IUCN). The ALB was first intercepted in North America in 1992
and rapidly caused significant economic losses [2–4]. In Europe, the ALB was initially
found in 2001 in Austria and has since been detected over almost all of Europe [5]. In the
1990s, the ALB was introduced to the Hexi Corridor region of northwestern China, leading
to significant mortality in poplar shelterbelts [6]. The region’s sparse precipitation and
severe drought further weakened the trees, exacerbating the damage caused by the ALB.
ALB adults were preferentially attracted to drought-stressed A. negundo trees [7]. Prompt
monitoring of drought conditions is crucial for preventing ALB infestations. Although
poplars under drought and ALB stress exhibit similar symptoms of water shortage, their
causes and management differ. Drought is due to insufficient water, which will recover
when irrigation is sufficient, but ALB damage is irrecoverable. As a borer pest, the ALB
is mainly harmed by larvae tunneling in the cambial region and wood [8,9], disrupting
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the tree’s vascular tissues, hindering the upward transport of nutrients and water, and
leading to tree death [10]. Timely detection and discrimination are essential for applying
appropriate treatments based on the specific type of stress.

With continuous improvement in image resolution and data analytical methods, re-
mote sensing has been widely applied to modern forestry management [11–13]. Hyperspec-
tral imagery (HSI) contains spectral information in narrow bands, which provides insights
into leaf pigmentation and physiological conditions, facilitating early detection of plant
stress [14–16]. Light Detection and Ranging (LiDAR) data offer precise three-dimensional
information, which enables gathering detailed information on the structural change of tree
canopies under stress. Nonetheless, using either HSI or LiDAR data alone has limitations
in assessment. For example, HSI cannot accurately discern the canopy structure and is
highly susceptible to canopy shading, leading to reduced spectral information and altered
shapes in the hyperspectral data [17]. LiDAR data can offer precise three-dimensional
information to offset these limitations in HSI data [18]. A Support Vector Machine (SVM)
is a widely used machine-learning algorithm known for its ability to handle complex
decision boundaries and its effectiveness with small sample sizes while providing robust
generalization performance [19]. To address the high dimensionality, collinearity, and risk
of overfitting often associated with large datasets, Lv and Dai (2006) introduced the Partial
Least Squares-Support Vector Machine (PLS-SVM) method. PLS-SVM uses PLS to extract
key features from the data, reducing dimensionality and mitigating overfitting, and then
uses these features as inputs for the SVM calibration model [20]. This approach not only
enhances prediction precision but also significantly reduces modeling time compared to
using SVM on the full dataset. In our study, we employed PLS-SVM to effectively reduce
the dimensionality of both hyperspectral and LiDAR data, thereby preventing overfitting
and enabling more efficient and accurate classification.

Some studies have focused on using hyperspectral images to discriminate the biotic
and abiotic stress on plants [21–23]. Data dimensionality reduction and classification based
on machine-learning methods were widely used [24]. Susič et al. (2018) used hyperspectral
data and the PLS-SVM method to discriminate between nematode infestation and drought
stress in tomato, which achieved up to 100% accuracy in differentiating between well-
watered and water-deficient plants, and between 90 and 100% when identifying nematode-
infested plants [21]. Ramamoorthy et al. (2022) used Principal component analysis and
maximum likelihood classifiers to discriminate drought and root–knot nematode infestation
in cotton and the results were promising [22]. Praprotnik et al. (2022) combined sparse
partial least squares discriminant analysis and support vector machine classification of
hyperspectral data to detect wireworm infestation and drought stress in Maize and obtained
accuracies of 67–84.7% [23]. These experiments explored the discrimination between biotic
and abiotic stresses but paid less attention to combined stress. Additionally, these studies
relied solely on hyperspectral data and did not incorporate LiDAR to investigate 3D
structural differences.

Generally, the Gobi Desert region of northwest China is in extreme drought, poplars
require irrigation and are highly susceptible to ALB stress. Trees damaged by ALBs
showed similar symptoms of water shortage as drought stress but significant differences in
management. Timely detection of them is essential for applying appropriate treatments
based on the specific type of stress. The goals of this study were to: (1) evaluate the capacity
of UAV-hyperspectral and LiDAR data to detect and discriminate ALB damage, drought
stress and combined stress; (2) explore how hyperspectral and LiDAR variables response
to stresses and search for the most sensitive indices for detection.

2. Materials and Methods
2.1. Study Area

The research plots are located in Jiuquan City, Gansu Province, northwest China,
which belong to the Gobi landform. The climate type is a continental arid climate. Average
annual precipitation is 80 mm, but average annual evaporation reaches 2000 mm. In this
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research, two forest farms with different water conditions (well irrigated and non-irrigated)
and similarly aged trees were selected (Figure 1).
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Plot 1 (Figure 1a): Jiuquan Xincheng national Forest Farm (39◦57′N, 98◦23′E). Farmland
windbreak forest, well irrigated, with surface water, including stands with health and ALB
damage and a tree age of 40–60 years. The studied tree species were Populus gansuensis,
Populus alba var. pyramidalis, and Salix matsudana.

Plot 2 (Figure 1b): Jiuquan Sanhe national Forest Farm (39◦23′N, 99◦04′E). Extremely
poor irrigation conditions, no surface water, and there has been no normal irrigation for
two years. The stand contains health and ALB damage, and the tree ages are 40–60 years.
The studied tree species were the same as Plot 1.

Both farms contain poplars with health and ALB-damage. Both farms are located in
a flat area at an elevation of 1480 m. Soil conditions are the same: brown desert soil with
low organic matter content and poor nitrogen. Both plots are total covered with Populus
gansuensis. We established two 50 × 50 m plots in each forest farms, for a total of four plots.
There was a total of four types of sample trees: healthy (H), damaged only by ALBs (A),
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damaged only by drought (D), and combined damaged by both ALBs and drought (AD)
(Figure 2).
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2.2. Determination of Soil Moisture Conditions

A FieldScout TDR-300 probe with 15 cm long TDR rods (Spectrum Technologies, Inc.,
Aurora, CO, USA) was used to measure the soil moisture content at each sample plot. Given
the strong solar radiation over the Gobi Desert, we measured soil water content 50 cm
below the surface to determine the drought status of each sample plot. The volumetric
water content (VWC) was used to determine the degree of soil dryness, an indicator of
drought [25]. Before measurement, we calibrated the meter to ensure the accuracy. We then
randomly select ten points in each sample plot, taking the average value as the soil water
content. Table 1 shows VWC of two forest farms.

Table 1. Volumetric water content (VWC) of two forest farms.

Sanhe Forest Farm (Water Deficient) Xincheng Forest Farm (Well Watered)
Mean Stdev Max Min Mean Stdev Max Min

VWC (%) 17.82 3.73 25.2 11.8 61.1 7.44 67.7 49.2

t test p < 0.001.

2.3. Determination of ALB Damage and Measurement of Leaf Area Index

The Asian longhorned beetle is a hidden trunk borer. We determined whether the
poplar is damaged by ALB by looking for funnel-shaped oviposition pit, defecation holes,
and circular exit holes (Figure 3) [10]. If these symptoms appear on a poplar tree, we
consider it to be damaged by ALBs. We also searched for crown thinning, which is easily
identified and manifests itself as sparse leaves and dry branches. Leaf area index (LAI)
represents leaf density and reflects biophysical abilities including photosynthesis and
respiration [26]. We measured LAI to assess crown thinning by averaging four individual
measurements taken in the cardinal directions of sample trees using the SmartLAI app [27].
A total of 325 poplars were surveyed: 66 healthy (H); 75 with only ALB stress (A); 80 with
only drought stress (D); and 104 with both ALB and drought stress (AD). Table 2 shows the
LAI of poplars under four types of stressors.
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Table 2. Leaf area index of poplars stands under four types of stressors.

Stress Types Leaf Area Index

Health 2.463 ± 0.399
ALB 2.052 ± 0.318

Drought 2.032 ± 0.280
ALB and drought 1.842 ± 0.221

2.4. UAV-Hyperspectral and LiDAR Data Acquisition and Pre-Processing

UAV-hyperspectral imagery (HSI) and LiDAR data were simultaneously collected us-
ing a DJI Matrice 600 UAV system (DJI, Shenzhen, China) during the same flight campaign
(Figure 4). The mounting system enables the hyperspectral and LiDAR equipment to jointly
use the UAV’s Inertial Measurement Unit (IMU) and Global Positioning System (GPS),
facilitating high-precision ortho-correction and data fusion. The UAV was also equipped
with an RTK system for centimeter-precise positioning. Data were acquired for plot 1 (well
watered) on 2 August 2021 from 12:20 to 12:50 PM and for plot 2 (water deficient) on 3
August 2021 from 11:50 AM to12:30 PM. Flights were conducted under a cloudless sky, at
an altitude of 100 m, and a speed of 3 m/s, with imagery overlapping by 60% at the front
and sides.

LiDAR data were collected with the LR1601-IRIS UAV-mounted system (IRIS Inc.,
Beijing, China). Its pulse repetition frequency was 5–20 Hz with two returns per pulse. Point
density ranged from 100 to 900 points per m2. The LiDAR data were preprocessed through
strip alignment, noise point removal, and ground point classification using the LiDAR360
software (version 3.0, GreenValley International, Beijing, China). Digital Elevation Model
(DEM) and Digital Surface Model (DSM) were generated with a spatial resolution of 0.1 m.

The HI sensor has a field of view of 10◦ and a focal length of 17 mm. The hyperspectral
images encompassed 150 spectral bands, ranging from 400 to 1000 nm. Hyperspectral im-
ages were generated at a spatial resolution of 0.1 m. Reflectance correction and radiometric
calibration were performed using a standard white board (Figure 4). Hyperspectral images
were matched to LiDAR data with twelve ground control points (GCPs) with an overall
root mean square errors (RMSEs) < 1 pixel.
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2.5. Extraction of Hyperspectral and LiDAR Features

A Canopy Height Model (CHM) segmentation algorithm in the LiDAR360 software
(GreenValley Inc., Shanghai, China) was used to segment single trees [28]. The CHM,
produced from DSM and DEM, also has a resolution of 0.1 m. Hyperspectral and LiDAR
features for sample trees were extracted based on the CHM segmentation results. Sample
trees incorrectly segmented by the CHM algorithm were manually delineated for extraction.
Hyperspectral reflectance was computed only for sunlit pixels of each tree crowns. The
hyperspectral reflectance of each canopy was smoothed using the second-order polyno-
mial of the Savitzky–Golay filter. Table 3 summarizes the 23 spectral variables including
twelve vegetation indices, five absorption bands, two red-edge parameters, and four ab-
sorption features. At the same time, 32 variables were extracted from the LiDAR including
14 variables related to the distribution of point-cloud heights, 13 metrics about the intensity
of point-cloud, and five canopy densities based on all laser returns (Table 4) [29–31]. In
total, 55 variables, comprising both hyperspectral and LiDAR features, were utilized for
variable screening and developing the PLS-SVM classification model.

Table 3. Selection of candidate hyperspectral variables.

Variables Type Variable Formula and Description Reference

Absorption
bands

Spectral reflectance at
λ nm (Rλ)

λ = 430, 460, 640,
660, 970 [32]

Red edge
parameters

Red-edge position
linear interpolation
(REP_LiA)

700 + 40 × ((R670
+R780)/2 − R700)/
(R740 − R700)

[33]

dRE (AMP) Max 1st derivative
in red edge region [34]
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Table 3. Cont.

Variables Type Variable Formula and Description Reference

Reflection and
absorption
features

Green peak
reflectance (Rg) Rmax (510, 560)

[35]Red valley reflectance
(Rr) Rmax (640, 680)

Green peak height
(GH)

1 − [R500 + 0.35×
(R670 − R500)]/R560

Red valley depth (RD) 1 − R670/[R560+
0.55 × (R760 − R560)]

Vegetation
indexes (VIs)

Normalized difference
vegetation index (NDVI)

(R800 − R670)/(R800
+R670) [36]

Green NDVI (GNDVI) (R800 − R550)/(R800
+R550) [37]

Photochemical
reflectance index
(PRI)

(R570 − R531)/(R531
+R570) [38]

Plant senescing
reflectance index
(PSRI)

(R680 − R500)/R750 [39]

Simple ratio index
(SR) R800/R680 [40]

Vogelmann red edge
index (VOG)

(R734 − R747)/(R715
+R726) [41]

Carter index (CI) R760/R695 [42]
Anthocyanin
Reflectance Index (ARI) 1/R550 − 1/R700 [43]

Carotenoids Index (CARI) (R720 − R521)/R521 [44]
Red-edge Chlorophyll
Index (CIred-edge) (R750 + R705)/R705 [45]

Red Edge Normalized
Difference Vegetation
Index (RENDVI)

(R750 − R705)/
(R750 + R705) [46]

Greenness Index (GI) R554/R677 [47]

Table 4. Selection of candidate LiDAR metrics.

Variable Type Formula or
Variable Name Definition

Distribution
of point-cloud heights

Height_IQ/TH Interquartile range of height percentile of crown
return points (normalized by tree height)

Height_P10/TH 10th height percentile of crown return points
(normalized by tree height)

Height_P25/TH 25th height percentile of crown return points
(normalized by tree height)

Height_P50/TH 50th height percentile of crown return points
(normalized by tree height)

Height_P75/TH 75th height percentile of crown return points
(normalized by tree height)

Height_P90/TH 90th height percentile of crown return points
(normalized by tree height)

Height_P99/TH 99th height percentile of crown return points
(normalized by tree height)

elev_aad Average absolute deviation of elevations of
all returns

elev_IQ Interquartile range of elevations of all returns
elev_kurtosis kurtosis of elevations of all returns
elev_skewness Skewness of elevations of all returns
elev_sqrt_mean_sq Quadratic mean of elevations of all returns
elev_stddev Standard deviation of elevations of all returns
elev_variance Variance of elevations of all returns
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Table 4. Cont.

Variable Type Formula or
Variable Name Definition

Density_metrics of all
returns

density_metrics [1] Densities of all returns in 10th interval
density_metrics [3] Densities of all returns in 30th interval
density_metrics [5] Densities of all returns in 50th interval
density_metrics [7] Densities of all returns in 70th interval
density_metrics [9] Densities of all returns in 90th interval

Intensity of point-cloud

int_percentile_25th 25th percentile of crown return intensity
int_percentile_75th 75th percentile of crown return intensity
int_percentile_90th 90th percentile of crown return intensity
int_percentile_99th 99th percentile of crown return intensity

int_aad Average absolute deviation of intensities of
all returns

int_cv Coefficient of variation of crown return intensity
int_kurtosis Kurtosis of intensities of all returns
int_max Maximum intensity of all returns
int_mean Mean intensity of all returns
int_skewness Skewness of intensities of all returns
int_variance Variance of intensities of all returns
int_stddev Standard deviation of intensities of all returns

2.6. PLS-SVM Model and Classification

Before modelling, we used partial least squares—variable importance in projection
(VIP) for data mining and to reduce collinearity impact in variables, thus to simplify the
model structure and improve classification accuracy [48]. The VIP values were calculated by
each predictor’s importance in reflecting the weighted sum of squares of the PLS weights,
and its score estimates the importance of each variable in the projection used in the PLS
model [49]. We selected the 10 variables with highest VIP values for each model to avoid
overfitting in classification [50]. The capacity factor (C) and gamma values for the PLS-SVM
classification were determined by performing a random search of several combinations of
C and gamma [51]. The best combination of parameters was used to establish the PLS-SVM
model. All variables were divided into a train-set and test-set in the ratio of 7 to 3. A 10-fold
cross-validation method was used to assess model accuracy. The classification accuracy was
evaluated using the producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA),
and the Kappa coefficient (K) derived from confusion matrices. These indicators provide a
comprehensive assessment of the classification accuracy of the variables, with PA indicating
the accuracy of each class, UA reflecting the reliability of the classified data, OA showing
the overall correctness, and the Kappa coefficient accounting for chance agreement.

The hyperspectral and LiDAR parameters of 325 poplar trees were used for classifica-
tions according to the actual management needs (Figure 5).

• Model 1: Is the poplar under stress?
• Model 2: Is the poplar under drought?
• Model 3: Is the poplar under ALB stress?
• Model 4: Is the poplar healthy, under ALB stress, drought stress, or combined stress of

drought and ALB?

The VIP analyses, PLS-SVM evaluation, and classification were performed using R
software (version 4.1.2).
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3. Results
3.1. Signatures of ALB and Drought Stress

The mean reflectance curves of poplars under different stresses within 400–1000 nm are
shown in Figure 6. For different models, the differences of reflectance were most obvious in the
green peak (500–600 nm) and NIR (750–1000 nm). Figure 7 illustrates ten typical hyperspectral
indices and LiDAR metrics sensitive to stresses. Significant differences were observed in poplars
under water-deficient conditions, particularly in elev_sqrt_mean_sq, which was notably lower
in water-deficient poplars compared to those without water deficiency. Similarly, significant
differences were found in poplars affected by ALB damage, especially in GH. The GH value in
ALB-damaged poplars was significantly lower than in poplars without ALB damage.

Figure 6. Mean spectral reflectance of poplars grouped according to: (a) Healthy/Unhealthy;
(b) Well watered/Water deficient; (c) ALB damaged/Non-ALB; (d) Healthy/ALB infected/Drought
stress/Combined stress. Note: The shaded region indicates the standard deviation of the mean value.
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3.2. Classification Accuracy

The PLS-SVM classification results indicated it was possible to distinguish between
biotic and abiotic stress on poplars, though detection accuracy varied significantly across
different stress types (Figure 8). The accuracy for identifying healthy poplars was 94.79%
(Model 1). The classification accuracy for drought-affected poplars was 94.85% (Model 2),
while the accuracy for identifying ALB-damaged poplars was only 80.81% (Model 3). The
overall classification accuracy for the four different stress types was 78.79% (Model 4).

Figure 8. Confusion matrices for the five datasets based on PLS-SVM classification. (a) H: Healthy,
UH: Unhealthy; (b) WW: Well watered, WD: Water deficiency (Drought); (c) A: ALB damaged, NA:
Non-ALB; (d) H: Healthy, A: ALB stress, D: Drought stress, AD: ALB and Drought stress.
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When classifying tree stress (or health—see below, model 1), the five most important
parameters (VOG, REP, CIred-edge, RENDVI, CI) were related to the red edge in hyper-
spectral parameters and, thus, to leaf pigment. Compared with unhealthy poplar, healthy
poplar showed lower value in VOG, and higher values in REP, CI red-edge, REND VI,
and CI.

When classifying data based on whether trees were under drought stress (model 2),
the five most obvious differences were elev_sqrt_mean_sq, REP, GP, VOG, and elev_stddev
(Table 5). Among them, elev_sqrt_mean_SQ and elev_Stddev are related to the distribution
of point cloud heights in LiDAR outputs. Compared with well-watered poplars, poplars
under water deficiency showed lower values in elev_sqrt_mean_sq, REP, and elev_Stddev,
and higher values in GP and VOG.

Table 5. Variables used in each PLS-SVM model. (Ranked from high to low according to VIP value,
only the top ten most important classification variables are shown).

Model 1
(Healthy/Unhealthy)

Model 2 (Well-Watered/
Water-Deficient)

Model 3 (ALB-Damaged/
Non-ALB)

Model 4 (Health/Only
ALB-Infected/Only

Water-Deficient/Combined Damages)

VOG elev_sqrt_mean_sq R970 elev_sqrt_mean_sq
REP REP Height_P99/TH VOG

CI red-edge GP int_cv R970
RENDVI VOG VOG GH

CI elev_stddev dRE (AMP) dRE (AMP)
dRE (AMP) R430 GH R430

SR elev_variance Height_P90/TH REP
GNDVI CI red-edge PSRI int_cv

R970 RENDVI R430 GP
elev_stddev GH GP CI red-edge

When classifying whether the trees were under biotic ALB stress (model 3), the most
obvious differences appeared in R970, Height_99th/Tree Height, int_cv, VOG, and dRE
(AMP) (Table 5). The R970 is a hyperspectral near-infrared band and related to plant water
and chlorophyll content [32]. The variable Height_99th/Tree Height was the 99th percentile
height of crown return points (normalized by tree height) from LiDAR. This was closely
related to the dry treetop characteristics of poplar that ALB damaged. The int_cv is a
radar intensity variable, indicating the coefficient of variation of crown return intensity.
Compared with non-ALB poplars, poplars under ALB-damage showed lower values in
R970, Height_99th/Tree Height, int_cv, and higher values in VOG and dRE (AMP).

When classifying whether trees were healthy, only under ALB stress, only under
drought stress, or under the combined stress of drought and ALB (model 4), the most
obvious differences lie in elev_sqrt_mean_sq, VOG, R970, GH, and dRE (AMP). Detection
of ALBs in poplars improved when the stand was well watered. The Producer’s accuracy of
well-watered poplars under ALB damage was 86.96%. However, the Producer’s accuracy
of poplars with insufficient water under ALB damage was only 79.41% (Figure 8d).

4. Discussion
4.1. Optimal Variables for Classification

The research evaluated 23 hyperspectral vegetation indices and 32 LiDAR metrics
using PLS-VIP to assess their responsiveness to drought and ALB stress. The LiDAR metric
(elev_sqrt_mean_sq) proved crucial for drought detection, whereas the hyperspectral band
(R970) was key in identifying ALB, underscoring the need to integrate both sensors. The
elev_sqrt_mean_sq represents the quadratic mean of elevations of all returns in LiDAR data,
typically used to indicate the surface complexity of forest or vegetative cover. A higher
quadratic mean may indicate greater canopy height and density, and a more complex
vegetation structure [52–54]. In poplars subjected to drought stress, leaf sparsity and
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a lower leaf area index compared to healthy poplars were observed, leading to a low
elev_sqrt_mean_sq values (Table 2). R970 is in the near-infrared region, which is sensitive
to vegetation water and chlorophyll content, as well as overall plant health. Healthy
vegetation exhibits higher reflectance at R970, while stressed vegetation, due to reduced
water and chlorophyll content, shows lower reflectance [55,56]. ALB damage impedes the
transport of water and nutrients in trees, leading to insufficient water in the leaves and
degradation of chlorophyll [57,58].

Previous studies on monitoring forest stress using UAV-hyperspectral and LiDAR
mainly focuses on detecting pests and diseases in coniferous trees, in which LiDAR was just
a tool for single tree segmentation and providing structure information for hyperspectral
image. LiDAR alone cannot effectively detect forest pest for it cannot reveal the biochemical
condition of trees [17,18]. Unlike previous studies, in this experiment, LiDAR metrics
effectively detect forest pest. The primary reason for this may be that as a broadleaf tree,
the three-dimensional structure of poplar canopies is highly sensitive and responsive
to stress [59]. Poplars under drought and ALB stress displayed dried-up leaves when
compared with healthy poplars. But the location of dried-up leaves could only be detected
using vertical canopy features of LiDAR data, which confirms the utility of LiDAR’s three-
dimensional structural analysis in monitoring ALB and drought stress in poplar trees.

4.2. Discrimination Performance for Biotic and Abiotic Stress

By combining UAV-hyperspectral and LiDAR data with PLS-SVM, we successfully
detected and differentiated biotic and abiotic stresses in poplars. The accuracy reached
94.85% accuracy in detecting drought and 80.81% accuracy for ALB damage. The overall
classification accuracy stood at 78.79% for four poplar categories: healthy, ALB-affected
only, drought-affected only, and those with combined drought and ALB damage. Poplar
trees under drought were detected more accurately (OA: 94.85%, K: 0.90). However, the
accuracy for detecting ALB-induced damage in poplars was notably lower (OA: 80.81%, K:
0.62). This indicates that the phenotypic changes caused by ALB are more subtle compared
to those induced by drought, making them more difficult to detect. ALB damage detection
was more reliable in well-irrigated conditions (PA: 86.96%) compared to water-deficient
conditions (PA: 79.41%) (Figure 8d). This indicated that drought-induced effects can mask
the specific spectral and structural changes indicative of ALB damage. Global warming is
predicted to lead to more severe droughts in forest ecosystems, resulting in more severe
biotic stress. Many tree-boring pests act as secondary invaders. For example, Ips typographus
Linnaeus preferentially attacks weak trees [60,61]. ALB adults showed a preference for
drought-stressed A. negundo trees [7]. Drought-induced weakening is likely to worsen the
impact of tree-boring beetles. Prompt monitoring of drought is crucial for ALB prevention.
Remote sensing applications in forestry offer solutions to these challenges in modern
forest management.

This study was conducted in August but lacked a time-series analysis to determine
a time-stable indicators for detecting poplars under pest and drought stress across their
phenological stages, highlighting a key area for future research. The impact of phenology
on broadleaf trees is unavoidable. Broadleaf tree leaves naturally wither at the end of the
growing season, even in the absence of stress. The stresses may cause the trees to wither
earlier than phenology, which needs further investigation. Additionally, the life cycle of
the pest may also affect the detection of borer pests. ALB undergoes various stages in its
life cycle, such as prepupae, pupae, adults, eggs, and larvae, with the larval stage was
considered as the main damage period [62]. The best option is to find a time-stable indicator
for accurately detecting ALB before the adults lay new eggs during the growing seasons,
which needs a time-series study within the growing seasons.

4.3. Selecting Variables Based on ALB Damage Characteristics

Distinguishing between various stresses necessitates stress-specific parameters
(Table 5). Unique symptoms exhibited by trees under specific stress should be consid-
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ered [63,64]. Although ALB-induced damage resembles drought-related tree death, they
manifest differently in trees. Drought, as a systemic stressor, induces widespread leaf senes-
cence throughout trees [65,66], whereas ALB damage initiates senescence at the canopy’s
top (Figure 9). This treetop dieback is determined by the biological behavior of the ALB.
The main damage period occurs during the larval stage, wherein the larvae consume
the phloem, disrupting the upward transport of water and nutrients in the trees [2,9,67].
Additionally, female ALBs prefer laying eggs in the upper trunk regions, concentrating the
larvae in the tree’s upper parts [68]. In this research, Height_99th/Tree Height from the
LiDAR metric was correlates strongly correlates with ALB-damaged poplars for it ranks as
the second most significant variable for ALB detection (Table 5). It represents the ratio of
the 99th percentile height of all returns to the average tree height and was commonly used
to monitor canopy loss and reductions in aboveground biomass in stressed forests [69,70].
Selecting variables based on ALB damage characteristics can notably decrease the workload
involved in variable selection. However, this approach may have two limitations: first, it
requires a higher point cloud density of LiDAR; second, the differences may not be evident
at early stage of damage. Early stress detection necessitates further exploration of spectral
data within the narrow bands of the hyperspectral spectrum [17,71,72].
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5. Conclusions

Our research demonstrated the combination of a UAV-hyperspectral image and LiDAR
could detect and discriminate ALB and drought stress in poplar trees. The PLS-SVM
classification achieved 94.85% accuracy in distinguishing between well-watered and water-
deficient trees, and 80.81% accuracy in detecting ALB damage. The overall classification
accuracy stood at 78.79% for classifying four poplar categories: healthy, ALB-affected only,
drought-affected only, and those with combined drought and ALB damage. The developed
classification models provide a valuable tool for detecting and differentiating stress types,
enabling timely interventions such as irrigation or pest control in poplar forests, particularly
in the challenging conditions of the Gobi Desert.
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