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Abstract: Gridless direction of arrival (DOA) estimation methods have garnered significant attention
due to their ability to avoid grid mismatch errors, which can adversely affect the performance of
high-resolution DOA estimation algorithms. However, most existing gridless methods are primarily
restricted to applications involving uniform linear arrays or sparse linear arrays. In this paper, we
derive the relationship between the element-domain covariance matrix and the angular-domain
covariance matrix for arbitrary array geometries by expanding the steering vector using a Fourier
series. Then, a deep neural network is designed to reconstruct the angular-domain covariance matrix
from the sample covariance matrix and the gridless DOA estimation can be obtained by Root-MUSIC.
Simulation results on arbitrary array geometries demonstrate that the proposed method outper-
forms existing methods like MUSIC, SPICE, and SBL in terms of resolution probability and DOA
estimation accuracy, especially when the angular separation between targets is small. Additionally,
the proposed method does not require any hyperparameter tuning, is robust to varying snapshot
numbers, and has a lower computational complexity. Finally, real hydrophone data from the SWellEx-
96 ocean experiment validates the effectiveness of the proposed method in practical underwater
acoustic environments.

Keywords: gridless direction of arrival (DOA) estimation; complex-valued deep neural network;
arbitrary array geometry; high resolution

1. Introduction

Direction of arrival (DOA) estimation is one of the most fundamental problems in
array signal processing, which obtains azimuthal information about targets by sampling the
signal in the spatial domain [1,2]. Conventional DOA estimation methods are mainly based
on beamforming, subspace decomposition, or sparse reconstruction. Conventional beam-
forming (CBF) is the simplest beamforming technique and has been widely used in practice
due to its very low complexity and high robustness. However, the resolution of CBF can
only be enhanced by expanding the array aperture and cannot be improved by increasing
the number of snapshots or the signal-to-noise ratio (SNR) [3]. To enhance the performance
of CBF when the array aperture is limited, superdirectivity beamforming methods, such
as Capon, have been proposed. These methods greatly enhance the resolution of small-
aperture arrays, but at the cost of increased sensitivity to errors, which affects robustness [4].
Subspace decomposition is another classical class of DOA estimation methods, of which
the MUSIC [5] and ESPRIT [6] algorithms are the most representative. The advantage of
such methods is their excellent performance when the number of snapshots is sufficient.
However, if the snapshot number is insufficient, the signal covariance matrix cannot be
accurately estimated, leading to a significant decline in algorithm performance [7].

Subsequently, sparse reconstruction DOA estimation methods have been proposed
based on signal sparsity. These methods are generally divided into three categories based
on the signal model: on-grid, off-grid, and gridless approaches [8]. On-grid methods
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discretize the continuous angular domain into a finite set of points, assuming that the actual
DOAs coincide with these discrete points [9–12]. While these methods enable the direct
application of compressed sensing techniques, they are susceptible to grid mismatch errors.
Off-grid methods, though they estimate DOAs within the continuous angular domain,
still rely on the discretized grid model [13–16]. To alleviate grid mismatch, these methods
employ strategies such as first-order Taylor approximations of the steering vector near the
grid [14] or adaptive grid adjustments [15]. However, their performance is contingent on
the accuracy of these approximations, and they often introduce non-convex optimization
problems, complicating the solution process. In contrast, gridless methods perform DOA
estimation directly in the continuous angular domain without grid discretization. These
approaches typically rely on techniques like Toeplitz covariance matrix reconstruction or
trigonometric polynomial rooting [8,17]. Initially, gridless methods were limited to uniform
linear arrays (ULAs) and sparse linear arrays (SLAs), but they have since been extended to
coprime arrays through interpolation techniques [18]. Recent developments have further
broadened their applicability to arbitrary array geometries by representing the steering
vector as a Fourier series [19–23]. Despite these advancements, gridless methods often
require semi-definite programming, which can result in high computational complexity.
Additionally, in methods that use convex optimization to solve for the spatial spectrum and
obtain DOA estimates, hyperparameter tuning presents a significant challenge. Improper
hyperparameter settings can severely degrade the performance of these algorithms [9].

In recent years, deep learning (DL) has been extensively applied to DOA estimation
tasks due to its non-linear capabilities and feature-learning potential [24]. Compared
to sparse reconstruction methods, DL-based approaches offer several advantages. First,
DOA estimation using a trained deep network bypasses the need for high-dimensional
matrix inversion and multiple iterations, leading to a significant reduction in computational
complexity. Second, the process does not require hyperparameter tuning, which helps
avoid performance degradation due to improper parameter settings. Currently, most DL
methods frame the DOA estimation problem as a multi-label classification task, where
the deep network outputs the probability of targets being present in different directions.
However, this approach is still fundamentally based on the discrete grid model [25–28].
While increasing the grid resolution can theoretically reduce grid mismatch errors, it also
increases the output dimensionality of the network, making the training process more
difficult. Although gridless DL-based DOA estimation methods have also been explored,
similar to gridless sparse reconstruction approaches, they are typically limited to ULA,
SLA [29–31], or coprime arrays [32].

In this paper, we first derive the Toeplitz structure of the angular-domain covariance
matrix for arbitrary array geometries. Then, we design and train a complex-valued deep
neural network (CDNN) to reconstruct this Toeplitz matrix from the sample covariance
matrix (SCM) and subsequently employ the Root-MUSIC method to achieve gridless DOA
estimation for arbitrary array geometries. The main contributions of this paper are as
follows: (1) We represent the steering vector as a Fourier series and derive the Toeplitz
structure of the angular-domain covariance matrix for arbitrary array geometries. Further-
more, we establish the relationship between this matrix and the element-domain covariance
matrix, providing a theoretical foundation for gridless DOA estimation using SCM in arbi-
trary array geometries. (2) We propose a novel approach that utilizes CDNN to reconstruct
the Toeplitz matrix from SCM and leverages Root-MUSIC for gridless DOA estimation.
This method avoids grid mismatch errors, eliminates the need for hyperparameter tuning,
and delivers strong performance with low computational complexity. (3) We analyze the
impact of the Toeplitz matrix’s dimensionality on DOA estimation performance.

The rest of this paper is organized as follows: Section 2 presents the DOA estimation
problem model and derives the Toeplitz structure of the angular-domain covariance matrix
from the element-domain covariance matrix. Section 3 describes the training of the CDNN
for the subarray of horizontal linear array sorting (HLAS) in the Swellex-96 experiment, to
reconstruct the Toeplitz structure of the angular-domain covariance matrix. In Section 4, the
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performance of the proposed method is assessed through numerical simulations. Section 5
demonstrates the algorithm’s effectiveness using real data obtained from sea trials. Finally,
Section 6 provides the conclusions and discussions of this paper.

2. Problem Formulation

In this section, we present the mathematical model for gridless DOA estimation.
Specifically, Section 2.1 introduces the general model for the DOA estimation problem in
a two-dimensional (2D) plane. Section 2.2 derives the Toeplitz structure of the angular-
domain covariance matrix for arbitrary array geometries in the DOA estimation problem.

2.1. Signal Model

In a 2D plane, we consider the scenario where K far-field narrowband plane waves
with DOAs θ = [θ1, θ2, · · · , θK] impinge on an array of M omnidirectional sensors. The
mutual coupling effects between sensors are not considered. It is assumed that K < M and
the number of sources K is known. The received snapshots of the array can be expressed as

yl = A(θ)xl + nl , (1)

where A(θ) = [a(θ1), a(θ2), · · · , a(θK)] ∈ CM×K is the steering matrix of the array corre-
sponding to the directions θ. xl ∈ CK and nl ∈ CM are the signal vector and noise vector at
the lth snapshot, respectively, and l = 1, 2, · · · , L is the snapshot index. For an array with
arbitrary geometry, the steering vector can be expressed as

a(θ) = [ej2π f r1 cos(θ−φ1)/c, ej2π f r2 cos(θ−φ2)/c, · · · , ej2π f rM cos(θ−φM)/c]T , (2)

where the superscript T denotes the transpose operator, f is the center frequency of the
narrowband signal, and (rm, φm) are the polar coordinates of the mth array element, with c
being the speed of waves.

The covariance matrix of the received signal in the element domain can be written as

Ry = ARxAH + Rn, (3)

where the superscript H denotes the conjugate transpose operator, and Rx and Rn are the
covariance matrices of the source signals and noise, respectively. For uncorrelated sources,
Rx = diag(α1

2, α2
2, · · · , αK

2), where αk
2 is the power of the kth source. For simplicity,

we abbreviate A(θ) as A. In practical scenarios with limited observation data, the SCM

R̂y = 1
L

L
∑

l=1
ylyl

H is often used to estimate Ry. When the noise is Gaussian, R̂y provides an

unbiased estimate of Ry.

2.2. Angular-Domain Covariance Matrix

In a 2D plane, the steering vector a(θ) exhibits periodicity with respect to θ, with a
period of 2π. Therefore, it can be expanded into a Fourier series in terms of θ, given by

[a(θ)]m =
∞

∑
n=−∞

bnmejnθ ≈
N

∑
n=−N

bnmejnθ , (4)

where [a(θ)]m represents the mth element of a(θ), n is the Fourier series index, and bnm is
the Fourier coefficient. When bNm ≈ 0, the Fourier series can be truncated at n = N, and
the resulting expression in matrix form is

a(θ) = BHf(θ), (5)
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where B = [b1, b2, · · · , bM] ∈ C(2N+1)×M is the Fourier coefficient matrix, bm =
[b−Nm, · · · , b0m, · · · , bNm]

H is the coefficient vector, and f(θ) = [e−jNθ , · · · , 1, · · · , ejNθ ]T .
Therefore, the steering matrix A can be expressed as

A = BHF, (6)

where F = [f(θ1), f(θ2), · · · , f(θK)]. In the absence of noise, substituting (6) into (3) yields

R̃y = BHFRxFHB = BHT(u)B, (7)

where T(u) = FRxFH is a Hermitian Toeplitz matrix, and the vector u ∈ C2N+1 rep-
resents the first row of the matrix T(u). According to [33], the Fourier coefficients
bnm = jn Jn(2π f rm

/
c)e−jnφm , where Jn(•) denotes the nth-order Bessel function of the

first kind. We refer to T(u) as the angular-domain covariance matrix. It is evident that T(u)
has a rank of K and is positive semi-definite. According to the Vandermonde decomposition
theorem for semi-definite Toeplitz matrices, F and Rx can be uniquely recovered from T(u),
enabling gridless DOA estimation [8,34].

It is important to note that cross-correlation between signals, as well as between
signals and noise, causes the SCM to deviate from the true element-domain covariance ma-
trix [35,36]. This cross-correlation introduces inaccuracies in the signal subspace, resulting
in degraded performance of subspace-based algorithms [36]. By recovering a rank-deficient
Toeplitz matrix T(u), the influence of signal correlation on the signal subspace can be
mitigated, thereby improving the performance of subspace algorithms. However, directly
reconstructing T(u) from R̂y is challenging. Therefore, we propose using a CDNN to
learn the mapping between R̂y and T(u), and subsequently employing the Root-MUSIC
algorithm [37], which obtains DOA estimates by utilizing the roots of a polynomial de-
rived from T(u). This approach aims to achieve gridless DOA estimation and improve
performance for arbitrary array geometries.

3. Angular-Domain Covariance Matrix Reconstruction Network

In this section, we propose a CDNN to model the mapping between the SCM R̂y and
the angular-domain covariance matrix T(u) using the subarray composed of elements #1
to #8 of the HLAS in the Swellex-96 experiment [38]. Section 3.1 introduces the CDNN,
Section 3.2 provides the array geometry and parameter settings, Section 3.3 describes the
dataset used for training the network, and Section 3.4 presents the proposed network
framework along with the training process and results.

3.1. Complex-Valued Deep Neural Network

CDNNs [39] can capture the phase information between the real and imaginary com-
ponents of complex numbers, which are often crucial in signal processing tasks. As a result,
CDNNs have been widely applied in these tasks [40–42], achieving better performance
compared to real-valued deep neural networks (RDNNs). To achieve better performance in
covariance matrix reconstruction with fewer parameters, we employ CDNN. The principles
of CDNN are similar to those of RDNN. In the case of a fully connected neural network, it
consists of an input layer, an output layer, and multiple cascaded hidden layers. Within
each hidden layer, the input undergoes a linear transformation followed by a nonlinear
activation function. This process can be expressed as

o = σ(z) = σ(Wo′ + b), (8)

where W and b are the complex weight matrix and bias vector, respectively, o′ and o are
the complex outputs of the previous layer and the current layer, respectively, and σ(•)
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represents the complex nonlinear activation function. The complex matrix multiplication
in real space can be expressed as[

ℜ(z)
ℑ(z)

]
=

[
ℜ(W) -ℑ(W)
ℑ(W) ℜ(W)

]
•
[

ℜ(o′)
ℑ(o′)

]
+

[
ℜ(b)
ℑ(b)

]
, (9)

where ℜ(•) and ℑ(•) denote the real and imaginary parts of the complex number, respec-
tively. According to (8) and (9), a complex-valued layer can be expressed as

h(o) = (hr(or)− hi(oi)) + j(hr(oi) + hr(oi)), (10)

where or = ℜ(o), oi = ℑ(o), hr(x) = ℜ(W)x + ℜ(b), hi(x) = ℑ(W)x + ℑ(b). Thus,
CDNN is an extension of RDNN, and a CDNN of the same scale has twice the number of
parameters as an RDNN.

3.2. Array Geometry and Parameter Settings

We use the subarray composed of elements #1 to #8 from HLAS in Swellex-96 to
generate a dataset for training the CDNN for angular-domain covariance matrix recon-
struction. With element #5 as the origin of the Cartesian coordinate system, the coordinates
of the 8-element array are shown in Table 1. The array is approximated as a linear array
with unequal element spacing, with element #1 aligned in the direction of azimuth θ = 0.
The DOA is defined as the angle between the end-fire direction of the #1 element and the
direction of the incoming source, with the counterclockwise direction considered positive,
ranging from 0◦ to 180◦. The center frequency of the narrowband far-field plane wave is
set to f = 50 Hz, and the speed of sound in water is assumed to be c = 1490 m/s. The
maximum element spacing in the linear array is dmax = 0.21λ, and the minimum element
spacing is dmin = 0.12λ.

Table 1. Array Coordinates.

Element
No. #1 #2 #3 #4 #5 #6 #7 #8

x (m) 11.93 9.26 6.50 3.41 0 −3.75 −7.87 −12.43
y (m) −10.4 −8.24 −5.78 −3.06 0 3.40 7.34 11.62

According to [19,21], when the wavelength of the narrowband signal is fixed, the error
between the steering vector approximated by (5) and the true steering vector is related
to the distance of the array elements from the coordinate origin, as well as the truncation
order N. Figure 1a shows the magnitude of the Fourier coefficients for different element
distances when f = 50 Hz, θ = 0, and φm = 0, with the Fourier coefficients expressed
in decibels, i.e., 20 lg|bn|. Figure 1b shows the relationship between the steering vector
error and truncation order for different azimuth angles in the array specified in Table 1,
with the steering vector error also expressed in decibels, i.e., 20 lg

∣∣a(θ)− BHf(θ)
∣∣. We find

that the magnitude of the Fourier coefficients decreases with increasing order, so higher
truncation orders reduce the approximation error in (4) and (5), making R̃y closer to the true
element-domain covariance matrix. At the same time, the dimensionality of T(u) increases
with higher truncation orders, theoretically enhancing the performance of DOA estimation.
However, this increase in dimensionality also raises the complexity of the network by
expanding the number of output parameters, making the network more challenging to
train. Therefore, we set the truncation orders N = 4, N = 7 and N = 10 in the following
experiments and analyze the effect of truncation order on the performance of CDNN in
reconstructing T(u) through simulation results.
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Figure 1. (a) Magnitude of Fourier coefficients at various orders. (b) Relationship between array
steering vector error and N.

3.3. Dataset

We use MATLAB to generate the dataset for training the CDNN according to the array
geometry and parameters provided in Section 3.2. The number of incoherent sources in
the dataset is denoted as K = {2, 3}, with data corresponding to K = 2 and K = 3 each
comprising half of the dataset. In the data numbered i, the DOA θik for the kth incoherent
source are randomly generated within the range of [0, π], following an independent uniform
distribution. The source amplitudes αi1 = 1, and αik, k ̸= 1 follow independent uniform
distributions over [0, 1]. To enhance the robustness of the CDNN in real noise environments,
we introduce spatially and temporally uncorrelated Gaussian white noise into the data,
with the SNR uniformly distributed over [0, 20]dB. For multiple sources, the SNR is defined

as

K
∑

k=1
αk

2

σ2 , where σ2 represents the noise power. Substituting the above parameters into (1),
we obtain the array snapshot signal Yi = [yi1, yi2, · · · , yiL], where yil ∼ CN(0, AiRxiAi

H +
K
∑

k=1
αik

2

SNRi
I), Rxi = diag(αi1

2, · · · , αiK
2), Ai = [a(θi1), · · · , a(θiK)], and I is the identity matrix.

To enhance the randomness of the dataset, we set the number of snapshots for ith data
sample as Li = mod(i, 10)× 10, where mod(x, y) represents the remainder when dividing
x by y.

We model the mapping from R̂y to T(u) as a regression task, with R̂y as the input and
T(u) as the target label. The input data R̂y is the SCM of the array’s snapshot signal Y, which

is a complex-valued matrix of dimension M × M. For the ith input data R̂yi = YiYi
H
/

Li,

the corresponding label is the ideal angular-domain covariance matrix T(u)i = Fi
HRxiFi,

where Fi = [f(θi1), f(θi2), · · · , f(θiK)] is a complex-valued matrix of dimension (2N +

1)× (2N + 1). Therefore, the ith data pair in the dataset is represented as
(

R̂yi, T(u)i

)
,

forming a dataset εtra =
{(

R̂y1, T(u)1

)
,
(

R̂y2, T(u)2

)
, · · · ,

(
R̂yEtra

, T(u)Etra

)}
of size

Etra = 120, 000 to be used as the training set. Similarly, we generate a validation set
εval of size Eval = 10, 000 for model validation during training. Additionally, we construct
a test set εtest of size Etest = 10, 000 to evaluate the performance of the trained CDNN.

3.4. Network Architecture and Training

As shown in Figure 2, the proposed angular-domain covariance matrix reconstruction
CDNN consists of input, output, and dense layers. Since the input SCM is a Hermitian
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matrix, its upper triangular elements cover all the matrix information. Therefore, the input
layer takes a vector r̂y ∈ CM(M+1)/2 composed of the upper triangular part of the SCM.
The output layer produces a vector u ∈ C2N+1, composed of the first row elements of T(u).
After post-processing fp(u) = T(u), the reconstructed angular-domain covariance matrix
is obtained. The CDNN can be represented as

T̂(u) = fCDNN

(
R̂y

)
= fp

(
f7
(

f6 · · · f1
(̂
ry
)))

, (11)

where { fi(•)}i=1,2,··· ,6 is followed by Complex ReLU (CReLU) as the activation function.
In { fi(•)}i=1,2,3,4, Complex LayerNorm (CLayerNorm) is inserted between the fully con-
nected layers and CReLU for normalization. A Dropout layer with a dropout rate of 0.3 is
applied after f2(•) to mitigate overfitting. The CReLU and CLayerNorm functions can be
expressed as

CRelu(x) = Relu(ℜ(x)) + jRelu(ℑ(x)), (12)

CNorm(x) =
x − µ√
σ2 − ε

, (13)

where x = [x1, x2, · · · , xD]
T is the output of a certain layer in the network, µ = 1

D

D
∑

d=1
xd,

σ2 = 1
D

D
∑

d=1
|xd − µ|2, and ε is a small value to prevent division by zero in (13).
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Figure 2. Angular-domain covariance matrix reconstruction network architecture.

Since T(u) is expressed in terms of power, we chose the mean absolute error between
fCDNN

(
R̂yi

)
and T(u)i as the loss function during network training to ensure that the

network’s output closely approximates the true angular-domain covariance matrix. We use
the Adam optimizer [43] to optimize the network parameters, with an initial learning rate of
0.01 and parameters β1 = 0.9, β2 = 0.999. Additionally, a 20-epoch warmup is introduced
to stabilize network convergence. The training process adopts mini-batch gradient descent
with a batch size of 1024. At the beginning of each epoch, the training data are shuffled
to ensure that the distribution of each mini-batch is random. Then, the data are divided
into multiple mini-batches, with each mini-batch undergoing forward propagation, loss
computation, backpropagation, and parameter updates. To improve training efficiency
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and prevent overfitting, we introduce ReduceLROnPlateau and Early Stopping techniques.
If the loss on the validation set does not decrease within 10 epochs, ReduceLROnPlateau
reduces the learning rate by half, allowing the optimizer to search the parameter space
more finely. If the loss on the validation set does not improve for 20 consecutive epochs,
Early Stopping terminates training to prevent overfitting on the training set.

Figure 3 illustrates the changes in training loss, validation loss, and learning rate over
epochs for different values of N = 4, N = 7 and N = 10. Table 2 summarizes the training
results of the three CDNN models, including the final losses on the training and validation
sets, as well as the losses on the test set after training. Based on the results shown in Table 2
and Figure 3, it can be observed that all three CDNN models converge well and do not
exhibit significant overfitting. Additionally, since we only varied the output dimension
across these three CDNN models, we find that while all models achieve good training
performance, the CDNN with a higher output dimension tends to exhibit larger average
errors on the test set.
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Figure 3. Training loss, validation loss, and learning rate variation with epochs for the following:
(a) N = 4. (b) N = 7. (c) N = 10.
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Table 2. CDNN training results.

Training Loss Validation Loss Test Loss

N = 4 0.0750 0.0762 0.0766
N = 7 0.1185 0.1187 0.1197
N = 10 0.1676 0.1685 0.1692

4. Simulation

In this section, we will analyze the performance of our proposed method through
numerical simulations and compare it with existing DOA estimation methods such as
MUSIC [5], SPICE [12], and SBL [44]. First, we compare the gridless DOA estimation
performance of CDNN models with truncation orders N = 4, N = 7 and N = 10 under
different SNR conditions. Then, we present the DOA estimation results of these methods
for varying numbers of sources within the 0◦ to 180◦ range. Finally, we evaluate the impact
of the SNR, target angular separation, and the number of snapshots on the performance
of the aforementioned algorithms in uncorrelated source scenarios through Monte Carlo
simulations.

We consider K uncorrelated narrowband acoustic sources with equal power at a center
frequency of f = 50 Hz, whose DOAs are θ = [θ1, θ2, · · · , θK], assuming that the number of
sources is known. In the Monte Carlo simulations, the number of sources is set to K = 2.
The performance of DOA estimation is evaluated using resolution probability (RP) and root
mean square error (RMSE) [9,45,46]. The Cramer–Rao Bound (CRB) provides the lower
bound of RMSE for unbiased estimators, serving as a reference for the DOA estimation
algorithms studied in this paper [47]. For grid-based methods, DOA estimates are obtained
from the peaks of the spatial spectrum. Specifically, the spatial spectrum obtained from
the DOA estimation algorithm is first normalized, and then peaks with power greater than
−10 dB are identified, where each peak corresponds to a target. If the algorithm identifies
two targets and the DOA estimates θ̂ = [θ̂1, θ̂2] satisfy

∣∣∣θ̂1 − θ1

∣∣∣+ ∣∣∣θ̂2 − θ2

∣∣∣ < |θ1 − θ2|, the
algorithm is considered to have successfully resolved the targets. To ensure the accuracy
of the simulations, we only simulate the RMSE of the algorithm for cases where RP ≥ 0.5.

The RMSE of DOA estimation is defined as

√
1

2T

[
T
∑

t=1
(θ̂1t − θ1)

2
+

T
∑

t=1
(θ̂2t − θ2)

2
]

, where

T is the number of successful resolutions, and θ̂t = [θ̂1t, θ̂2t] is the estimate of θ in the tth
successful simulation. Additionally, the number of Monte Carlo simulations is set to 1000.
For SPICE and SBL, the number of iterations is set to 10 and 1000, respectively. For the
MUSIC algorithm, we divide the azimuth angle grid at 0.1◦ intervals, while for SPICE and
SBL, the grid is divided at 1◦ intervals.

4.1. Impact of N on DOA Estimation Performance

Figure 4 illustrates the relationship between RMSE and RP with respect to the SNR for
the gridless DOA estimation performance of CDNNs with truncation orders N = 4, N = 7,
and N = 10 under different scenarios: θ = [85◦, 95◦], θ = [80◦, 100◦] and θ = [70◦, 110◦].
In the simulation, the noise is modeled as a zero-mean Gaussian white random process,

assumed to be spatially and temporally uncorrelated. The SNR is defined as α1
2+α2

2

σ2 , where
α1

2, α2
2 and σ2 represent the power of the two sources and the noise at the array elements,

respectively. The number of snapshots is set to 50. As shown in Figure 4d,f, even when
the angular separation between two targets is large and the SNR is high, the CDNN with
N = 10 still occasionally fails to distinguish the two targets. Additionally, as depicted
in Figure 4b, when the angular separation is small, the RP for N = 10 deteriorates more
significantly as the SNR decreases. Conversely, as seen in Figure 4c,e, the CDNN with N = 4
exhibits higher robustness to Gaussian white noise when the target angular separations
are 20◦ and 40◦, providing better performance at low SNR levels while maintaining similar
performance to N = 7 and N = 10 at higher SNRs. However, as shown in Figure 4a,
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when the target angular separation decreases to 10◦ and the SNR exceeds 5 dB, the DOA
estimation error for the CDNN with N = 4 becomes the largest. In summary, we observe
that while N = 10 provides better resolution for closely spaced targets, its DOA estimation
performance becomes unstable when the target angular separation is large and the SNR
is high. The instability observed at N = 10 is due to the network needing to fit outputs
of a higher dimensionality, which can lead to higher fitting errors. On the other hand,
N = 4 delivers superior DOA estimation performance under conditions of larger angular
separation and a lower SNR, but its resolution is limited when the angular separation is
small. To balance the DOA estimation performance across varying angular separations,
we choose the CDNN with N = 7, where the corresponding angular-domain covariance
matrix T(u) is a 15 × 15 Toeplitz matrix.
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Figure 4. DOA estimation performance of CDNNs with truncation orders N = 4, N = 7, and N = 10
at different target angular separations. (a) RMSE and (b) RP for θ = [85◦, 95◦]. (c) RMSE and (d) RP
for θ = [80◦, 100◦]. (e) RMSE and (f) RP for θ = [70◦, 110◦].
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4.2. DOA Estimation Results

In this section, we present the DOA estimation results using the methods under study
for scenarios with K ∈ {1, 2, 3} sources within an angular range of from 0◦ to 180◦. When
the number of sources is 2 or 3, we set the angular separation between adjacent sources
as ∆θ = 40◦, meaning that all source DOAs are θ = [θ1, θ1 + ∆θ, · · · , θ1 + (K − 1)∆θ].
We consider the case where θ satisfying θ1 ∈ [0◦ : 0.1◦ : 180◦ − (K − 1)∆θ], with the SNR
set to 10 dB, and with the noise being spatiotemporally uncorrelated Gaussian white
noise. The number of snapshots is set to 50. The DOA estimation results for various
methods are shown in Figure 5, and the RMSE for different angular ranges is provided
in Table 3. When the number of sources K = 1, the results in Table 3 indicate that the
proposed method and MUSIC achieve more accurate DOA estimates than SPICE and SBL.
Comparing Figure 5a,d,g,j, it can be seen that even when dividing the grid densely with
a separation of 1◦, grid mismatch errors still severely affect the performance of SPICE
and SBL. When the number of sources K = 2 and K = 3, and all sources are within the
angular range [45◦, 135◦], all four methods can obtain relatively accurate DOA estimation
results. However, when the range of source DOAs is confined to [0◦, 180◦], the proposed
method shows a significant RMSE advantage over the other three methods. According
to the simulation results shown in Figure 5, when all sources are far from the end-fire
direction, all four methods can effectively distinguish targets and achieve accurate DOA
estimation. However, when a source is close to the end-fire direction, the DOA estimation
performance of the other three methods deteriorates significantly, making it difficult to
distinguish adjacent targets or leading to large DOA estimation errors. In contrast, the
performance degradation of the proposed method is relatively mild.
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Figure 5. Cont.
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Figure 5. DOA estimation results. The proposed method, source numbers (a) K = 1, (b) K = 2, and
(c) K = 3. MUSIC, source numbers (d) K = 1, (e) K = 2, and (f) K = 3. SPICE, source numbers
(g) K = 1, (h) K = 2, and (i) K = 3. SBL, source numbers (j) K = 1, (k) K = 2, and (l) K = 3.

Table 3. RMSE of DOA estimation.

K The Range of
θk,∀k = 1, 2, . . . , K Proposed Method MUSIC SPICE SBL

1 [45◦, 135◦] 0.1278 0.1098 0.2676 0.2678
[0◦, 180◦] 0.2239 0.1885 1.0060 0.6724

2 [45◦, 135◦] 0.9051 0.8279 0.9340 0.9146
[0◦, 180◦] 2.0294 2.9906 3.9232 3.2688

3 [45◦, 135◦] 2.4844 2.2639 2.1821 2.0246
[0◦, 180◦] 5.0632 9.1194 8.6687 7.1800

4.3. Relationship between Algorithm Performance and SNR

We analyze the relationship between algorithm performance and the SNR under two
scenarios: θ = [80◦, 100◦] and θ = [70◦, 110◦]. The other definitions and settings in the
simulation are the same as those in Section 4.1, and the simulation results are presented
in Figure 6. When θ = [80◦, 100◦], as shown in Figure 6a, the proposed method achieves a
lower RMSE than the other three methods when the SNR is below 14 dB. Additionally, as
illustrated in Figure 6b, the proposed method maintains an RP above 0.6 for distinguishing
the two sources across the SNR range of −10 to 20 dB. In contrast, the RP of the other
three methods rapidly decreases with a decreasing SNR, falling below 0.2 at an SNR of
0 dB, indicating that they almost fail to distinguish the two sources. For the scenario with
θ = [70◦, 110◦], Figure 6c,d show that in the SNR range of −2 to 12 dB, the proposed method
achieves comparable or lower RMSE compared to the other methods, while all methods
maintain nearly perfect RP values close to 1, successfully distinguishing the two targets.
When the SNR drops below −4 dB, although the RMSE of the proposed method exceeds
that of SBL and MUSIC, it still achieves the highest RP for source resolution, with RP
remaining above 0.7 even when the SNR decreases to −10 dB.
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Figure 6. Relationship between SNR and both RMSE and RP under spatio-temporal Gaussian white
noise conditions.(a) RMSE and (b) RP for θ = [80◦, 100◦]. (c) RMSE and (d) RP for θ = [70◦, 110◦].

4.4. Relationship between Algorithm Performance and Angle Separation

We set θ1 = 90◦ − ∆θ/2, θ2 = 90◦ + ∆θ/2, where ∆θ represents the angular separation
between the two sources. The SNR in the simulation is set to 10 dB, and other conditions
remain the same as in Section 4.1. The relationship between the angle separation and the
DOA estimation performance, as measured by RP and RMSE, is shown in Figure 7. When
the angular separation between the two sources is between 20◦ and 50◦, the proposed
method shows similar RMSE values compared to the other three methods, with the RMSE
difference among the four methods being less than 0.2◦. Additionally, all four methods
are able to distinguish between the two sources with an RP close to 1. However, when the
angular separation between the two sources is less than 20◦, the proposed method exhibits
the lowest DOA estimation RMSE and can still differentiate between the two sources with
an RP close to 1. In contrast, the RP of the other three methods decreases rapidly with
decreasing angular separation. When the angular separation is reduced to 10◦, the RP of all
three existing methods drops below 0.2, making them almost unable to distinguish between
the sources. The simulation results demonstrate that the proposed method outperforms the
existing methods in DOA estimation when the angular separation is small.



Remote Sens. 2024, 16, 3752 14 of 21

10 15 20 25 30 35 40 45 50
Angle separation (Degree)

0

0.5

1

1.5

2

2.5

R
M

SE
 (

D
eg

re
e)

Proposed method
MUSIC
CS-DOA
SBL
CRB

(a)

10 15 20 25 30 35 40 45 50
Angular interval (Degree)

0

0.2

0.4

0.6

0.8

1

R
P

Proposed method
MUSIC
CS-DOA
SBL

(b)

Figure 7. Relationship between RP and RMSE with respect to angle separation. (a) RMSE. (b) RP.

4.5. Impact of Snapshot Number on Algorithm Performance

In this section, we analyze the impact of the number of snapshots on the algorithm’s
performance. Figure 8a,b illustrate the RMSE and RP of the proposed method and the
three existing methods for DOA estimation under different snapshot numbers. In the
simulation, we set θ = [78◦, 102◦] and the SNR to 10 dB, with other conditions being the
same as in Section 4.1. As shown in Figure 8, under the simulation conditions, when the
number of snapshots exceeds 50, the proposed method exhibits the highest RMSE, while
all four methods are able to distinguish the two sources with an RP close to 1. When the
number of snapshots is less than 30, the RMSE of MUSIC and SPICE increases, and their RP
decreases rapidly as the number of snapshots decreases. When the number of snapshots
falls below 10, the RP of MUSIC and SPICE drops below 0.5, indicating a high probability of
failure in accurate DOA estimation. At this point, the proposed method can still distinguish
the two sources with an RP close to 1, and it also achieves lower RMSE compared to the
existing three methods. Based on the simulation results, we conclude that the proposed
method outperforms the other three existing methods when the number of snapshots is
low, demonstrating higher adaptability to fewer snapshots.
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Figure 8. Algorithm performance under different snapshot conditions. (a) RMSE. (b) RP.

5. Swellex-96 Event S59 Experimental Results

In this section, we validate the effectiveness of the proposed method using experimen-
tal data from the Swellex-96 Event S59. The SWellEx-96 experiment [38] was conducted in
shallow waters approximately 12 km off the tip of Point Loma near San Diego, California,
from 10 to 18 May 1996. As shown in Figure 9, the event scenario depicts the source’s
trajectory in blue and the interferer’s trajectory in red. The markers on the tracks represent
GPS-recorded coordinates at 5-minute intervals, and the entire experiment lasted for 65 min.
During the experiment, the source continuously emitted signals at various frequencies, with
the higher power frequencies being 49, 64, 79, 94, 112, 130, 148, 166, 201, 235, 283, 338, and
388 Hz. The HLA subarray used in our study had a sampling frequency of fs = 3276.8 Hz,
and the subarray formed by elements #1 to #8 effectively met the far-field condition during
the experiment.
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Figure 9. Schematic of the Swellex-96 Event S59 experiment scenario [38].

The data received by the 8-element subarray are denoted as Y =
[Y(:, 1), Y(:, 2), · · · , Y(:, 8)], where the column vector Y(:, m) represents the data re-
ceived by the mth array element. We divided the data into Q = 361 segments,
each starting at time tstart ∈

{
t1, t2, · · · , tQ

}
= [0s : 10s : 3600s] and lasting for

a duration Tseg = 30s. The data received by the mth array element during the
qth segment can be expressed as ymq = Y

(⌊
fstq

⌋
+ 1 :

⌊
fs
(
tq + Tseg

)⌋
, m

)
, where

⌊•⌋ denotes the floor function. Each segment was further divided into L = 100
snapshots, with each snapshot containing Nsnap = 2048 sampling points. The du-
ration of each snapshot was Tsnap = 0.625 s, and the overlap between consecutive
snapshots was η = 53%. Therefore, the lth snapshot within ymq is represented as
ỹmql = ymq

(⌊
(l − 1)(1 − η) fsTsnap

⌋
+ 1 :

⌊
(l − 1)(1 − η) fsTsnap

⌋
+ Nsnap

)
. We will apply

different DOA estimation methods based on the snapshot model described above to
perform narrowband DOA estimation at a frequency of fc = 50 Hz for each data segment,
thereby obtaining the DOA trajectories.

Figure 10 presents the bearing time records (BTRs) obtained using different DOA
estimation methods based on the Swellex-96 Event S59 data, along with the GPS-recorded
tracks of the source and interferer. As shown in Figure 10b, for CBF, prior to 1800 s, due to
the small angular separation between the source and the interferer, the two targets cannot
be distinguished. After 2400 s, although the angular separation between the source and
interferer increases and two peaks appear in the CBF spectrum, high sidelobes severely
affect the performance of DOA estimation. As shown in Figure 10d–f, the three existing
methods demonstrate better resolution compared to CBF, allowing the source and interferer
tracks to be distinguished. However, all three methods exhibit high levels of pseudospectra
around the DOA track, which negatively impact target trajectory identification. Moreover,
for SPICE and SBL, the interferer’s DOA is close to the end-fire direction of the array,
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making it difficult to identify the interferer prior to 1800 s in most cases. As shown in
Figure 10c, the proposed method directly achieves gridless DOA estimation, avoiding
the influence of pseudospectra on BTR trajectories. Throughout the entire BTR process,
the proposed method consistently identifies both the source and interferer with a high
probability, making it more effective for trajectory determination. Figure 11 illustrates the
results of processing the Swellex-96 Event S59 data using different methods. The RMSE
was calculated by interpolating the source trajectory with its GPS angles, and the data
were processed using an AMD Ryzen 76800H CPU. The results show that the proposed
method significantly outperforms the other three methods in terms of RP while maintaining
RMSE values similar to the other methods. Additionally, the proposed method exhibits
complexity comparable to MUSIC and is significantly more efficient than SPICE and SBL,
which require iterative operations.
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Figure 10. Cont.
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Figure 10. BTR results using different methods. (a) GPS. (b) CBF. (c) Proposed method. (d) MUSIC.
(e) SPICE. (f) SBL.
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Figure 11. Processing results of Swellex-96 Event S59 data using different methods. (a) RP. (b) RMSE.
(c) CPU time.
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6. Conclusions and Discussion

In this paper, we propose a novel gridless DOA estimation method for arbitrary
array geometries based on a CDNN. First, by expanding the steering vector into a Fourier
series, the relationship between the element-domain covariance matrix and the angular-
domain-covariance matrix for arbitrary arrays is derived. Then, a CDNN is designed and
trained to reconstruct the Toeplitz-structured angular-domain covariance matrix from the
SCM. Finally, Root-MUSIC is applied to the reconstructed angular-domain covariance
matrix to obtain gridless DOA estimates. Our proposed method demonstrates superior
resolution and DOA estimation accuracy compared to existing methods, particularly when
target angles are closely spaced. The proposed method does not require the setting of any
hyperparameters and exhibits high adaptability to different snapshot counts. Additionally,
its lower computational complexity makes it well suited for applications that demand
real-time performance or deployment on low-power platforms with limited computational
resources. In this paper, we only analyze the performance of the proposed method for
single-frequency narrowband signals. In our future work, we will continue to optimize
the network structure and training process to make the proposed method applicable to
multiple frequencies without needing prior information about the number of sources,
thereby enhancing its practical utility in real-world scenarios, such as providing accurate
angular estimates for localization and object tracking.
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