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Abstract: Climate-driven changes in fire regimes are expected across the pan-Arctic region. Trends
in arctic fires are thought to be generally increasing; however, fire mapping across the region is far
from comprehensive or systematic. We developed a new detection workflow and built a dataset of
unrecorded tundra fires in Canada using Landsat data. We built a reference dataset of spectral indices
from previously mapped fires in northern Canada to train a Random Forest model for detecting new
fires between 1986 and 2022. In addition, we used time series information for each pixel to reduce
false positives and narrow the large search space down to a finite set of regions that had experienced
changes. We found 209 previously undetected fires in the Arctic and sub-Arctic regions, increasing the
mapped burned area by approximately 30%. The median fire size was small, with roughly 3/4 of the
fires being <100 ha in size. The majority of newly detected fires (69%) did not have satellite-derived
hotspots associated with them. The dataset presented here is commission error-free and can be
viewed as a reference dataset for future analyses. Moreover, future improvements and updates will
leverage these data to improve the detection workflow outlined here, particularly for small and
low-severity fires. These data can facilitate broader analyses that examine trends and environmental
drivers of fire across the Arctic region. Such analyses could begin to untangle the mechanisms driving
heterogeneous fire responses to climate observed across regions of the Circumpolar North.

Keywords: Arctic; Google Earth Engine; hotspots; lightning; MODIS; NBAC; Normalized Burn Ratio;
Random Forest; Tasseled Cap; VIIRS

1. Introduction

Empirical data and modeling indicate a growing likelihood of fire in the Arctic [1,2].
There are increasing trends in the length of the fire season [1,3], air temperature, fuel
load and availability, and a host of fire-related abiotic factors in the Arctic and sub-Arctic
zones [4–6]. While many northern regions are changing faster than those at lower- and
mid-latitudes [2], global patterns of Arctic and tundra fire activity indicate substantial
spatio-temporal variation in burning. Fires have increased in Alaska and Siberia [1,7], but a
slight decreasing trend has been observed in the Northwest Territories of Canada [6,8].

The accurate spatio-temporal mapping of fires is fundamental to understanding
changes in the burned area, fire severity, post-fire vegetation recovery, and for deter-
mining any climate- and human-driven changes in fire regimes globally. Furthermore, such
maps offer an essential baseline from which to measure changes, particularly over periods
in which rapid changes are forecasted. In recent decades, a suite of space-borne satellite
sensors have facilitated large-scale fire monitoring and mapping, enabling a global-scale
analyses of the patterns, trends, and drivers of wildfires [9,10]. Indeed, since approximately
1979, beginning with the Advanced Very High Resolution Radiometer, satellites have ac-
quired sub-daily observations of fire activity [11]. However, many of the purpose-built fire
products derived from thermal anomalies (referred to hereafter as hotspots) are spatially
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coarse and thus cannot detect small fires nor delineate perimeters effectively to produce
detailed burned area estimates. The Landsat missions, with their increased spatial resolu-
tion (over Moderate Resolution Imaging Spectroradiometer (MODIS) or Visible Infrared
Imaging Radiometer Suite (VIIRS) sensors) and global coverage, have enabled a fine-tuned
understanding of burn severity and area burned [12].

Canada has two federally maintained national fire databases—the Canadian National
Fire Database (CNFDB) and the National Burned Area Composite (NBAC)—that collect fire
data from a variety of sources (e.g., provincial and territorial agencies, federal departments
and agencies, satellite mapping techniques, etc.). The CNFDB is composed of fire maps of
varying quality, produced by jurisdictional fire management agencies and compiled into
a single national database [13]. The NBAC uses a consistent methodology to detect and
map new fires, as well as refine the perimeters of historic fires that were not accurately
delineated within the CNFDB [13,14]. Critically, data from the NBAC are used by the
government of Canada to report on progress toward international commitments to monitor
anthropogenic emissions and are regarded as the authoritative source on more recent fires
in Canada [15,16].

Historically, fire suppression activity has been absent or minimal in the remote north-
ern areas of Canada and, consequently, fires that have occurred outside of forested re-
gions (i.e., north of the treeline) or far from inhabited areas have not been monitored or
mapped [17]. Indeed, the territory of Nunavut does not have a fire management agency.
Moreover, even newer methodological techniques to improve fire mapping in Canada
have limited their study domain to exclude regions north of the treeline (e.g., [13,18]). The
omission is likely driven by assumptions about a lack of fire in the region and the fact
that disturbance mapping in tundra environments is known to be extremely challenging
with remotely sensed data [19]. Consequently, the NBAC and CNFDB do not represent a
complete picture of fires in Canada and there is a clear gap in our understanding of fires in
remote northern regions, particularly above the treeline.

The primary objective of this study was to detect and map unrecorded tundra fires
within Canada using Landsat data. There is a growing need to assess and understand
potential changes in fire regimes within Canada, particularly in light of the 2023 fire season,
where a record-breaking area of >15 M ha burned [20]. Given the lack of systematic fire mon-
itoring outside of forested regions, we sought to advance the build-out and maintenance of
a more comprehensive accounting of fires in northern Canada since 1986.

2. Materials and Methods
2.1. Study Area

We focused on three ecozones in northern Canada [21] covering areas roughly north of
the treeline—the Arctic Cordillera, Northern Arctic, and Southern Arctic ecozones (Figure 1).
The study area stopped at approximately 74.5 degrees north (i.e., in the Arctic Ocean north
of Banks, Victoria, Prince of Wales, Somerset, and the Baffin Islands). The vegetation present
across the region is diverse and is generally north of the treeline, consisting of a combination
of herbaceous plants, shrubs, mosses, and lichens (see [22] for a more complete breakdown
of vegetation characteristic and communities present across the various subzones within
the region). Across the study area, systematic fire monitoring has historically been of
low priority. Although there are many small communities throughout, it is very sparsely
populated. Land use mainly consists of low-impact traditional and cultural activities,
with few permanent roads or energy corridors; however, various mines operate across
the region.
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burned and 30 unburned sample pixels (e.g., a fire less than two hectares has fewer than 

25 pixels in the entire burn scar), and the final dataset contained 11,056 points, of which 

4989 (45%) were unburned and 6067 (55%) were burned. These data were then used to 

train and validate a Random Forest (RF) model for detecting fires in our study area (details 

below). 

We used Landsat (5, 7, 8, and 9) Collection 2 surface reflectance data in Google Earth 

Engine (GEE) to calculate spectral indices associated with fire mapping and vegetation 

change [24]. Pixels covered by clouds, shadows, snow, and water were removed using the 

quality flags provided within the QA_PIXEL band in Landsat Collection 2. A summer-

Figure 1. Canadian ecozones and broad land cover types (from North American Land Change
Monitoring System [23]) over the study area searched for tundra fires between 1986 and 2022. The
Southern Arctic is outlined in dark blue, the Northern Arctic is outlined in pink, and the Arctic
Cordillera is outlined in yellow. Needleleaf forests are dark green, shrublands are brown, grassland-
lichen-moss are light green, barren-lichen-moss are medium green, water and wetlands are blue,
barren ground is light grey, and snow is white. Provincial and territorial borders are in white, major
lakes are light blue, and ecozones outside the study area are outlined in black.

2.2. Detecting Fires
2.2.1. Datasets, Satellite Imagery, and Initial Modeling

We first sought to build a reference dataset of spectral fire indices (Tables A1 and A2)
for northern Canada to assist with fire detection. We sampled burned and unburned point
locations from all NBAC fires that occurred within the study area and the next adjacent
ecozones south (i.e., the northernmost fires available) between 2014 and 2020 (n = 253).
Most NBAC fires had 25 burned pixels and 30 unburned pixels randomly sampled, with
unburned locations coming from within a 1 km buffer surrounding fire perimeters. More
unburned pixels were sampled in an attempt to balance out sampling, because burned
areas were usually larger and therefore had a smaller chance of containing masked water
bodies, which resulted in failed sampling. We sampled differenced fire indices, subtracting
imagery 1-year post-fire from 1-year pre-fire. Some smaller fires could not fit 25 burned and
30 unburned sample pixels (e.g., a fire less than two hectares has fewer than 25 pixels in the
entire burn scar), and the final dataset contained 11,056 points, of which 4989 (45%) were
unburned and 6067 (55%) were burned. These data were then used to train and validate a
Random Forest (RF) model for detecting fires in our study area (details below).

We used Landsat (5, 7, 8, and 9) Collection 2 surface reflectance data in Google Earth
Engine (GEE) to calculate spectral indices associated with fire mapping and vegetation
change [24]. Pixels covered by clouds, shadows, snow, and water were removed using the
quality flags provided within the QA_PIXEL band in Landsat Collection 2. A summer-
season mosaic was generated for each year using the median of all available scenes between
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15 June and 15 September. We removed permanent water bodies using the global water
mask developed by the European Commission’s Joint Research Centre [25].

Preliminary model training and testing was conducted in a Google Colaboratory
notebook [26] to optimize RF tuning parameters and select fire indices that accurately
classified burned areas (Tables A3 and A4). We used a suite of Scikit-learn [27] functions for
model selection, feature reduction, and k-fold cross-validation to select a final RF model for
efficient computation in GEE (Appendix B). The top RF model showed strong predictive
performance during model validation (Table A4); however, during model deployment to
the study area—a region not well represented in the training data—this model regularly
predicted sparsely vegetated regions and atmospheric artifacts as having a high probability
of being burned, despite having not experienced a fire (Figure 2). Through subsequent
testing of candidate variables, we identified three metrics that maintained strong detec-
tion while greatly reducing spurious detections in our northern study area: Normalized
Burn Ratio 2 (NBR2), Tasseled Cap Brightness (TCB), and Tasseled Cap Greenness (TCG,
Figure 2, Table A4). This RF model was then used as part of the fire detection methodology
detailed below.
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Figure 2. Comparison of Random Forest (RF) model predictions using the top-performing model
during validation (a,c) versus the chosen model for the study area after further regional testing (b,d).
Probability of being burned is displayed in shades of red, with darker red being higher probability of
fire. The top images show higher incidences of false positives from insufficient cloud removal near
the fires (circled in (a,c)). Noticeable banding present in imagery was a common artifact from the
missing data in Landsat 7 scan-line corrector error images.

2.2.2. Fire Detection

We used a three-step workflow to map fires (Figure 3). First, candidate fire detections—pixels
that met a four-rule criteria (details below)—were exported from GEE. Next, candidate
fires were visually inspected to confirm a change event was fire-related, as changes in
hydrology, thaw slumps, mining activities, road expansions, phenological differences, etc.
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were frequently detected. Finally, we used R Statistical Computing Software, version
4.2.2 [28], to revisit confirmed fires and delineate a refined fire perimeter at 30-m resolution,
utilizing the ‘rgee’ package [29]. This multi-stage approach was used to reduce the large
search space down to a finite set of areas that had experienced change events and stay
within the computation limits of GEE.
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Figure 3. Fire detection workflow used to locate and confirm Canadian tundra fires between 1986
and 2022.

The first step in the multi-stage fire detection methodology was to identify candidate
fires in GEE using a four-rule criteria. We used existing NBAC fire perimeters from within
the study area to settle on the thresholds outlined below. The first criterion retained
only pixels with ≥90% of the RF votes identified as being burned. A high RF threshold
maintained detection and reduced false positives in sparsely vegetated areas and pixels
with insufficient cloud removal. Despite a high RF threshold, many false positives remained
and we incorporated two additional rules based on time series information. Criteria two
and three compared post-fire imagery to a pre-fire median of up to three years. For criterion
two, pixels were retained if there was a >50% decrease in post-fire NBR2, compared to a
three-year pre-fire median. Inter-annual differences in phenology and apparent drought
stress resulted in NBR2 drops > 30% in some years; we sought to account for these variations.
The third criterion required the difference between the post-fire NBR2 and the three-year
pre-fire median to be ≤−0.1. Again, inter-annual differences in seasonal mosaics resulted
in NBR2 differences of ∼=0 and we wanted to exclude those occurrences as well. Finally,
the post-fire NBR values needed to be <0. Candidate fires that met all four criteria were
exported as vectors from GEE at 90 m spatial resolution (Figure 3). This spatial resolution
(i.e., 90 m rather than 30 m) was required in order to stay within the computation limits of
GEE, given the size of the study area.
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The second step in the methodology required a visual inspection of each candidate
fire ≥ four pixels in size (encompassing 50–100 candidate areas per year). Four pixels
was chosen for a minimum size (approximately four hectares) because some atmospheric
effects still satisfied the four criteria and resulted in isolated one- to two-pixel noise,
particularly over snowy and alpine regions in the northeast of the study area. A single
reviewer used a suite of custom GEE scripts to visualize a time series of imagery over each
candidate fire to confirm a change event was associated with a fire. Examples of events that
were not fire-related are widespread regional hydrological changes visible throughout the
landscape, landslides or thaw slumps, and human footprint expansion through mining and
road building. This manual validation step was preferred, rather than a fully automated
workflow, because of the dynamic nature of the landscape—changes in hydrology, thaw
slumps, mining activities, road expansion, etc., frequently satisfied the four-rule criteria.

We finalized perimeters for confirmed fire events using the RF model from step one;
however, this time retaining pixels with ≥50% of the votes as burned for perimeter mapping.
The 50% threshold was chosen by comparing a range of thresholds against existing NBAC
fire perimeters from within the study area. In general, fire perimeters were generated
via RF prediction on differenced fire imagery, subtracting 1-year pre-fire imagery from
1-year post-fire imagery. However, some small or low-severity (n ∼= 20) fire perimeters
were output with null geometries (i.e., no pixels had ≥ 50% votes as burned because of
rapid vegetation recovery), and 1-year pre-fire imagery was subtracted from year-of-fire in
those cases.

2.3. Validation

We cross-referenced our dataset against two data sources: (1) existing fires within the
NBAC dataset and (2) satellite-derived hotspots from MODIS Terra (MOD14A1), MODIS
Aqua (MYD14A1), and VIIRS (VNP141A). Sixty-six fires within the study area were already
in the NBAC database and we calculated the omission rate of known fires against our
new dataset. When using hotspots, we searched for additional fires potentially missed
by our methodology. We buffered each hotspot by 3 km and output any potential fire
perimeters using the RF prediction, keeping pixels ≥ 50% class votes as burned. As Terra
began acquiring data in 2000, Aqua in 2002, and VIIRS in 2012, hotspots were searched
over this subset of the study period (i.e., 2000–2022).

3. Results

We detected 206 new fires in our study area between 1986 and 2022 using our workflow,
with an additional 3 fires found during hotspot validation, for a total of 209 newly mapped
fires. Thus, including the existing NBAC fires, the region had 275 documented fires over
the study period (Figure 4). In the combined dataset, the median number of fires in a given
year was five and the median annual burned area was 219 hectares. The median fire size
was 22.6 hectares (bootstrapped 95% CI = 16.2–28.3 ha) and 210 of the 275 total fires were
<100 ha in size. No fires were detected from any source in 2004 or 2005. In total, the new
fires added approximately 12,622 ha (a 32.8% increase) to the previously known total for
the region (38,470 ha).

Nearly half of the new fires were in the Arctic (n = 96; 45.9%), defined as latitudes
above 66◦ N by the Arctic Monitoring and Assessment Programme (Figure 5). No new fires
were found within the Arctic Cordillera ecozone, though a single fire from 2022 was already
mapped in the NBAC (>3500 ha), inside Kuururjuaq National Park, QC, representing the
lone fire in the region over the study period. The Northern Arctic ecozone had 41 fires,
most generally southwest of Wager Bay, NU, except for 1 fire on Baffin Island in 2009
(25 ha) and another in the Qikiqtaaluk Region, NU in 2020 (2 ha). The majority of newly
detected fires occurred in the Southern Arctic ecozone, with 168, spread across three general
regions: (1) the western edge of the ecoregion—forming a strip between Great Bear Lake
and Tuktoyaktuk, NT; (2) northwest of Hudson Bay; and (3) northern Quebec (Figure 5).
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graduated point sizes and the year of burning as colors.
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Of the 66 fires already in the NBAC database, our methodology failed to detect 5
(i.e., an 7.6% omission rate), with areas of approximately 9.4, 4.5, 3.4, 1.9, and 0.9 hectares.
In terms of omission of the burned area, those five fires accounted for 0.05% of the total
burned area previously mapped (approximately 20 ha out of 38,470). Using satellite-
derived hotspots between 2002 and 2022, we found three additional fires missed by our
methodology, with areas of approximately 12, 8, and 8 hectares. The majority of the fires
already in the NBAC database had hotspots associated with them (60.1%), reflecting one of
the ways these fires have historically been detected and mapped; however, an additional
15 fires in the NBAC database did not have any hotspots and were likely opportunistically
found due to their proximity to other fires targeted for mapping. In contrast, 69.5% of the
newly detected fires with our method did not have any hotspots associated with them
(Table 1). The median fire size was larger for fires that had hotspots (64.3 ha) compared to
those without (13.4 ha) and all fires >~150 ha had hotspots.

Table 1. Presence of thermal anomalies (i.e., hotspots) for fires within the study region, 2000–2022.

Hotspots Present NBAC Fire New Fire

Yes 23 29

No 15 66

4. Discussion

Satellite data are critical for monitoring fire dynamics globally, particularly in remote
regions faced with rapid climate- and human-driven changes. We used Landsat imagery to
generate a dataset of wildfires for the tundra region of Canada since 1986, increasing the
known burned area by about 30%. In general, we did not find widespread, unaccounted-for
burning across the study area. In an average year (i.e., median), the region—an area only
slightly smaller than Argentina—had five fires and burned roughly 200 ha.

The approach outlined here combines elements, conceptually, from existing methods
used to map fires in Canada [13,14,30]; however, some adjustments were made to tailor the
detection approach to the study region. Specifically, our RF model (i.e., criterion 1) used
bi-temporal Landsat imagery to detect changes in fire indices, akin to [13] and [14], but our
approach used multiple indices (dNBR2, dTCB, and dTCG) and RF modeling as opposed to
thresholding dNBR values. Similarly, changes in pixel value time series (i.e., criteria 2 and
3) are analogous to the breakpoint methods used by Hermosilla et al. [30] to detect fires,
albeit much simplified to efficiently run in GEE. Moreover, we chose to use a multi-stage
approach, whereby candidate fires were examined individually and re-mapped at a finer
scale if confirmed, because attempts to produce a fully automated workflow (like the
approaches referenced above) persistently included land-use and land-cover changes that
were not fire-related (e.g., thaw slumps, road development, mine expansion, hydrologic
changes). Thus, our methodological adjustments were focused on reducing false positives
and producing a commission error-free dataset.

Our RF model used three spectral indices less commonly used (dNBR2, dTCB, and
dTCG) for fire mapping (but see [31–34]). During model development and training we
assessed many of the spectral indices commonly used for mapping fire perimeters and
characterizing burn severity. However, during model deployment across our study area, we
found that two of the tasseled cap bands (brightness and greenness) and NBR2 performed
well at reducing false positives (Figure 2). NBR2 is known to penetrate smoke and clouds
effectively, because of the incorporation of longer wavelength bands in the calculation [34],
and is likely one of the major contributions to the reduction in false positives observed
(Figure 2). In addition, NBR2 has been shown to perform better at detecting surface fires,
relative to NBR [35], and might explain why NBR performed well during model training
but NBR2 performed better over the study area. That is, the majority of the training
data came from northern boreal fires and were thus trained and validated against spectral
characteristics of forest fires, whereas surface fires were more common across the study area.



Remote Sens. 2024, 16, 230 10 of 17

Tasseled cap indices (TCs), particularly brightness and greenness, have a long history
in change detection applications across a variety of ecosystems [31,32], but are more often
used to model post-fire recovery trajectories rather than map fire perimeters [36]. However,
a number of studies from high latitudes have highlighted the usefulness of TCs for mapping
fires [32,33,37]. TCs calculations decompose the visible, near-infrared, and short-wave
infrared Landsat bands (n = 6) into three orthogonal bands and thus provide information
about spectral changes across the full range of reflectance values (i.e., dimensionality
reduction). Consequently, because TCs were not derived for a particular vegetation type,
biome, or range of the electromagnetic spectrum measured using Landsat, they are likely
sensitive to changes across diverse vegetation types present in tundra environments [32,37].
For example, the spectral signatures of nonvascular plants (e.g., Bryophytes) and lichens
can be significantly influenced by moisture content [19], with both photosynthetic activity
and respiration tied to water availability. Given that this region lacks a strong reflectance
signal from chlorophyll in tall vegetation, as relied on for fire mapping in more southern
ecosystems, these alternate indices may be better suited to capture fire-induced change in
low-vegetation and low-fuel environments.

Our finding that the majority of fires in the study area did not have hotspots associated
with them aligns with other recent studies that have highlighted the lack of a thermal
signal for smaller, high-latitude fires [38,39]. Moreover, it suggests that prior studies that
have used hotspots to constrain their search for Arctic and/or tundra fires likely omitted
many smaller fires [12,40,41]. The lack of reliable hotspots is precisely why we tailored
our methodology to not rely on them as a data source. In mapping exercises, the omission
of small fires (<100 ha) tends to be more problematic in regions where they account for a
significant proportion of the total area burned [42]. Indeed, the 200+ additional fires we
found amounted to an increased burned area of about 30%, whereas recent work in sub-
Saharan Africa found small fires (<100 ha) added >80% to previously mapped totals [42].
The annual burned areas in the boreal and taiga regions of Canada tend to be dominated
by a small number of large fires, with 90–95% of the burned area coming from 5–10% of
fires annually [8,43,44]. Our dataset does not reflect this pattern as strongly, with >90% of
the burned area coming from approximately 23% of the fires (62/275) and >75% of fires
being <100 ha in size (210/275). Moreover, these proportions are probably conservative,
because we surely omitted some small fires in this initial study.

Between 2012 and 2022—the study period during which both the VIIRS and MODIS
sensors were operating in the region—we found an unexpected pattern in hotspot detec-
tions for the fires in our dataset (Table 2). In particular, the MODIS sensors were more
likely to detect a fire, despite having a coarser spatial resolution than the VIIRS sensors
(1 km versus 375 m). This was a somewhat surprising finding, as others have shown that
the VIIRS I-Band offers an improvement over the MODIS sensors in detection efficiency
for small fires in other high-latitude and low-biomass regions [45,46]. We initially thought
this difference might be related to overpass time and, possibly, early detection of short,
wind-driven burn events (as the Terra platform passes over the equator at approximately
10:30 a.m. local time, followed by one of the VIIRS platforms at 12:40 p.m., then both the
Aqua platform and the second VIIRS platform at approximately 1:30 p.m.). However, of the
seven fires only seen by the MODIS sensors, the two smallest fires were detected only by
the Aqua platform—the platform more temporally matched with the VIIRS sensors. Thus,
it seems unlikely that overpass timing was the cause. Canada’s Arctic region is known
to be extremely cloudy [47,48], and it is also possible that differences in cloud masking
procedures between the two sensors resulted in altered detection efficiencies.
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Table 2. Summary of thermal anomalies detected by the MODIS and VIIRS satellite sensors between
2012 and 2022 (i.e., the study period during which both sensors were operational). All fire sizes are
listed for MODIS and VIIRS, but only the smallest five detected by both sensors and the largest five
neither sensor detected are listed. Superscripts a and t (for MODIS) indicate if the fire was exclusively
detected by the Aqua or Terra platform, respectively (with no subscript representing detection by
both platforms).

Detected by Count Sizes (ha)

Both 25 [3.4, 21.4, 25.2, 25.8, 32.0]

MODIS only 7 [1.9 a, 8.6 a, 12.4, 15.0, 26.8 t, 38.8 t, 66.3]

VIIRS only 2 [10.1, 12.3]

Neither 46 [45.1, 102.5, 109.2, 130.3, 131.5]

An alternative explanation may be due to the higher fire radiative power (FRP) de-
tected by the MODIS sensors at northern latitudes [49]. While FRP is not part of the
detection algorithm on its own, it is calculated directly from brightness values (in Kelvin)
detected by each sensor [49]. Thus, the relatively lower FRP (which is derived from bright-
ness) observed by the VIIRS sensor, suggests it is possible that the VIIRS fire detection
algorithm may be unintentionally calibrated in a manner that misses fires in this region.
Specifically, the VIIRS and MODIS fire-detection algorithms are similar at their core—both
relying on the MODIS C6 algorithm—but the VIIRS algorithm separates fire pixels from
background pixels using only the fixed thresholds test (see [50]), while the MODIS algo-
rithm uses the same fixed thresholds test but also incorporates a newer dynamic threshold
test [49–51]. Indeed, a post-hoc examination of the archived near-real-time Fire Information
for Resource Management System (FIRMS) Global VIIRS and MODIS data [52] over fires
observed by both sensors found generally higher brightness values for the MODIS sensors
and a consistent saturation from the VIIRS sensors (Figure 6a). Moreover, given brightness
is constrained onboard VIIRS, there is a resulting disconnect in the relationship between
brightness and FRP (Figure 6b).
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We were unable to distinguish the cause of the fire ignitions (human or lightning
caused) with the data available. Future analyses using data from the Canadian Lightning
Detection Network [53] may enable some discrimination between human- and lightning-
caused fires for the region. Fire occurrence in Arctic Canada is determined using a mix
of top-down (weather) and bottom-up (fuel) controls, with weather being particularly
important [54]. As anthropogenic climate change has created severe warming in the
Arctic [55], there have been observations of increasing fuel availability from taller and more
productive vegetation [56] and an increase in fire-conducive weather conditions [57]. With
increasing fuel and worsening fire weather acting as dual positive feedbacks to fire in this
region, our findings further highlight the importance of monitoring and continued research
to better understand arctic fire regimes, where a few small fires could shift to become a
much more substantial area burned, if thresholds are surpassed [58]. Although none have
been reported in recent decades, the potential for large (e.g., >1000 ha) wildfires likely
exists across large parts of the study area. Neighboring Alaska has experienced a number
of significant tundra wildfires in recent decades, including one > 100,000 ha [59]. While
the conditions conducive to tundra wildfires of this extent are unlikely in much of the
Canadian tundra, a formal examination of wildfire potential in this biome represents an
important future area of research.

5. Limitations

While our results represent a step toward providing a more complete picture of burn-
ing over the preceding decades, we almost certainly missed some small fires, particularly
in light of the frequency of smaller fires in the data (e.g., nearly 1/3 of fires were ≤10 ha;
Figure 1a). Our method only examined candidate fires that were exported at 90 m pixel res-
olution and were at least 4 connected pixels in size. This resolution was initially determined
with GEE computation limitations, but we continue to work toward the goal of using the
native Landsat pixel size (i.e., 30 m) in future versions to more consistently identify smaller
fires. The use of smaller pixels may help maintain the connectedness of burned patches,
ensuring they are of sufficient size to be verified by the methodology. For example, a long,
narrow fire might not have had four connected pixels, whereas a small circular one would
be more likely to be connected. In addition, the patchiness of fire intensity would also
influence whether four contiguous pixels met the criteria—even if more than four pixels
fell within what would ultimately have formed the fire perimeter. Consequently, future
versions will use native Landsat resolution and refine the criteria around the minimum
connected pixels for examining candidate fires.

We used a somewhat conservative study area and could have extended the study
domain farther south and undoubtedly map more fires missing from the NBAC database.
We opted to initially focus on the Arctic and sub-Arctic regions because these have been
left out of recent advances in automated burn mapping for Canada [13,18,30]. The region’s
exclusion has been, in part, the result of prior assumptions about a lack of fire in the region.
In addition, disturbance mapping in the tundra is notoriously challenging with remotely
sensed data [19] and is likely another reason the area has been omitted from so many
mapping exercises over the years. The spectral signature of tundra environments is highly
sensitive to species and community composition, inter- and intra-seasonal phenological
events, and a host of abiotic factors [19,60]. Collectively, this has made automated distur-
bance mapping for the region fraught with commission and omission errors and is precisely
why we included a manual validation step in our initial workflow. There are certainly more
fires that still need to be folded into the NBAC database; however, the dataset here can be
used to build an improved workflow with training data from a broader area, now that a
more robust dataset of fires exists for the region.

6. Conclusions

The global Arctic and sub-Arctic are undergoing unprecedented changes. Continued
warming has the potential to increase fire risk in the Arctic via increased lightning, increased
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human activity, drying of peatlands, migration of fuels (e.g., northern advance of the
treeline), altered species composition, and more [1,3,4,61]. Yet, the region will likely
see the continued thawing of permafrost, increased variability in rainfall, and shifting
hydrology [4,62], and so the extent to which these myriad changes will interact and how
burning will be impacted remains unknown. Moreover, given recent findings that tundra
fire locations are more likely to become major methane sources [63], as a consequence of
permafrost thaw, the climate implications of increased fire activity are vital to understand.
Regardless of the pattern or trend in future burning, accurate historical mapping of Arctic
and sub-Arctic fires is a critical first step to understand potential changes in fire regimes.
The dataset presented here can be viewed as a reference or benchmark dataset for future
analyses to characterize trends and drivers of fire across the region or to assess impacts to
ecosystem functions and recovery. Such analyses could begin to untangle the mechanisms
driving heterogeneous fire responses observed between Alaska, Canada, and Russia [3].
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Appendix A

Table A1. Landsat band abbreviations used in equations within Table A2.

Band
Name

Band
Abbreviation

Spectral
Range (nm)

Band Number
Landsat-89

Band Number
Landsat-457

Blue B 450–530 B2 B1
Green G 510–600 B3 B2
Red R 620–690 B4 B3
NIR N 760–900 B5 B4

SWIR 1 S1 1550–1750 B6 B5
SWIR 2 S2 2080–2350 B7 B7

https://cwfis.cfs.nrcan.gc.ca/datamart/metadata/nbac
https://github.com/HethcoatMG/CADtundraFires
https://github.com/HethcoatMG/CADtundraFires
https://mghethcoat.users.earthengine.app/view/tundrafirerf
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Table A2. Equations for fire indices used in Random Forest models built for fire detection (double
asterisk represents exponentiation). Tasseled Cap coefficients are from [64].

Index Name Equation

Bare Soil Index (BSI) ((R + S1) − (N + B))/((R + S1) + (N + B))

Burned Area Index (BAI) 1/((0.1 − R)**2 + (0.06 − N)**2)

Burned Area Index Modified SWIR (BAIMs) 1/((N − 0.05 * N)**2 + (S1 − 0.2 * S1)**2)

Char Soil Index (CSI) N/S1

Enhanced Vegetation Index (EVI) 2.5 * ((N − R)/(N + (6 * R) − (7.5 * B) + 1))

Mid-Infrared Burn Index (MIRBI) ((10 * S2) − (9.8 * S1) + 2)

Modified Soil-Adjusted Vegetation Index (MSAVI) (2 * N + 1 − sqrt((2 * N + 1) ** 2 − 8 * (N − R)))/2

Normalized Burn Ratio (NBR) (N − S2)/(N + S2)

Normalized Burn Ratio 2 (NBR2) (S1 − S2)/(S1 + S2)

Normalized Difference Moisture Index (NDMI) (N − S1)/(N + S1)

Normalized Difference Vegetation Index (NDVI) (N − R)/(N + R)

Normalized Difference Water Index (NDWI) (G − N)/(G + N)

Relativized Burn Ratio (RBR) dNBR/(NBRprefire + 1.001)

Relativized delta Normalized Burn Ratio (RdNBR) dNBR/|(NBRprefire)|**0.5

Tasseled Cap Brightness (TCB) 0.2043 * B + 0.4158 * G + 0.5524 * R + 0.5741 * N + 0.3124 * S1 + 0.2303 * S2

Tasseled Cap Greenness (TCG) −0.1603 * B − 0.2819 * G − 0.4934 * R + 0.7940 * N − 0.0002 * S1 − 0.1446 * S2

Tasseled Cap Wetness (TCW) 0.0315 * B + 0.2021 * G + 0.3102 * R + 0.1594 * N − 0.6806 * S1 − 0.6109 * S2

Appendix B

Preliminary model training and testing was conducted in a Google Colaboratory note-
book [26] to optimize RF tuning parameters and select fire indices that accurately classified
burned areas. We explored different combinations of hyperparameters using a suite of tools
from scikit-learn [27]. Initially, we ran 100 different permutations with RandomizedSearchCV
to find hyperparameters. Next we used GridSearchCV to exhaustively search over a nar-
rower range of hyperparameters identified by RandomizedSearchCV. We then used RFECV
to find the optimal set of features via Recursive feature elimination with cross-validation. We
performed a 5-fold cross-validation, using RepeatedStratifiedKFold, to test optimal hyperpa-
rameter and feature selection vs. the base RandomForestClassifier model with all variables.
At each point, we compared model accuracy against the same model using only 100 trees to
assess the accuracy of a model with shorter computation time (Tables A3 and A4). Similarly,
we compared the optimal model against a model that used the three best predictors, calculated
using the gini criterion, to assess the accuracy of a model with an even shorter computation
time (Table A4). Finally, after initial model deployment, persistent false positives were further
reduced using a subset of indices (i.e., tundra variables in Table A4).

Table A3. Model sets and hyperparameters used to detect fires in Random Forest models. Tuning
parameters from only the highest performing model are listed and were used across all final model sets.

Model Set Variables

All variables All indices from Table A2

Reduced variable set dBAI, dBAIMs, dBSI, dCSI, dMSAVI, dNBR, dNBR2, dNDVI, dNDWI, dTCB, RBR, RdNBR

3 Best variables dNBR, RBR, RdNBR

Tundra variables dNBR2, dTCB, dTCG

Final hyperparameters n_estimators = 100, min_samples_leaf = 1, max_samples = 0.7, max_leaf_nodes = 580, max_features = ‘sqrt’



Remote Sens. 2024, 16, 230 15 of 17

Table A4. Average of 5-fold cross-validation from Random Forest models built in Google Colaboratory
using randomly sampled burned and unburned points from 253 fires in northern Canada 2014–2020.

Model Set Precision Recall Overall Accuracy

All variables, 800 trees 0.94131 0.85997 0.89370

All variables, 100 trees 0.94095 0.85917 0.89309

Reduced variable set, 800 trees 0.93953 0.86082 0.89318

Reduced variable set, 100 trees 0.93820 0.86026 0.89217

3 Best variables, 800 trees 0.90695 0.83494 0.86239

3 Best variables, 100 trees 0.90565 0.83514 0.86176

Tundra variables, 800 trees 0.90068 0.83451 0.85865

Tundra variables, 100 trees 0.90001 0.83425 0.85769
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